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ON MAXIMAL DISTANCES IN A COMMUTING GRAPH

GREGOR DOLINAR, BOJAN KUZMA, AND POLONA OBLAK

Abstract. We study maximal distances in the commuting graphs of
matrix algebras defined over algebraically closed fields. In particular,
we show that the maximal distance can be attained only between two
nonderogatory matrices. We also describe rank-one and semisimple ma-
trices using the distances in the commuting graph.

1. Introduction and preliminaries

One of the options how to study properties in certain non-commutative
algebraic domains is a commutator. For example, in algebras the additive
commutator, i.e., Lie product [A,B]a = AB−BA is usually used and with its
help some beautiful results were obtained. Let us only mention the famous
Kleinecke-Shirokov Theorem [15, 21]. In groups the multiplicative commu-
tator [A,B]m = A−1B−1AB is used, and it is a central tool in studying
solvability of groups and hence in Galois theory of solvability of equations
by radicals [11].

Additional information about non-commuting elements is obtained by
studying the properties of a commuting graph. For example, if the com-
muting graphs over two finite semisimple rings are isomorphic, then their
noncommutative parts are also isomorphic [3]. Let us remark that commut-
ing graph can also be used in algebraic domains where commutator is not
available, e.g., in semigroups or in semirings.

Up until now, one of the prime concerns when studying commuting graphs
was calculating its diameter [1, 4, 6, 9, 10, 17, 19]. It turned out that we
obtain essentially different results if the matrix algebraMn(F) is defined over
an algebraically closed field F than if it is defined over non-closed one. While
in the former case the diameter is always equal to four, provided n ≥ 3, in the
later case the graph may be disconnected, and if it is connected the diameter
is known to be at most six. The hypothesis is that if the commuting graph
is connected, its diameter is at most five [4, Conjecture 18]. Note that for
n = 2 the commuting graph over any field is disconnected [5, Remark 8].
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In the present paper we are interested in commuting graphs of matrix
algebras Mn(F) over algebraically closed fields F with n ≥ 3. In particular
we study the maximal distances between its vertices. It was already proved
in [4, Proof of Theorem 3] that an elementary Jordan matrix is always at
the maximal distance (i.e., four) from its transpose. In the present paper we
show that the maximal distance cannot be achieved when one of the matrices
is derogatory. However, if both A and B are non-derogatory we construct
an invertible matrix S so that A and S−1BS are at the distance four. We
also show that there exist an infinite collection of matrices, pairwise at the
maximal distance. Next, we describe rank-one matrices as the ones which are
not at the maximal distance from any derogatory matrix. A similar result
classifies semisimple (i.e., diagonalizable) matrices. Our paper concludes
with a specific example of matrix algebra over algebraically non-closed field,
such that the diameter of its commuting graph is greater than four.

Let us briefly recall some standard definitions and notations. Unless ex-
plicitly stated otherwise, F is an algebraically closed field of an arbitrary
characteristics. Further, Mm,n(F) is the space of m × n matrices over
F with a standard basis Eij , and Mn(F) = Mn,n(F) is the matrix alge-
bra with identity I. Let e1, . . . , en be the standard basis of column vec-
tors in F

n (i.e., of n × 1 matrices). Given an integer k ≥ 2 denote by

Jk(µ) = µIk +
∑k−1

i=1 Ei(i+1) ∈ Mk(F) the upper-triangular elementary Jor-
dan cell with µ on its main diagonal, and let J1(µ) = µ ∈ F. We write
shortly Jk = Jk(0). Matrix B is a conjugated matrix of A if B = S−1AS for
some invertible matrix S. As usual, Atr is a transpose of A ∈ Mn(F) and
rkA its rank.

For a matrix algebra Mn(F) over a field F its commuting graph Γ(Mn(F))
is a simple graph (i.e., undirected and loopless), with the vertex set consist-
ing of all non-scalar matrices. Two vertices X,Y form an edge X Y if the
corresponding matrices are different and commute, i.e., if X 6= Y and XY =
Y X. The sequence of successive connected vertices X0 X1, X1 X2, ...,
Xk−1 Xk is a path of length k and is denoted by X0 X1 . . . Xk. The
distance d(A,B) between vertices A and B is the length of the shortest path
between them. The diameter of the graph is the maximal distance between
any two vertices of the graph.

Given a subset Ω ⊆ Mn(F), let

C(Ω) = {X ∈ Mn(F); AX = XA for every A ∈ Ω}

be its centralizer. If Ω = {A} then we write shortly C(A) = C({A}). In
graph terminology, the set of all non-scalar matrices from the centralizer of
A is equal to the set of all vertices X such that d(A,X) ≤ 1. Note that
FI ∈ C(A) for any matrix A and that, by a double centralizer theorem,

C(C(A)) = F[A] (see [22, Theorem 2, pp. 106] or [16]). We remark that in
different articles a centralizer is also called a commutant and is denoted by
A′ = C(A).
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A centralizer induces two natural relations on Mn(F). One is the equiv-
alence relation, defined by A ∼ B if C(A) = C(B). We call any such two
matrices equivalent. The other relation is a preorder given by A ≺ B if

C(A) ⊆ C(B). It was already observed that minimal and maximal matrices
in this poset are of special importance, see for example [7, 20, 8]. Recall
that a matrix A is minimal if C(X) ⊆ C(A) implies C(X) = C(A). It was
shown in [20, Lemma 3.2] that the matrix A is minimal if and only if it is
nonderogatory, which means that each of its eigenvalue has geometric multi-
plicity one, which is further equivalent to the fact that its Jordan canonical
form is equal to J = Jn1

(λ1)⊕ · · · ⊕ Jnk
(λk), with λi 6= λj for i 6= j. In this

case,

C(J) = F[Jn1
(λ1)]⊕ · · · ⊕ F[Jnk

(λk)] = F[J ],

where F[X] is an F-algebra generated by X, see [22, Theorem 1, pp. 105]
or [12, Theorem 3.2.4.2].

Recall also that a non-scalar matrix A is maximal if C(A) ⊆ C(X) implies

C(A) = C(X) or X is a scalar matrix. It is known (see [7, Lemma 4] and
also [20, Lemma 3.1]) that a matrix is maximal if and only if it is equal to
αI + βP or αI + βN , where P 2 = P is a non-scalar idempotent, N 6= 0 is
square-zero (i.e., N2 = 0), and a scalar β is nonzero. It should be noted
that the proof of this fact was done only for the field of complex numbers,
but can be repeated almost unchanged in an arbitrary algebraically closed
field.

