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Abstract
The purpose of this note is make Theorem 13 in [2] more accessible.

Restatements of the theorem already appeared in few of the authors’
succeeding works but with no details. We wish in this note to give the
necessary details to these restatements.

1 Introduction

Theorem 13 in [2] is the following theorem:

Theorem 1 (Cut corners exist in thick equality diagrams). Assume that
w and v are (a, b)-equal such that the equality diagram of aw and vb is not
thin. Then, either w or v have a cut corner.

The theorem essentially deals with the structure of special V (6) dia-
grams. We aim to give all the necessary details and also to give a full and
complete statement of the theorem so it can be used readily. It is assumed
that the reader is familiar with the subject combinatorial group theory and
has some knowledge of van Kampen diagrams (although, an effort is made
to give some basic details and some references).

A note on the presentation: we will usually denote words (over some
alphabet) with uppercase letters, W , U , and V . However. in [2] words are
denoted with lowercase letters and we keep the original form in citations.

The rest of this note is organized as follows. In Section 2 we give a brief
overview of the subject of van Kampen maps and diagrams and we give the
definition of V (6) maps. In Section 3 we will restate Theorem 1 with all the
necessary details (including the meaning of “(a, b)-equal” and “cut corner”).
In Section 4 we give the version of the theorem which only deals with maps.
Section 5, the last section, contains few consequences of the theorem.

2 Preliminaries

A map is a finite planar connected and simply connected 2-complex (see
[1, Chapter V]). We name the 0-cells, 1-cells, and 2-cells by vertices, edges,
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and regions, respectively. Vertices of valence one or two are allowed. Each
edge has an orientation, i.e., a specific choice of initial and terminal vertices.
Given an edge e we denote by i(e) the initial vertex of e and by t(e) the
terminal vertex of e. If e is an oriented edge then e−1 will denote the same
edge but with the reverse orientation. A path is a series of (oriented) edges
e1, e2, . . . , en such that t(ej) = i(ej+1) for 1 ≤ j < n. The length of a path
ρ (i.e., the number of edges along ρ) is denoted by |ρ|. Paths of length
zero are allowed; these paths consist of a single vertex. If ρ is the path
e1 · · · en then we denote by ρ−1 the path e−1n · · · e−11 . If ρ is a path that
decomposes as ρ = ρ1ρ2 then ρ1 is a prefix of ρ and ρ2 is a suffix of ρ.
The term neighbors, when referred to two regions of a map, means that
the intersection of the regions’ boundaries contains an edge; specifically, if
the intersection contains only vertices, or is empty, then the two regions
are not neighbors. Boundary edges are edges in the boundary of the map.
Boundary regions are regions with outer boundary, i.e., the intersection of
their boundary and the map’s boundary contains at least one edge. The
outer boundary of of a boundary region D in a map M is simply ∂D ∩ ∂M ;
the inner boundary of D is ∂D\(∂D ∩ ∂M). Inner regions are regions which
are not boundary regions. Proper boundary regions are boundary regions
which have the property that removing their interior and all their boundary
edges keeps the map connected. If D is a proper boundary region of M then
∂D ∩ ∂M contains only one connected component which contain edges. A
boundary path is a path in the boundary of the map.

Let M be a map with boundary cycle µσ−1. We say that M is a (µ, σ)-
thin if every region D of M has at most two neighbors and both ∂D∩µ and
∂D ∩ σ are non-empty. See Figure 1 for an illustration of such a map.

σ

µ

Figure 1: Thin map

Definition 2 (V (6) diagram). A map M is a called a V (6) map if the
following holds: suppose D is an inner region then:

1. D has at least four neighbors.

2. If the boundary of D contains a vertex of valence three then D has at
least six neighbors.
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Given a finite presentation P = 〈X | R 〉, an R-diagram (or simply
diagram if the presentation is known from the context) is a map—called
the underling map of the diagram—where its edges are labelled by elements
of (X±1)∗ and the boundary of every region is labelled by elements of the
symmetric closure of R. Suppose that a group G is presentated by P =
〈X | R 〉. van Kampen theorem [1, Chapter V] states that a word W over
X±1 presents the identity of G, if and only if there is an R-diagram with a
boundary cycle labelled by W . A diagram is a V (6) diagram if its underlying
map is a V (6) map.

