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Group Analysis of Born-Infeld Equation
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Abstract

Lie symmetry group method is applied to study the Born-Infeld equation. The symmetry group and its optimal system
are given, and group invariant solutions associated to the symmetries are obtained. Finally the structure of the Lie algebra
symmetries is determined.
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1 Introduction

The method of point transformations are a powerful tool in order to find exact solutions for nonlinear partial
differential equations. It happens that many PDE’s of physical importance are nonlinear and Lie classical symmetries
admitted by nonlinear PDE’s are useful for finding invariant solutions.

In physics, the Born-Infeld theory is a nonlinear generalization of electromagnetism [6,7]. The model is named
after physicists Max Born (1882-1970) and Leopold Infeld (1898-1968) who first proposed it. In physics, it is a
particular example of what is usually known as a nonlinear electrodynamics. It was historically introduced in the
30’s to remove the divergence of the electron’s self-energy in classical electrodynamics by introducing an upper bound
of the electric field at the origin. The Born-Infeld electrodynamics possesses a whole series of physically interesting
properties: First of all the total energy of the electromagnetic field is finite and the electric field is regular everywhere.
Second it displays good physical properties concerning wave propagation, such as the absence of shock waves and
birefringence. A field theory showing this property is usually called completely exceptional and Born-Infeld theory
is the only completely exceptional regular nonlinear electrodynamics. Finally (and more technically) Born-Infeld
theory can be seen as a covariant generalization of Mie’s theory, and very close to Einstein’s idea of introducing a
nonsymmetric metric tensor with the symmetric part corresponding to the usual metric tensor and the antisymmetric
to the electromagnetic field tensor. During the 1990s there was a revival of interest on Born-Infeld theory and its
nonabelian extensions as they were found in some limits of string theory.

2 Lie Symmetries of the Equation

A PDE with p−independent and q−dependent variables has a Lie point transformations

x̃i = xi + εξi(x, u) +O(ε2), ũα = uα + εϕα(x, u) +O(ε2)

where ξi =
∂x̃i

∂ε

∣∣∣
ε=0

for i = 1, ..., p and ϕα =
∂ũα

∂ε

∣∣∣
ε=0

for α = 1, ..., q. The action of the Lie group can be considered

by its associated infinitesimal generator

v =

p∑

i=1

ξi(x, u)
∂

∂xi

+

q∑

α=1

ϕα(x, u)
∂

∂uα

(1)
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on the total space of PDE (the space containing independent and dependent variables). Furthermore, the character-
istic of the vector field (1) is given by

Qα(x, u(1)) = ϕα(x, u)−
p∑

i=1

ξi(x, u)
∂uα

∂xi

,

and its n−th prolongation is determined by

v(n) =

p∑

i=1

ξi(x, u)
∂

∂xi

+

q∑

α=1

n∑

♯J=j=0

ϕJ
α(x, u

(j))
∂

∂uα
J

,

where ϕJ
α = DJQ

α +
∑p

i=1 ξiu
α
J,i. (DJ is the total derivative operator describes in (3)).

The aim is to analysis the Lie point symmetry structure of the Born-Infeld equation, which is

(1− u2
t )uxx + 2uxutuxt − (1 + u2

x)utt = 0, (2)

where u is a smooth function of (x, t). Let us consider a one-parameter Lie group of infinitesimal transformations
(x, t, u) given by

x̃ = x+ εξ1(x, t, u) +O(ε2), t̃ = t+ εξ2(x, t, u) +O(ε2), ũ = u+ εη(x, t, u) +O(ε2),

where ε is the group parameter. Then one requires that this transformations leaves invariant the set of solutions of
the Eq. (2). This yields to the linear system of equations for the infinitesimals ξ1(x, t, u), ξ2(x, t, u) and η(x, t, u).
The Lie algebra of infinitesimal symmetries is the set of vector fields in the form of

v = ξ1(x, t, u)∂x + ξ2(x, t, u)∂t + η(x, t, u)∂u.