2. Results

Throughout this section, with an exception of the last example, F is an
algebraically closed field and n ≥ 3. We start with three technical lemmas
which will be needed in the sequel. First we observe that every matrix
commutes with a rank-one matrix.

Lemma 2.1. For every matrix A ∈ Mn(F) there exists a rank-one matrix

R ∈ Mn(F) with d(A,R) ≤ 1.

Proof. Given any A ∈ Mn(F), it suffices to show that A commutes with
at least one matrix of rank one. Since F = F, the matrix A has at least
one eigenvalue λ. So, we may assume without loss of generality that A is
singular, otherwise we would consider A− λI. Now, let x and y be nonzero
vectors in the kernels of A and Atr , respectively. Then, R = xytr is a
rank-one matrix with AR = (Ax)ytr = 0 = x(Atr y)tr = RA. �

Using Lemma 2.1 we can give an alternative proof of the already known
fact about the diameter of a commuting graph [4, Corollary 7].

Corollary 2.2. The distance between any two matrices in the commuting

graph is at most four.

Proof. Let A and B be arbitrary matrices. By Lemma 2.1 there exist rank-
one matrices R1 = xf tr ∈ C(A) and R3 = ygtr ∈ C(B). Since n ≥ 3 we
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can find a nonzero z ∈ F
n with f tr z = 0 = gtr z and a nonzero h ∈ F

n

with htr x = 0 = htr y. Then for a rank-one matrix R2 = xhtr we obtain
A = R0 R1 R2 R3 R4 = B. �

Lemma 2.3. Let A = Jk1 ⊕Jk2 ∈ Mk1+k2(F) be a nilpotent matrix with two

Jordan cells of sizes k1, k2 ≥ 1. Then d(A,R) ≤ 2 for an arbitrary rank-one

R ∈ Mk1+k2(F).

Proof. If k1 = k2 = 1 then A is a zero matrix and the conclusion is then
imminent. Otherwise, k1 ≥ 2 or k2 ≥ 2. Let k = k1 + k2. It is elementary
that the matrix Z = x1E1k1 + x2E1k + x3E(k1+1)k1 + x4E(k1+1)k commutes
with A for any choice of x1, x2, x3, x4 ∈ F. Actually, ZA = AZ = 0.
Moreover, the matrix Z is non-scalar, except when x1 = x2 = x3 = x4 =
0. Therefore, it suffices to show that for an arbitrary rank-one matrix R
there exist x1, . . . , x4 ∈ F, such that at least one of them is nonzero and
ZR = RZ = 0. To this end, write R = abtr for some column vectors
a = (a1, . . . , ak)

tr and b = (b1, . . . , bk)
tr . Then ZR = RZ = 0 is equivalent

to Za = Ztr b = 0, hence we must solve a homogeneous system of four linear
equations

(1)

x1ak1 + x2ak = 0,

x3ak1 + x4ak = 0,

x1b1 + x3bk1+1 = 0,

x2b1 + x4bk1+1 = 0,

x1, x2, x3, x4 unknown. The corresponding matrix of coefficients is equal to


ak1 ak 0 0
0 0 ak1 ak
b1 0 bk1+1 0
0 b1 0 bk1+1




and it is easy to check that it is always singular. Therefore the system (1)
has a nontrivial solution. This solution defines a non-scalar matrix Z, which
commutes with A and R, so d(A,R) ≤ 2 in Γ(Mk1+k2(F)). �

Lemma 2.4. Suppose A is not minimal. Then d(A,R) ≤ 2 for an arbitrary

rank-one matrix R ∈ Mn(F).

Proof. Using conjugation we might assume A is already in its Jordan form.
Since it is not minimal, hence it is derogatory, at least two Jordan cells
contain the same eigenvalue. Let k1, k2 ≥ 1 be their sizes. Define also
k = k1 + k2. Moreover, C(A) = C(A−λI) so we may also assume that these

two Jordan cells are nilpotent and that A = Jk1 ⊕ Jk2 ⊕ Ã. It is elementary
that

C
(
Jk1 ⊕ Jk2

)
⊕ (FIn−k) ⊆ C(A).

Now, let R = xytr be an arbitrary rank-one matrix. Decompose x =
x1⊕x2 ∈ F

k⊕F
n−k and y = y1⊕y2 ∈ F

k⊕F
n−k. We claim that there exists

a non-scalar matrix Ẑ ∈ C(Jk1⊕Jk2) satisfying simultaneously Ẑx1 = λx1 as
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well as Ẑtr y1 = λy1 for some λ ∈ F. In fact, this is trivial when x1 = y1 = 0.
Otherwise we let

R̂ =





x1y
tr
1 ; x1, y1 6= 0

e1y
tr
1 ; x1 = 0

x1e
tr
1 ; y1 = 0

∈ Mk(F),

where e1 ∈ F
k is the first vector of the standard basis. By Lemma 2.3

there exists at least one non-scalar matrix Ẑ ∈ Mk(F) which commutes

with R̂ as well as with Jk1 ⊕ Jk2 ∈ Mk(F). Therefore, if x1, y1 6= 0, then

Ẑx1y
tr
1 = x1(Ẑ

tr y1)
tr and we obtain Ẑx1 = λx1, and Ẑtr y1 = λy1 for some

λ ∈ F. If x1 = 0, then similarly as above Ẑe1 = λe1, and Ẑtr y1 = λy1.

Obviously Ẑx1 = λx1. Likewise we argue if y1 = 0.

With the help of Ẑ we define Z = Ẑ⊕λIk ∈ C(Jk1⊕Jk2)⊕(FIn−k) ⊆ C(A).

Clearly, Zx = Ẑx1 ⊕ λx2 = λx, and similarly, Ztr y = λy, so Z commutes
with R = xytr and with A. �

Akbari, Mohammadian, Radjavi, and Raja proved in [4, Lemma 2] that,
for matrices of size n ≥ 3, the diameter of the commuting graph is at most
four (see also Corollary 2.2 above) and that d(J, J tr ) = 4, thus showing that
the diameter of the commuting graph of matrix algebra over algebraically
closed fields is equal to four. It is well-known [12, p. 134] that the transpose
of a matrix is conjugate to the original, so [4, Lemma 2] implies that the
maximal distance from J to some of its conjugates is equal to four. Our next
lemma will strengthen their result by considering maximal distances between
an arbitrary minimal matrix A ∈ Mn(F) and matrices from conjugation orbit
{S−1BS; S invertible} of another minimal matrix B ∈ Mn(F). Recall that

a minimal matrix is conjugate to
k⊕

i=1
Jni

(λi), where λi 6= λj for i 6= j, and

where (n1, n2, . . . , nk) is a partition of n. We will show below that for any
two given partitions of n, we can find two minimal matrices with their Jordan
forms corresponding to these two partitions, at distance four. One of the
matrices is already in its Jordan canonical form, while the other is a matrix,
conjugated to its Jordan canonical form by an invertible matrix with all of
its minors nonzero. Such invertible matrix is for example a Cauchy matrix[

1
xi−yj

]
ij
(see [18]).