3 Summary of original statement

Theorem 13 in [2] appears in Section 3 which spans over pages 801-803.
The section assumes that there is a fixed V ′(6) presentation P = 〈X | R 〉,
where R is symmetrically closed and all its elements are freely reduced. The
definition of V ′(6) presentation is given in page 798:

Definition 3 (V ′(6) presentations). Let P = 〈X | R 〉 be a finite presen-
tation of group G, where R is symmetrically closed and all its elements are
freely reduced. A piece is a non-trivial word U , such that there are two
different relators R1 and R2 in R with U as their prefix. We say that P is
a V (6) presentation if for every relator R ∈ R, one of the following holds:

1. Every decomposition of R into pieces contains at least four pieces and
if R′, R′′ ∈ R then one of the three words RR′,R′R′′ or R′′R is freely
reduced.

2. Every decomposition of R into pieces contains at least six pieces.

Presentation which are V (6) presentation and every piece is of length one
will be denoted by V ′(6).

There are several definition that are used in the statement of the theorem;
we give them next for completeness. Two words, W and V , are said to be
“(a, b)-equal” (page 798) if aW and V b present the same element in the group
where a and b are elements of X±1 ∪ { ε } (ε is the empty word). Equality
diagram for two words, W and V , is a diagram M which has a boundary
cycle that is labelled by WV −1 (page 799). A thin equality diagram for
two words, W and V , is an equality diagram which is (µ, σ)-thin where µ is
labelled by W and σ is labelled by V (page 799).

Next, we clarify the meaning of “w or v have a cut corner” in the state-
ment of the theorem. In [2], if a path µ is labelled by a word W then letter
W may present both the path and the word (page 799). Thus, in the phrase
above we have two paths, µ and σ, labelled by w and v, respectively, which
contain a cut corner. The definition of a path containing a cut corner follows
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(based on the definition which appear in page 802). For sake of brevity and
simplicity, we give a version of the definition which differ from the original
definition. See the note after the definition for the list of changes.

Definition 4 (Cut Corners). Let M be a diagram and let D be a proper
boundary region. Let µ = e1e2 · · · en be a boundary path of M , where
this path contains all of the outer boundary of D which we denote by µD.
Assume that µD contains the edges e`e`+1 · · · e`+r, 1 ≤ ` ≤ ` + r ≤ n, and
assume that the inner boundary of D, δD, has s edges. The edges e` and
e`−1 intersect in a vertex which we denote by i(µD). We say that D is a cut
corner for µ, if one of the following conditions hold:

T1. s < r.

T2. s = r = 2, ` > 1 and i(µD) is of valence three.

T3. s = r = 3, ` > 1, i(µD) is of valence three and e`−1 is on the boundary
of an adjacent boundary region E with at most five edges.

T4. s = r = 3, ` > 2, i(µD) is of valence three and e`−2e`−1 is on the
boundary of an adjacent boundary region E.

The phrases “µ contains a cut corner D” and “D is a cut corner for µ” will
be used interchangeably.

eℓ−1

D

T1

µ

T2

E

D

i(µD)
µD

T3

D

i(µD)
µD

E

T4

D

i(µD)
µD

E

µD

eℓ−2

δD

eℓ−1eℓ−1

Figure 2: Cut Corner

Remark 5. As written above, the definition of cut corners is different from
the original definition in [2]. We list the changes, which are only syntactic
in nature, as can be easily verified.

1. We avoided using the same name for paths and labells. This is done by
removing the unnecessary reference to the labels. The reader can check
that the actual labels of the paths are not important to the definition.
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2. Some of the names of the object that appear in the definition where
changed to reflect the terminology of this note.

3. The region D is assumed to be a proper boundary region. In the orig-
inal version this was not explicitly assumed although it follows from
the assumptions of the definition.

4. We removed the equality “s = n − r” which appeared in the original
statement (this is a typo in the original version).

We end this section with a restatement of the main theorem and some
observations. In the version below we tried to use as few as possible defini-
tions.

Theorem 6. Let P = 〈X | R 〉 be a V ′(6) presentation of a group G, let W
and V be words over X±1, and let a and b be elements of X±1∪{ ε }. Assume
that aW and V b present the same element in G and let M by a diagram
with boundary cycle ξµτ−1σ−1 such that ξ is labelled by a, µ is labelled by
W , τ is labelled by b, and σ is labelled by V . Assume that the diagram M
is not (ξµ, στ)-thin. Then, either the path µ or the path σ contains a cut
corner.

Observation 7. We list few observations regarding the theorem which will
be important later:

1. A diagram over a V ′(6) presentation is a V (6) diagram (page 802).

2. Since all pieces of the presentation are of length one there are no inner
vertices of valence two.

3. All edges of the diagram are labelled by a generator (this is assumed
in the definition of a diagram in page 799). Consequently, the lengths
of ξ and τ are at most one.