This vector field has the second prolongation

v(2) = v+ ϕx∂ux
+ ϕt∂ut + ϕxx∂uxx

+ ϕxt∂uxx
+ ϕtt∂utt

with the coefficients

ϕx =Dx(ϕ− ξ1ux − ξ2ut) + ξ1uxx + ξ2uxt,

ϕt =Dt(ϕ− ξ1ux − ξ2ut) + ξ1uxt + ξ2utt,

ϕxx =D2
x(ϕ− ξ1ux − ξ2ut) + ξ1uxxx + ξ2uxxt,

ϕxt =DxDt(ϕ− ξ1ux − ξ2ut) + ξ1uxxt + ξ2uxtt,

ϕtt =D2
t (ϕ− ξ1ux − ξ2ut) + ξ1uxtt + ξ2uttt,

where the operators Dx and Dt denote the total derivative with respect to x and t:

Dx = ∂x + ux∂u + uxx∂ux
+ uxt∂ut

+ · · · , (3)

Dt = ∂t + ut∂u + utt∂ut
+ uxt∂ux

+ · · · .

Using the invariance condition, i.e., applying the second prolongation v(2) to Eq. (2), the following system of 10
determining equations yields:

ξ2xx = 0, ξ2xu = 0, ξ2tt = 0, ξ2uu = 0, ξ1x = ξ2t,

ξ1t = ξ2x, ξ1u = −ηx, ξ2t = ηu, ξ2u = ηt, ξ2tu = −ηxx.
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Table 1
Commutation relations of g

[ , ] v1 v2 v3 v4 v5 v6 v7

v1 0 0 0 v3 v3 0 v1

v2 0 0 0 v1 0 v3 v2

v3 0 0 0 0 −v1 v2 v3

v4 −v2 −v1 0 0 v6 v5 0

v5 −v3 0 v1 −v6 0 v4 0

v6 0 −v3 −v2 −v5 −v4 0 0

v7 −v1 −v2 −v3 0 0 0 0

The solution of the above system gives the following coefficients of the vector field v:

ξ1 = c1 + c4t− c5u+ c7x, ξ2 = c2 + c4x+ c6u+ c7t, η = c3 + c5x+ c6t+ c7t,

where c1, ..., c7 are arbitrary constants, thus the Lie algebra g of the Born-Infeld equation is spanned by the seven
vector fields

v1 = ∂x, v2 = ∂t, v3 = ∂u, v4 = t∂x + x∂t,

v5 = −u∂x + x∂u, v6 = u∂t + t∂u, v7 = x∂x + t∂t + u∂u,

which v1,v2 and v3 are translation on x, t and u, v5 is rotation on u and x and v7 is scaling on x, t and u.
The commutation relations between these vector fields is given by the table 1, where entry in row i and column j
representing [vi,vj ].

The one-parameter groups Gi generated by the base of g are given in the following table.

G1 : (x+ ε, t, u), G2 : (x, t+ ε, u),

G3 : (x, t, u + ε), G4 :
(
x cosh ε+ t sinh ε, x sinh ε+ t cosh ε, u

)

G5 : (−u sin ε+ x cos ε, t, x sin ε+ u cos ε), G6 :
(
x, t cosh ε+ u sinh ε, t sinh ε+ u cosh ε

)
,

G7 : (xeε, teε, ueε).

Since each group Gi is a symmetry group and if u = f(x, t) is a solution of the Born-Infeld equation, so are the
functions

u1 = f(x+ ε, t), u2 = f(x, t+ ε), u3 = f(x, t)− ε,

u4 = f
(
x cosh ε− t sinh ε,−x sinh ε+ t cosh ε

)
, u5 = sec εf(u sin ε+ x cos ε, t) + x sin ε,

u6 = sec hεf(x, t cosh ε− u sinh ε) + t sinh ε, u7 = e−εf(e−εx, e−εt).

where ε is a real number. Here we can find the general group of the symmetries by considering a general linear
combination c1v1 + · · ·+ c1v6 of the given vector fields. In particular if g is the action of the symmetry group near
the identity, it can be represented in the form g = exp(ε7v7) · · · exp(ε1v1).