Theorem 2.5. Let S be any matrix with all of its minors nonzero. For

any two minimal matrices A =
k⊕

i=1
Jni

(λi) ∈ Mn(F) and B =
l⊕

i=1
Jmi

(µi) ∈

Mn(F), we have d(A,S−1BS) = 4.

Proof. Assume erroneously that A and B, as defined in Lemma, are not
at the maximal distance, i.e., d(A,S−1BS) ≤ 3. Since C(A) = C(αA)
for all nonzero α ∈ F, we can lengthen every path by adding vertices
which correspond to scalar multiples of matrices. So, there exists a path
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A X Y S−1BS of length 3 in Γ(Mn(F)). We can assume without loss
of generality that X and Y are maximal matrices. Namely, if X is not max-
imal, then there exists a maximal X ′ ≻ X, and since A,Y ∈ C(X) ⊆ C(X ′),
we could consider a path A X ′ Y S−1BS of length 3. Likewise for Y .

We will show that no two maximal matrices X ∈ C(A) and Y ∈ C(S−1BS)
commute and thus obtain a contradiction to the assumption d(A,S−1BS) ≤
3. Since all maximal matrices are equivalent either to a square-zero matrix
or to an idempotent matrix we will consider three cases.

First, let us assume that both X and Y are square-zero but nonzero.

Since A =
⊕k

i=1 Jni
(λi) and B =

⊕l
i=1 Jmi

(µi) are minimal, so λi 6= λj and
µi 6= µj for i 6= j, we have that

X = T1 ⊕ T2 ⊕ . . .⊕ Tk and Y = S−1(T ′
1 ⊕ T ′

2 ⊕ . . .⊕ T ′
l )S,

where all Ti and T ′
j are upper triangular Toeplitz matrices. Clearly then

ImX = Lin{eσ(1), eσ(2), . . . , eσ(r)} for some permutation σ of length n and
integer r, 1 ≤ r ≤ n

2 . Moreover, by the block-Toeplitz structure of X 6= 0
there exist indices t and s such that Xet = αes 6= 0. For the sake of
simplicity let us denote T = T ′

1 ⊕ T ′
2 ⊕ . . . ⊕ T ′

l . Now, if Y X = XY , we
would have that S−1TSXet ∈ ImX. This would imply,

αTSes ∈ S(ImX) = Lin{Seσ(1), Seσ(2), . . . , Seσ(r)}

which is clearly possible if and only if the rank of the n × r matrix M =[
1
α
Seσ(1),

1
α
Seσ(2), . . . ,

1
α
Seσ(r)

]
is the same as the rank of the augmented

matrix [M |TSes]. However, we will show that this is not the case. Since all
minors of S are nonzero, its s-es column Ses has no zero entries and as such
cannot be annihilated by a nonzero block-Toeplitz matrix T . Note that T
is also square-zero and so it has at least n

2 zero rows. Recall that r ≤ n
2 ,

consequently there exists an (r + 1)× (r + 1) submatrix of the augumented
matrix, having in the last column exactly r zeros and one nonzero element.
By expanding this (r+1)×(r+1) minor by the last column, we observe that
it is equal to a multiple of an r×r minor of matrix M which is equal to ( 1

α
)r

times an r × r minor of S. By the assumption, every minor of S is nonzero
and so r + 1 = rk [M |TSes] > rkM = r. This implies TSes /∈ S(ImX), a
contradiction.

Second, suppose a non-scalar idempotent X ∈ C(A) commutes with a
non-scalar square-zero Y ∈ C(S−1BS). Without loss of generality, r =
rkX ≤ n

2 , otherwise take I − X instead of X. So, X =
∑r

i=1 Eσ(i)σ(i)

and Y = S−1TS, where σ and T = T ′
1 ⊕ T ′

2 ⊕ . . . ⊕ T ′
l are as above.

Define t = σ(1). Similarly as before, if Y X = XY we would have that
S−1TSXet ∈ ImX = Lin{eσ(1), eσ(2), . . . , eσ(r)}, or, equivalently, TSet ∈
Lin{Seσ(1), Seσ(2), . . . , Seσ(r)}. We proceed as in the first case to obtain a
contradiction.

By the symmetry the only case remaining is the case when X and Y are
both non-scalar idempotents. Write X =

∑r
i=1Eσ(i)σ(i) and Y = S−1PS

for P =
∑s

i=1 Eτ(i)τ(i). Without loss of generality, r, s ≤ n
2 , since otherwise
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we would substitute X by I − X or Y by I − Y . Again, take t = σ(1).
If Y X = XY then S−1PSXet ∈ ImX = Lin{eσ(1), eσ(2), . . . , eσ(r)}, or,
equivalently, PSet ∈ Lin{Seσ(1), Seσ(2), . . . , Seσ(r)}. Since rkP ≤ n

2 , it
follows that the vector PSet has at least

n
2 zero entries. Note that n

2 ≥ r and
Set is the t-th column of S, so it has no zero entries. This gives PSet 6= 0,
a contradiction as in the first case.

This shows d(A,S−1BS) ≥ 4. But the diameter of commuting graph is
equal to four (see [4, Lemma 2]), hence d(A,S−1BS) = 4. �

Remark 2.6. The matrix S−1BS from Theorem 2.5 can be rather compli-

cated. In a special case, when A is nilpotent we can take A = Jn to achieve

that d(Jn, B) = 4 for any companion matrix B in the lower-triangular form.

This can be seen by a slight adaptation of the proof of [4, Lemma 2]. For

convenience we sketch the main points of the proof. First, it suffices to prove

that each maximal D ∈ C(Jn) = F[Jn] satisfies C(B) ∩ C(D) = FI. We may

further assume D =
∑n−1

i=r diJ
i
n,

n
2 ≤ r ≤ n − 1, is square-zero and hence

write it as a 3× 3 block matrix with block at position (1, 3) being invertible

upper-triangular Toeplitz of size (n − r) × (n − r), while all the rest blocks

are zero. If Z ∈ C(B) ∩ C(D) then in particular it commutes with D. By

direct computation using block-matrix structure we see that the (n, 1) entry

of Z is zero. However, Z ∈ C(B) and since companion matrices are non-

derogatory we have Z =
∑n−1

i=0 λiB
i. By considering the images of basis

vectors we see that Bi =

[
0i,(n−i) ⋆i,i

In−i ⋆(n−i),i

]
. Since (n, 1) entry of Z is 0

we see that λn−1 = 0. Proceeding inductively we see that λi = 0 for every

i = (n− 1), . . . , 1, whence Z is scalar.