4 A new statement

In this section we shift the focus to maps (instead of diagrams). The proof
of Theorem 13 in [2] is given in Section 4 (pages 804-819). As can be
verified, the proof does not concern with the actual labels of the diagram.
Thus, the proof deals only with the structure of special V (6) diagrams under
certain conditions. Our goal in this section is to make the assumption on
the structure of the diagram explicit and finally restate the theorem as a
theorem on maps.

Let M be a diagram over a V ′(6) presentation for which the conditions
of the theorem hold. As we observed, the map is a V (6) map and has no
inner vertices of valence two. The boundary regions have also a special
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structure. Since each edge is labelled by a generator and the presentation
is a V ′(6) presentation it follows that one of following two conditions hold
for a boundary region D of M : (1) ∂D contains at least four edges; (2)
if ∂D contains an inner vertex of valence three then ∂D contains at least
six edges. A V (6) map with no inner vertices of valence two for which the
above two conditions hold for every boundary regions is called proper V (6)
map. It is clear that the underling map of the diagram M in Theorem 6 is
a proper V (6) map. One can verify by going over the proof (which is too
long to reproduce here) that the only needed assumption for the theorem to
hold is the assumption that the map is a proper V (6) map. Thus, it follows
that following theorem hold:

Theorem 8. Let M be a proper V (6) map with boundary ξµτ−1σ−1 such
that:

(a) |ξ| ≤ 1 and |τ | ≤ 1.

(b) M is not (ξµ, στ)-thin.

Then, either the path µ or the path σ contains a cut corner.

5 Consequences

In this section we state two private cases of Theorem 8. The full statement
appeared in [6, 4]. In [5] the following theorem appears:

Theorem 9. Let M be a C(7) map with boundary ξµτ−1σ−1 such that
|ξ| ≤ 1 and |τ | ≤ 1 and M is not (ξµ, στ)-thin. Then, there is a proper
boundary region D which its outer boundary is contained in the path µ or
the path σ and has at most three neighbors.

Proof (sketch). By removing inner vertices of valence two and adding ver-
tices of valence two in µ or σ we can assume thatM is a proper C(7) diagram.
Namely, every region D has the property that ∂D contains at least seven
edges and there are no inner vertices of valence two. We make sure to add
the minimal number of vertices to µ and σ for this property to hold (or,
possibly, remove vertices). M is also a proper V (6) map. Consequently, µ
or σ contains a cut corner D. Since this is a C(7) map the region D is a cut
corner of type T1 and so it has more outer edges then inner edges. Let s be
the number of inner edges and r the number of outer edges of D. So, s < r.
We need to show that s ≤ 3. If that is not the case then s+ r ≥ 4 + 5 = 9.
This is not impossible since we can remove some vertices from the outer
boundary of D while keeping the map a proper C(7) map. Hence, it follows
that s ≤ 3 as needed and D has at most three neighbors.
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Next, another private case of Theorem 8 which appeared in [3]. This
private case deals with proper C(4)&T (4) maps. A proper C(4)&T (4) map
is a map with no inner vertices of valence less than four and for which each
regions has at least four edges in its boundary. These maps are special type
of proper V (6) maps. We start with the definition of “thick configuration”:

Definition 10 (Thick configurations). Let M be a proper C(4)&T (4) map
and let α be a path on the boundary of M . A thick configuration in α is a
sub-diagram N of M where one of the following holds:

1. N contains single region D with ∂D = µσ−1 such that µ = ∂D ∩ α
and |µ| > |σ|. See Figure 3(a).

2. N has connected interior and consists of two neighboring regions D1

and D2. The boundary of D2 decomposes as ∂D2 = µσ−1 where
|µ| = |σ| = 2, µ is a sub-path of α, and σ contains only inner edges.
The boundary ofD1 contains an outer edge e such that eµ is a sub-path
of α. See Figure 3(b).

If there is a thick configuration along α then we say that α contains a thick
configuration.

D1 D2

α

(b)

D

α

(a)

µ

σ σ

µ

Figure 3: Thick Configurations

The following theorem characterizes when a proper C(4)&T (4) diagram
is thin (and as we said, it is a special case of Theorem 8).

Theorem 11. Let M be a proper C(4)&T (4) map with boundary cycle
σατ−1β−1 such that |σ| ≤ 1 and |τ | ≤ 1. If α and β do not contain thick
configurations then M is (σα, βτ)-thin.

Proof. Since the map is a proper C(4)&T (4) map the only possible cut
corners are of type T1 and T2 which are the thick configurations defined
above.
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