3 Symmetry reduction for Born-Infeld equation

The first advantage of symmetry group method is to construct new solutions from known solutions. Neither
the first advantage nor the second will be investigated here, but symmetry group method will be applied to the
Eq. (2) to be connected directly to some order differential equations. To do this, a particular linear combinations of
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infinitesimals are considered and their corresponding invariants are determined. The Born-Infeld equation expressed
in the coordinates (x, t), so to reduce this equation is to search for its form in specific coordinates. Those coordinates
will be constructed by searching for independent invariants (y, v) corresponding to an infinitesimal generator. so
using the chain rule, the expression of the equation in the new coordinate allows us to the reduced equation. Here
we will obtain some invariant solutions with respect to symmetries. First we obtain the similarity variables for each
term of the Lie algebra g, then we use this method to reduced the PDE and find the invariant solutions. All results
are coming in the following table.

vector field invariant function invariant transformations invariant solution

v1 Φ(t, u) v(y) = u(x, t), y = t u = c1t+ c2

v2 Φ(x, u) v(y) = u(x, t), y = x u = c1x+ c2

v3 Φ(x, t) · · · translation of all solution is the invariant

solution

v4 Φ(−x2 + t2, u) v(y) = u(x, t), y = −x2 + t2 u = ±c1 arctan
(

x2
−t2+2c21√

(x2
−t2)(−x2+t2−4c2

1
)

)
+ c2,

v5 Φ(t, x2 + u2) v(y) = x2 + u(x, t)2, y = t u = ± 1
2

√
2c1e

t+c2
c1 + 8c31e

−

t+c2
c1 − 4x2 − 8c21

u = ± 1
2

√
2c1e

−

t+c2
c1 + 8c31e

t+c2
c1 − 4x2 − 8c21

v6 Φ(x,−t2 + u2) v(y) = −t2 + u(x, t)2, y = x u = ± 1
2

√
2c1e

x+c2
c1 + 8c31e

−

x+c2
c1 + 4x2 + 8c21

u = ± 1
2

√
2c1e

−

x+c2
c1 + 8c31e

−

x+c2
c1 + 4x2 + 8c21

v7 Φ
( t

x
,
u(x, t)

x

)
v(y) =

u(x, t)

x
, y =

t

x
u = c1x+ c2t, u = ±

√
−x2 + t2

4 Optimal system of Born-Infeld equation

As is well known, the theoretical Lie group method plays an important role in finding exact solutions and
performing symmetry reductions of differential equations. Since any linear combination of infinitesimal generators
is also an infinitesimal generator, there are always infinitely many different symmetry subgroups for the differential
equation. So, a mean of determining which subgroups would give essentially different types of solutions is necessary
and significant for a complete understanding of the invariant solutions. As any transformation in the full symmetry
group maps a solution to another solution, it is sufficient to find invariant solutions which are not related by
transformations in the full symmetry group, this has led to the concept of an optimal system [3]. The problem of
finding an optimal system of subgroups is equivalent to that of finding an optimal system of subalgebras. For one-
dimensional subalgebras, this classification problem is essentially the same as the problem of classifying the orbits
of the adjoint representation. This problem is attacked by the naive approach of taking a general element in the Lie
algebra and subjecting it to various adjoint transformations so as to simplify it as much as possible. The idea of
using the adjoint representation for classifying group-invariant solutions is due to [4] and [5].