By Theorem 2.5 there exist different types of matrices which are at the
maximal distance. Next we show that we can find infinitely many matrices
which are in the commuting graph pairwise at the maximal distance. Actu-
ally, we find an induced graph which is a tree with an internal vertex and
all of its leaves at distance two from the internal vertex.

Theorem 2.7. There exist an infinite family of matrices (Xα)α ∈ Mn(F)
and a rank-one matrix Z such that d(Xα,Xβ) = 4 for α 6= β and d(Xα, Z) =
2 for all α.

Proof. We consider three cases separately.
Case n = 3. Choose Z = E11 and let the infinite family consist of rank

one nilpotent matrices

Rα = (0, 1, α)tr (0, α,−1), α ∈ F.

It is easy to see that each member commutes with E11 and that the elements
of the family are pairwise at distance two. For each index α ∈ F choose a
nilpotent Xα such that X2

α = Rα. Since n = 3 all non-scalar matrices,
which commute with Xα are equivalent to Xα or to X2

α = Rα. Therefore,
as d(X2

α,X
2
β) = 2 for α 6= β, we see that d(Xα,Xβ) = 4 for α 6= β.
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Case n = 4. Choose λ ∈ F\{0, 1}. For nonzero α ∈ F consider rank-one
nilpotent matrix Nα = (0, λ, λα, λ)tr (0,−α, 1, 0) and rank-one idempotent
Pα = (0, 1, α, 0)tr (0, 1, 0,−1). It is a straightforward calculation that all
these matrices are pairwise non-commutative but they all commute with
E11, hence

(2) d(Nα, Nβ) = d(Pα, Pβ) = d(Nα, Pβ) = 2

for every α 6= β ∈ F \ {0}. Moreover, there exists a conjugation such that
S−1
α NαSα = E13 and S−1

α PαSα = E44, for example, take

Sα =




0 1 0 0
λ 0 0 −1
αλ 0 1 −α
λ 0 0 0


 .

Then, for each α we can find a minimal matrix Xα = Sα(J3 ⊕ 1)S−1
α with

Xα ≺ Pα and Xα ≺ Nα.
We claim that d(Xα,Xβ) = 4. In fact, if a maximal matrix M satisfies

M ≻ Xα, then, up to equivalence, either M = Nα, or M = Pα. Hence, if
Xα Yα,β Zα,β Xβ would be a path of length three, connecting Xα and
Xβ for α 6= β, then we may assume without loss of generality that Yα,β and
Zα,β are maximal matrices (see the proof of Theorem 2.5). Hence Yα,β is
equivalent either to Nα or Pα and Zα,β is equivalent either to Nβ or Pβ.
This contradicts equation (2), so d(Xα,Xβ) ≥ 4 for α 6= β. Observe that
one of the paths from Xα to Xβ is Xα Nα E11 Nβ Xβ.

Case n ≥ 5. Let A = diag(λ1, . . . , λn) where λi are pairwise distinct.
Consider an infinite family of rank one nilpotent matrices Rα indexed by
scalars α ∈ F:

Rα = R+αR̃; R = xf tr , R̃ = xgtr , x =

[ 1
...
1

]
, f =




2−n
1
...
1
0


 , g =




1−n
1
...
1
1


 ,

Note that Sα = I +Rα is invertible with S−1
α = I −Rα, and that S−1

α Sβ =

(I −Rα)(I +Rβ) = I + (β − α)R̃. Let us define for every α ∈ F the matrix
Xα = SαAS

−1
α . We will prove that d(Xα,Xβ) = 4 for α 6= β.

Note first that the distance is invariant for simultaneous conjugation. So,
we may replace (Xα,Xβ) with (S−1

α XαSα, S
−1
α XβSα) = (A,SAS−1), where

S = S−1
α Sβ = I + (β − α)R̃. Now, to prove d(A,SAS−1) = 4 it suffices

to show that, given any non-scalar matrices D1 ∈ C(A) and SD2S
−1 ∈

S C(A)S−1, they do not commute.
By the choice of minimal A, C(A) consists of diagonal matrices only,

hence D1 and D2 are diagonal. Assume erroneously that D1 and SD2S
−1

do commute, i.e., that D1(SD2S
−1) = (SD2S

−1)D1, or equivalently,

D1(I + x̃gtr )D2(I − x̃gtr ) = (I + x̃gtr )D2(I − x̃gtr )D1,
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where x̃ = (β − α)x. Since diagonal matrices commute, we get after expan-
sion and simplification

(3) (D1x̃)(D2g)
tr − (D1D2x̃)g

tr − (gtrD2x̃) · (D1x̃)g
tr

= x̃(D1D2g − (gtrD2x̃) ·D1g)
tr − (D2x̃)(D1g)

tr .

Notice that an eigenvector of a non-scalar diagonal matrix has at least one
nonzero entry. Hence, x̃ = (β − α)(1, . . . , 1)tr and g = (1 − n, 1, . . . , 1, 1)tr

can not be eigenvectors of a non-scalar diagonal matrix. In particular, g
and D2g are linearly independent and so there exists a vector y such that
gtr y = 0 and (D2g)

tr y = 1. Post-multiplying both sides of equation (3)
with y, we now have D1x̃ = µx̃ + νD2x̃, µ = (D1D2g − (gtrD2x̃)D1g)

tr y
and ν = −(D1g)

tr y. We infer that (D1−νD2)x̃ = µx̃, hence (D1−νD2) is a
scalar matrix because x̃ has all its entries nonzero. Thus, D1 = λI+νD2 for
some λ. This simplifies the starting equation D1(SD2S

−1) = (SD2S
−1)D1

into

D(SDS−1) = (SDS−1)D; D = D2,

wherefrom also the derived equation (3) simplifies into

(4) (Dx̃)(Dg)tr − (D2x̃)gtr − (gtrDx̃) · (Dx̃)gtr

= x̃(D2g − (gtrDx̃) ·Dg)tr − (Dx̃)(Dg)tr .

By the similar arguments as above we find a vector z such that gtr z = 0
and (Dg)tr z = 1, and continuing along the lines we see that

Dx̃ = ((D2g)tr z − (gtrDx̃)) · x̃−Dx̃.

If charF 6= 2 then the above equation implies that x̃ is an eigenvector of a
diagonal matrix D which is possible only when D2 = D is scalar, a contra-
diction.

However, if charF = 2 then we choose a vector, still named z, such that
gtr z = 1 and (Dg)tr z = 0. Similarly as above, this simplifies equation (4)
into

D2x̃+ (gtrDx̃) ·Dx̃ = µx̃; µ = (D2g)tr z.

Arguing as above, D2+(gtrDx̃)D−µI = 0. Thus, D2 = D, being non-scalar
diagonal, has exactly two distinct eigenvalues: d1 and d2 (with multiplicities
k and n−k, respectively), because it is annihilated by a quadratic polynomial
p(λ) = λ2 + (gtrDx̃)λ− µ = (λ− d1)(λ− d2). With no loss of generality we
assume that d1 = D1,1. Then, comparing the coefficients in characteristics
2, gives d1 + d2 = (gtrDx̃) = (β − α)

(
(1− n)d1 + (k − 1)d1 + (n − k)d2

)
=

(β−α)(n−k)(d1+d2). Since charF = 2 and D is not a scalar matrix, we can
divide by d1+d2 to obtain (β−α)(n−k) = 1. Observe that in characteristic
two, (β−α)(n−k) is either equal to 0 or β−α and since (β−α)(n−k) = 1,
we have that β−α = (β−α)(n−k) = 1. and thus β = α+1. Clearly, we can
choose an infinite subset of indices A = {0, α1, α1+α2, α1+α2+α3, . . . } ⊂ F

such that α− β 6= 1 for α, β ∈ A. For this subset, d(Xα,Xβ) = 4.
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To prove the rest, observe that the rank-one matrix

(I + x(f + αg)tr )e1e
tr
1 (I − x(f + αg)tr ) = SαE11S

−1
α

commutes with Xα = SαAS
−1
α . Now, since n ≥ 5 there exists a nonzero

vector w with wtr e1 = 0 = wtr x = wtr f = wtr g. Then, a rank-one matrix
Z = wwtr commutes with SαE11S

−1
α which gives the path

Xα SαE11S
−1
α Z.

Hence, d(Xα, Z) ≤ 2 for every α. Actually, no shorter path exists, because
otherwise, we could join the shorter path for some α with the above path
for some other index β to obtain that d(Xα,Xβ) ≤ 3, a contradiction. �

We next proceed with the classification of matrices which are equivalent
to rank-one matrices. In this classification we will need the following lemma.

Lemma 2.8. Let n ≥ 4. Suppose A ∈ Mn(F) is

(i) either a maximal matrix with 2 ≤ rkA ≤ n− 2, or
(ii) a nilpotent matrix with A3 = 0 and rk(A2) = 1.

Then there exists a nonminimal matrix X, such that d(A,X) ≥ 3.

Proof. (i) As already observed in Preliminaries, a maximal matrix A is either
a square-zero matrix or an idempotent, up to equivalence. Let k = rkA.

If A is square-zero, then 2 ≤ k ≤ n
2 . We define sℓ = (1, 1, . . . , 1)tr ∈ F

ℓ

and z2ℓ = (0, 1, 0, 1, . . . , 0, 1)tr ∈ F
2ℓ. Also, let N2ℓ =

⊕ℓ
i=1 J

tr
2 ∈ M2ℓ(F).

Note that N2
2ℓ = 0 and rkN2ℓ = ℓ. It is easy to see that a matrix

(5)



N2k−2 0 z2k−2

0 0n−2k+1,n−2k+1 sn−2k+1

0 0 01,1




is a square-zero of rank k, hence conjugate to A. So, we can assume without
loss of generality that A is already in the form (5).

Next, let us define a matrix X = J2⊕01⊕D, where D is a diagonal matrix
with n− 3 distinct nonzero diagonal entries. Clearly, X is nonminimal. We
will prove that d(A,X) ≥ 3, i.e., any matrix that commutes with A and X
is a scalar matrix.

First, let us assume k = 2. It is easy to see that every matrix B ∈ C(X)
can be decomposed in the following way

(6) B =




T S1 02,1
S2 D′ 0n−3,1

01,2 01,n−3 λ




where T =

[
a b
0 a

]
∈ M2(F), D′ = diag(d3, d4, . . . , dn−1) ∈ Mn−3(F),

S1 ∈ M2,n−3(F) has the only nonzero entry in its upper left corner, S2 ∈
Mn−3,2(F) has the only nonzero entry in its upper right corner, and λ ∈ F.
Note that the blocks in the decomposition of B correspond to the blocks
in the decomposition of A. Suppose B ∈ C(X) also commutes with A =
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

N2 0 z2
0 0n−3,n−3 sn−3

0 0 01,1


. Then, N2S1 = 0 and S2N2 = 0 imply that S1 = 0

and S2 = 0. Moreover, from D′sn−3 = λsn−3 and Tz2 = λz2 we easily see
that D′ = λIn−3 and T = λI2. Thus, B = λI, so d(A,X) ≥ 3.

Now, let us consider the case k ≥ 3. Again we decompose every B ∈ C(X)
to the blocks that correspond to the block decomposition of A:

B =




B1 02k−2,n−2k+1 02k−2,1

0n−2k+1,2k−2 D′ 0n−2k+1,1

01,2k−2 01,n−2k+1 λ




where B1 =



a b c1
0 a 0
0 c2 d3


 ⊕ diag(d4, d5, . . . , d2k−2) ∈ M2k−2(F) and D′ ∈

Mn−2k+1(F) is a diagonal matrix. Note that B is the same as in (6) but
decomposed in a different way. Suppose B also commutes with A as defined
in (5). Similarly as before, we have D′sn−2k+1 = λsn−2k+1 and thus D′ =
λIn−2k+1. Moreover, it is straightforward that from B1z2k−2 = λz2k−2 and
N2k−2B1 = B1N2k−2 we obtain B1 = λI2k−2. This completes the proof that
d(A,X) ≥ 3.

If A is an idempotent, then rk(I −A) = n− rkA. Since A and I −A are
equivalent, we can thus assume without loss of generality that A is of rank
k with n

2 ≤ k ≤ n− 2. Let W be a k× (n− k) matrix with the only nonzero
elements being

W1,n−k = W2,n−k−1 = W3,n−k−2 = . . . = Wn−k,1 = Wk,1 = Wk,n−k = 1 .