The adjoint action is given by the Lie series

Ad(exp(εvi)vj) = vj − ε[vi,vj ] +
ε2

2
[vi, [vi,vj ]]− · · · , (4)

where [vi,vj ] is the commutator for the Lie algebra, t is a parameter, and i, j = 1, · · · , 10. Let F ε
i : g → g defined

by v 7→ Ad(exp(εvi)v) is a linear map, for i = 1, · · · , 7. The matrices M ε
i of F ε

i , i = 1, · · · , 7, with respect to basis
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{v1, · · · ,v7} are

M ε
1 =




1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 −ε 0 1 0 0 0

0 0 −ε 0 1 0 0

0 0 0 0 0 1 0

−ε 0 0 0 0 0 1




, M ε
2 =




1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

−ε 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 −ε 0 0 1 0

0 −ε 0 0 0 0 1




,

M ε
3 =




1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

ε 0 0 0 1 0 0

0 −ε 0 0 0 1 0

0 0 −ε 0 0 0 1




, M ε
4 =




cosh ε sinh ε 0 0 0 0 0

sinh ε cosh ε 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 cosh ε − sinh ε 0

0 0 0 0 − sinh ε cosh ε 0

0 0 0 0 0 0 1




,

M ε
5 =




cos ε 0 sin ε 0 0 0 0

0 1 0 0 0 0 0

− sin ε 0 cos ε 0 0 0 0

0 0 0 cos ε 0 sin ε 0

0 0 0 0 1 0 0

0 0 0 − sin ε 0 cos ε 0

0 0 0 0 0 0 1




, M ε
6 =




1 0 0 0 0 0 0

0 cosh ε sin ε 0 0 0 0

0 sin ε cos ε 0 0 0 0

0 0 0 cosh ε sin ε 0 0

0 0 0 sinh ε cosh ε 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1




,

M ε
7 =




e
ε 0 0 0 0 0 0

0 e
ε 0 0 0 0 0

0 0 e
ε 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1




,

by acting these matrices on a vector field v alternatively we can show that a one-dimensional optimal system of g is
given by

X1 = v1, X2 = v3,

X3 = a(v1 − v7) + v2, X4 = av2 − bv3 + cv7,

X5 = v1 + av2 + v3 − v6, X6 = v1 + av2 + b(v3 − v6),

X7 = av1 + bv2 − cv3 − dv6, X8 = a(v1 − v4) + b(v2 − v4) + v3 + cv4.

In the next section we will find the invariant solutions with respect to the symmetries and optimal system.
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Table 2
Commutation relations of g

[ , ] w1 w2 w3

w1 0 w3 w2

w2 −w3 0 w1

w3 −w2 −w1 0

5 Lie Algebra Structure

In this part, we determine the structure of symmetry Lie algebra of the Born-Infeld equation.
The Lie algebra g is not solvable and semisimple, because if g(1) = Span

R
{vi, [vi,vj ]}i,j be the derived of g we have

g(1) = Span
R
{v1, ...,v7} = g,

but it has a Levi decomposition in the form of

g = r⋉ g1, (5)

where r = Span
R
{v1,v2,v3,v7} is the radical (the largest solvable ideal) of g, and g1 = Span

R
{v4,v5,v6} is the

semisimple and nonsolvable subalgebra of g. So the Levi decomposition of symmetry Lie algebra for Born-Infeld
equation gives the quotient structure

g = g/r. (6)

If wi = vi + r are the members of quotient algebra, the commutators table for g are given in table 2.

Finally, we have some analysis on the structure of (5) and (6) with some important objects in algebra. We know
that he centralizer of a set of vectors g in a subalgebra h is the subalgebra of vectors in h which commute with all
the vectors in g. With attentive to (5), r has no any nontrivial centralizer and it is the only minimal ideal containing
itself. But this is not true for g1, because its centralizer has a member which is v7, and the minimal ideal containing
g1 is spanned by {v1, ...,v6}.

6 Conclusion

In this article group classification of Born-Infeld equation and the algebraic structure of the symmetry group is
considered. Classification of one-dimensional subalgebra is determined by constructing one-dimensional optimal
system. Some invariant solutions are fined in the sequel and the Lie algebra structure of symmetries is found.
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