Note that, if k = n
2 , the rows k and n − k coincide. Using an appropriate

conjugation we can additionally assume that

A =

[
Ik W

0n−k,k 0n−k,n−k

]
.

Let us define a nonminimal matrix X = Jk ⊕ 01 ⊕ In−k−1. We will prove
that d(A,X) ≥ 3, i.e., any matrix B ∈ C(A) ∩ C(X) is a scalar matrix. It is
a straightforward calculation that

C(A) =

{[
M MW −WN

0n−k,k N

]
; M ∈ Mk(F), N ∈ Mn−k(F)

}

and that C(X) consists of all matrices of the form



U s 0k,n−k−1

vtr λ 01,n−k−1

0n−k−1,k 0n−k−1,1 Y


 ,

where U is an upper triangular Toeplitz k × k matrix, s = (s1, 0, . . . , 0)
tr ∈

F
k, v = (0, . . . , 0, vk)

tr ∈ F
k, Y =

[
yij

]
2≤i,j≤n−k

∈ Mn−k−1(F), and λ ∈ F.
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Suppose B =

[
M MW −WN
0 N

]
∈ C(A) ∩ C(X). It follows that M =

∑k
i=1miJ

i−1
k , N = λ ⊕ Y and (MW − WN)ij = 0 except possibly for

i = j = 1.
By equations

0 = (MW −WN)k,1 = m1 − λ,

0 = (MW −WN)k,n−k = m1 − yn−k,n−k,

0 = (MW −WN)i,n−k = mk−i+1 for all i with (k − 1) ≥ i ≥ (n− k)

it follows that m1 = yn−k,n−k = λ and m2 = m3 = . . . = m2k−n+1 = 0.
Moreover, by 0 = (MW − WN)i,1 = mk−i+1 for i = 2, 3, . . . , n − k − 1,
it follows that m2k−n+2 = . . . = mk−1 = 0. Now, equation 0 = (MW −
WN)1,n−k = mk completes the proof that M = λIk.

We proceed by 0 = (MW − WN)i,n−k−i+1 = m1 − yn−k−i+1,n−k−i+1

for i = 2, . . . , n − k − 1 and 0 = (MW − WN)i,j = −yn−k−i+1,j for i =
1, 2, . . . , n − k − 1 and j = 2, 3, . . . , n − k, such that i + j 6= n − k + 1.
It follows that N = λIn−k and (MW − WN) = 0. Thus, B = λI and
d(A,X) ≥ 3.

(ii) Let A be a nilpotent matrix such that A3 = 0 and rk(A2) = 1. We
may assume A is already in its Jordan canonical form, i.e.,

A = J3 ⊕

k⊕

i=1

J2 ⊕ 0n−3−2k.

The centralizer of A is contained in the set of matrices of the form B =[
T S1

S2 V

]
, where T = t0I3 + t1J3 + t2J

2
3 ∈ M3(F), V ∈ Mn−3(F), and where

the first column of S2 ∈ Mn−3,3(F) as well as the last row of S1 ∈ M3,n−3(F)
contain only zero entries.

Now, let us define the nonminimal matrix X = 1 ⊕ 0 ⊕ Jn−2 and take
any B ∈ C(A) ∩ C(X). Since B ∈ C(X), its off-diagonal entries on the
first row and the first column are all zero. Comparing with the above form
for B we deduce that T = t0I. Moreover, B ∈ C(X) also implies that
the bottom-right (n − 2) × (n − 2) block of B is upper triangular Toeplitz
matrix, which is moreover equal to t′0In−2 for some t′0 ∈ F by the fact that
the third row of S1 vanishes. Actually, t0 = t′0 because a 3 × 3 block T
overlaps with (n − 2) × (n − 2) bottom right block. Further, B ∈ C(X)
implies that the only possible off-diagonal nonzero entries in the second row
and column lie at positions (2, n), and (3, 2). Actually, B32 = T32 = 0,
while from B ∈ C(A) we deduce that if B2n 6= 0 then also B1(n−1) 6= 0,
which would contradict the fact that the first row of B has zero off-diagonal
entries. Hence, B2n = B32 = 0 and so B = t0I is a scalar and therefore
d(A,X) ≥ 3. �

Theorem 2.9. The following statements are equivalent for a non-scalar

matrix R.
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(i) R is equivalent to a matrix of rank one.

(ii) d(R,X) ≤ 2 for every nonminimal matrix X.

Proof. If n = 3, then every nonminimal matrix is equivalent to a rank-one
matrix, so we may assume that n ≥ 4.

To prove that (i) =⇒ (ii), we can assume without loss of generality that
rkR = 1. Let X be an arbitrary nonminimal matrix. Then d(R,X) ≤ 2 by
Lemma 2.4.

¬(i) =⇒ ¬(ii). Suppose R is not equivalent to a rank-one matrix. Note
that there exists at least one maximal matrix M ≻ R. In fact, M = p(R) for
some polynomial p. Moreover, we can assume that every maximal M ≻ R
is either a nonzero square-zero matrix or a non-scalar idempotent. Hence
1 ≤ rkM ≤ n − 1. Note that rkM = n − 1 implies M is an idempotent
and therefore it is equivalent to a maximal matrix of rank one. So we can
assume that 1 ≤ rkM ≤ n− 2.

If for a maximal M ≻ R we have 2 ≤ rkM ≤ n − 2, then by Lemma
2.8 there exists a nonminimal matrix X with d(M,X) ≥ 3. Hence also
d(R,X) ≥ 3 because C(R) ⊆ C(M).

Otherwise, every maximal matrix M ≻ R is equivalent to a rank-one
matrix. This implies that (i) R is either equivalent to a nilpotent matrix
with exactly one Jordan block of dimension 3 and all other cells of dimension
at most 2, or (ii) R is equivalent to a matrix whose Jordan structure is equal
to 1⊕ J2 ⊕ 0n−3, or (iii) R is equivalent to a matrix whose Jordan structure

is equal to 1⊕ J3 ⊕
⊕k

i=1 J2 ⊕ 0n−3−2k. In the first case, Lemma 2.8 assures
that there exists a nonminimal X with d(R,X) ≥ 3. In the case (ii) we have,
modulo conjugation, R = 1⊕J2⊕0n−3. It is easy to see that X = J2⊕Jn−2

is nonminimal and d(R,X) ≥ 3. In case (iii) we have, modulo conjugation,

R ≺ R′ = 0⊕J3⊕
⊕k

i=1 J2⊕0n−3−2k. Again, Lemma 2.8 gives a nonminimal
matrix X with d(R′,X) ≥ 3, so also d(R,X) ≥ 3. �

In the previous theorem rank-one matrices are classified with the help of
matrices which are not minimal. We next classify minimal matrices as the
ones which maximize the distance in a commuting graph.

Theorem 2.10. The following are equivalent for a matrix A ∈ Mn(F).

(i) A is minimal.

(ii) There exists a matrix X such that d(A,X) = 4.

Proof. (i) =⇒ (ii). This follows from Theorem 2.5.
¬(i) =⇒ ¬(ii). Let A be a non-minimal matrix, and let X be any matrix.

By Lemma 2.1, there exists a rank-one matrix R with d(X,R) ≤ 1. By
Theorem 2.9 we have d(A,R) ≤ 2, so triangle inequality gives d(A,X) ≤ 3.

�

Remark 2.11. Combining the previous two theorems yields that R is equiv-

alent to rank-one matrix if and only if d(R,X) ≤ 2 for every matrix X such

that d(X,Z) ≤ 3, for all Z ∈ Mn(F).
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Semisimple matrices can also be classified using the distance in the com-
muting graph. Before doing that we need two lemmas.

Lemma 2.12. Suppose a minimal matrix B ∈ Mn(F) is semisimple. Then

for any Y X B there exists a minimal matrix M with Y M X.

Proof. Assume with no loss of generality that B is diagonal. Then, every
X ∈ C(B) is also diagonal. Using simultaneous conjugation on (B,X) we
may further assume that X = λ1In1

⊕ · · · ⊕ λkInk
, with λ1, . . . , λk pairwise

distinct and n1, . . . , nk ≥ 1. Now, since Y commutes with X we have that
Y ∈ C(X) = Mn1

(F) ⊕ · · · ⊕ Mnk
(F). Consequently, Y = Y1 ⊕ · · · ⊕ Yk

is block-diagonal and we may find an invertible block-diagonal matrix S =

S1 ⊕ · · · ⊕ Sk such that S−1XS = X and S−1Y S =
⊕k

i=1 S
−1
i YiSi is in

Jordan upper-triangular form; say S−1Y S =
⊕s

i=1 Jmi
(µi), with mi ≥ 1,

s ≥ k. Then we can choose distinct ν1, . . . , νs ∈ F, such that the matrix
M = S

⊕s
i=1 Jmi

(νi)S
−1 is neither equal to X nor Y . Also, since ν1, . . . , νs

are distinct, M is nonderogatory, hence minimal, and it commutes with X
and with Y . �

Lemma 2.13. Suppose a minimal B ∈ Mn(F) is not semisimple. Then

there exist matrices X,Y with Y X B, but such that no minimal matrix

commutes with both X and Y .

Proof. With no loss of generality assume B is already in its upper-triangular
Jordan form, B = Jn1

(λ1) ⊕ · · · ⊕ Jnk
(λk) with λ1, . . . , λnk

distinct and
n1 ≥ 2. Define X = E1n1

= Jn1−1
n1

⊕ 0n−n1
∈ C(B) and for an arbitrary

k ∈ {1, . . . , n} \ {1, n1} define Y = E1k. Clearly, X commutes with Y . Let
us show that no minimal A commutes with both X and Y . Assume A =⊕s

j=1 Jnj
(µj) is already in its Jordan canonical form. Since X ∈ C(A) is of

rank one, it follows that X ∈ FJ
nj1

−1
nj1

for some j1, and likewise Y ∈ FJ
nj2

−1
nj2

for some j2. However, rk(X + Y ) = 1 and so j1 = j2, which gives X and Y
must be linearly dependent, a contradiction. �

Theorem 2.14. Let A ∈ Mn(F) be a non-scalar matrix. Then the following

are equivalent.

(i) A is semisimple.

(ii) There exists a minimal B ∈ C(A) such that for any Y X B there

exists a minimal matrix M with Y M X.

Proof. (i) =⇒ (ii). Assume without loss of generality that A is already
diagonal. Choose distinct scalars µ1, . . . , µn to form a minimal matrix B =
diag(µ1, . . . , µn) which clearly commutes with A. Then, (ii) follows from
Lemma 2.12.

¬(i) =⇒ ¬(ii). Choose any minimal B which commutes with non-

semisimpleA (at least one does exist, for example, if A = S
⊕k

i=1 Jni
(λi)S

−1,

then for distinct scalars λ1, . . . , λk matrices A and B = S
⊕k

i=1 Jni
(λi)S

−1

commute). Since C(B) = F[B] it follows that A ∈ F[B] which implies that
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B itself is not semisimple. It now follows from Lemma 2.13 that there exist
X,Y with Y X B, but no minimal matrix commutes with both of them.
So (ii) does not hold. �

Let us conclude with an example of a connected commuting graph over
algebraically non-closed field with the diameter strictly larger than 4.

Example 2.15. The commuting graph for M9(Z2) is connected with diam-
eter at least 5.

Note that Z2 permits only one field extension of degree n = 9, and this
is the Galois field GF (29) which contains GF (23) as the only proper inter-
mediate subfield. So, by [2, Theorem 6] the commuting graph of M9(Z2)
is connected. To see that its diameter is at least 5, consider an irreducible

polynomial m(λ) = λ9+λ8+λ4+λ2+1 ∈ Z2[λ] and let Â = C(m) ∈ M9(Z2)

be its companion matrix. Since Â has a cyclic vector, C(Â) = Z2[Â] by a
well known Frobenius result on dimension of centralizer (see for example [2,
Corollary 1]), and this is a field extension of Z2 [14, Theorem 4.14, pp. 472]

of index n = 9. Actually, C(Â) is isomorphic to GF (29) by the uniqueness
of field extensions for finite fields. In the sequel we will identify the two.

Since the field extension Z2 ⊂ GF (29) contains only GF (23) as a proper

intermediate subfield, we see that each X ∈ C(Â)\GF (23) satisfies Z2[X] =

Z2[Â] = C(Â) and in particular X and Â are polynomials in each other

so they are equivalent. Moreover, each non-scalar Ŷ ∈ GF (23) satisfies

Z2[Ŷ ] = GF (23), because no proper intermediate subfields exist between

Z2 ⊂ GF (23), and in particular, C(Ŷ1) = C(Ŷ2) for any two non-scalar

Ŷ1, Ŷ2 ∈ GF (23) ⊂ GF (29) = C(Â).

There exists a polynomial p so that Ŷ = p(Â) ∈ GF (23) \ {0, 1}. As
the field GF (23) contains no idempotents other than 0 and 1 we see that

the rational canonical form of Ŷ consists only of cells which correspond to
powers of the same irreducible polynomials. Likewise, the field contains

no nonzero nilpotents, so each cell of Ŷ corresponds to the same irreducible
polynomial, raised to power 1. Moreover, GF (23) has no subfields other that

Z2, so Z2[Ŷ ] = GF (23) and hence the minimal polynomial of Ŷ ∈ GF (23)
has degree [GF (23) : Z2] = 3. This polynomial is relatively prime to its

derivative, so in a splitting field, Ŷ has three distinct eigenvalues. It easily

follows that Ŷ is conjugate to a matrix C ⊕ C ⊕ C, with C being a 3 × 3
companion matrix of some irreducible polynomial of degree 3. Let S1 be an

invertible matrix such that Ŷ = S−1
1 (C ⊕ C ⊕ C)S1 and define

A = S1ÂS
−1
1 .

Clearly then p(A) = S1Ŷ S−1
1 = C ⊕ C ⊕ C and it follows that

(7) C(p(A)) =



Z2[C] Z2[C] Z2[C]
Z2[C] Z2[C] Z2[C]
Z2[C] Z2[C] Z2[C]


 .
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Since Z2[Ŷ ] = GF (23) we obtain Z2[C] = GF (23).
Consider a 3× 3 block matrix

N =



E13 0 0
0 0 E13

E32 0 0


 , E13, E13, E32 ∈ M3(Z2).

It is immediate that N3 = 0, so I +N is invertible. Define

B = (I +N)A(I +N)−1.

We will show that d(A,B) ≥ 5.
Suppose there exists a path A V Z W B of length 4. Note that

V ∈ GF (23) ⊂ C(A). Otherwise, if V ∈ C(A) \ GF (23) then C(V ) =

C(A) and such V has exactly the same neighbours as A. Since B = (I +
N)A(I +N)−1, it follows W = (I +N)U(I +N)−1 for some U ∈ GF (23) ⊂

C(A) = (I + N)−1 C(B)(I + N). Recall that any two non-scalar elements
in GF (23) have the same centralizer. So in particular we might take U =
V = p(A) = C ⊕ C ⊕ C where polynomial p was defined before. For any
Z ∈ C(V ) ∩ C((I +N)V (I +N)−1) we have

Z = (I +N)Ẑ(I +N)−1, Z, Ẑ ∈ C(V )

and hence, by postmultiplying with (I +N) and rearranging,

(8) Z − Ẑ = NẐ − ZN.

Let us write Z =
[
Zij

]
1≤i,j≤3

and Ẑ =
[
Ẑij

]
1≤i,j≤3

as 3 × 3 block matrices

and by (7) we have that Zij, Ẑij ∈ Z2[C] = GF (23) ⊆ M3(Z2), hence each
of them is either zero or invertible. Then (8) implies

[
Zij−Ẑij

]
ij
=



−Z11E13 − Z13E32 + E13Ẑ11 E13Ẑ12 E13Ẑ13 − Z12E13

−Z21E13 − Z23E32 + E13Ẑ31 E13Ẑ32 E13Ẑ33 − Z22E13

−Z31E13 − Z33E32 + E32Ẑ11 E32Ẑ12 E32Ẑ13 − Z32E13


 .

Observe that each block on the left side belongs to Z2[C] = GF (23) ⊆
M3(Z2), and so is either zero or invertible. On the other hand, on the right
side, each block in the last two columns has rank at most two. We deduce
that the last two columns on both sides are zero. In particular, comparing

the second columns we see that Ẑ12 = Z12 = 0 and Ẑ32 = 0, so Z22 = Ẑ22,

and Z32 = Ẑ32 = 0. Putting this in the above equation and simplifying,

the last column then gives Ẑ13 = 0, so Z13 = Ẑ13 = 0, Z23 = Ẑ23, and

Z33 = Ẑ33. Also, comparing the (2, 3) positions gives

0 = Z23 − Ẑ23 = E13Ẑ33 − Ẑ22E13 = e1(Ẑ
tr
33e3)

tr − Ẑ22e1e
tr
3 .

Moreover, Ẑtr
33e3 = λe3 and Ẑ22e1 = λe1, λ ∈ Z2. Since Ẑ33, Ẑ22 ∈ Z2[C]

and every vector is cyclic for C we see that Ẑ33 = Ẑ22 = λI3. The matrix
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equation therefore simplifies to


Z11 − Ẑ11 0 0

Z21 − Ẑ21 0 0

Z31 − Ẑ31 0 0


 =




−Z11E13 + E13Ẑ11 0 0

−Z21E13 − Ẑ23E32 + E13Ẑ31 0 0

−Z31E13 − λE32 + E32Ẑ11 0 0


 .

Comparing the position (1, 1) gives by similar arguments as above that Ẑ11 =
Z11 = µI3. Inserting this into the equation we see after rearrangement that
the rank of the block at position (3, 1) is equal to rk((µ−λ)E32−Z31E13) ≤ 2,

which forces the two blocks at position (3, 1) to be zero, i.e., Z31 − Ẑ31 =
0 = (µ − λ)E32 − Z31E13 = (µ − λ)e3e

tr
2 − Z31e1e

tr
3 . We immediately get

Z31 = Ẑ31 = 0 = (µ − λ). Therefore, Z11 = Z22 = Z33 = λI3. Finally,
comparing the (2, 1) positions gives

Z21 − Ẑ21 = −Z21E13 − Ẑ23E32,

and arguing as above, Z21 = Ẑ21 = 0. Hence, Z is scalar. So, C(V ) ∩ C(W )
contains only scalars, which gives that d(A,B) ≥ 5.
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[20] P. Šemrl, Non-linear commutativity preserving maps, Acta Sci. Math. (Szeged) 71

(2005), 781–819.
[21] F. V. Shirokov, Proof of a conjecture by Kaplansky, Uspekhi Mat. Nauk 11 (1956),

167–168 (in Russian).
[22] J. H. M. Wedderburn, Lectures on Matrices, American Mathematical Society Collo-

quium Publications, Volume XVII, 1934.

(Gregor Dolinar) Faculty of Electrical Engineering, University of Ljubl-

jana, Tržaška cesta 25, SI-1000 Ljubljana, Slovenia.

E-mail address, Gregor Dolinar: gregor.dolinar@fe.uni-lj.si

(Bojan Kuzma) 1University of Primorska, Glagoljaška 8, SI-6000 Koper,
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