Spectra of the Gurtin-Pipkin type equations

A. Eremenko* and S. Ivanov ${ }^{\dagger}$

September 29, 2010

Abstract

We study the spectra of certain integro-differential equations arising in applications. Under some conditions on the kernel of the integral operator, we describe the non-real part of the spectrum.

MSC Primary: 45K05, 35P20. Keywords: Gurtin-Pipkin equation, spectrum, Denjoy-Wolff theorem.

1 Introduction

The following integro-differential equations arise in several areas of physics and applied mathematics, namely in heat transfer with finite propagation speed [5], systems with thermal memory [11], viscoelasticity problems [1] and acoustic waves in composite media [4].
(i) Gurtin-Pipkin equations of first order in time (GP1)

$$
\begin{equation*}
u_{t}(x, t)=\int_{0}^{t} k(t-s) u_{x x}(x, s) d s, x \in(0, \pi), t>0 \tag{1}
\end{equation*}
$$

(ii) and of second order in time (GP2)

$$
\begin{equation*}
u_{t t}(x, t)=a u_{x x}-\int_{0}^{t} k(t-s) u_{x x}(x, s) d s, a>0, x \in(0, \pi), t>0 \tag{2}
\end{equation*}
$$

(iii) Kelvin-Voigt equation (KV)

$$
\begin{equation*}
u_{t t}(x, t)=u_{x x}+\epsilon u_{t x x}-\int_{0}^{t} k(t-s) u_{x x}(x, s) d s, x \in(0, \pi), t>0 \tag{3}
\end{equation*}
$$

[^0]Here

$$
k(t)=\int_{0}^{\infty} e^{-t \tau} d \mu(\tau)
$$

is the Laplace transform of a positive measure $d \mu$. We identify this measure with its distribution function μ, so μ is increasing, continuous from the right, and the integral is interpreted as a Stieltjes integral [14]. We always assume that k is defined and integrable on $(0, \infty)$, that is

$$
\begin{equation*}
\int_{0}^{\infty} \frac{d \mu(t)}{t}<\infty \tag{4}
\end{equation*}
$$

and that μ is supported on $\left(d_{0}, \infty\right)$ with some $d_{0}>0$.
Remark 1 If equation (11) can be differentiated with respect to t, then we obtain a special case of (21):

$$
u_{t t}=k(0) u_{x x}-\int_{0}^{t} \tilde{k}(t-s) u_{x x} d s
$$

with

$$
\begin{equation*}
\tilde{k}=-\frac{d}{d t} k \tag{5}
\end{equation*}
$$

Remark 2 In the case $k(t)=$ const $=\alpha^{2}$, equation (1) is in fact an integrated wave equation. Indeed, differentiation of (1) gives

$$
\begin{equation*}
u_{t t}=\alpha^{2} u_{x x} . \tag{6}
\end{equation*}
$$

If $k(t)=\alpha^{2} e^{-b t}$, then differentiation gives a damped wave equation

$$
\begin{equation*}
u_{t t}=\alpha^{2} u_{x x}-b u_{t} . \tag{7}
\end{equation*}
$$

Let the initial conditions be $u(\cdot, 0)=\xi$ for (1), and $u(\cdot, 0)=\xi, u_{t}(\cdot, 0)=\eta$ for (2) and (3).

First we apply Fourier's method: we set $\varphi_{n}=\sqrt{\frac{2}{\pi}} \sin n x$ and expand the solution and the initial data in a series in φ_{n}

$$
u(x, t)=\sum_{1}^{\infty} u_{n}(t) \varphi_{n}(x), \xi(x)=\sum_{1}^{\infty} \xi_{n} \varphi_{n}(x), \eta(x)=\sum_{1}^{\infty} \eta_{n} \varphi_{n}(x) .
$$

The components u_{n} satisfy ordinary integro-differential equations
(i) GP1

$$
\begin{equation*}
\dot{u}_{n}(t)=-n^{2} \int_{0}^{t} k(t-s) u_{n}(s) d s, t>0 . \tag{8}
\end{equation*}
$$

(ii) GP2

$$
\begin{equation*}
\ddot{u}_{n}(t)=-a n^{2} u_{n}(t)+n^{2} \int_{0}^{t} k(t-s) u_{n}(s) d s, t>0 . \tag{9}
\end{equation*}
$$

(iii) KV

$$
\begin{equation*}
\ddot{u}_{n}(t)=-n^{2} u_{n}(t)-\epsilon n^{2} \dot{u}_{n}+n^{2} \int_{0}^{t} k(t-s) u_{n}(s) d s, t>0 . \tag{10}
\end{equation*}
$$

We will denote the Laplace images by the capital letters. Applying the Laplace Transform to (8), (9), and (10), and using the initial conditions, we find
(i) GP1

$$
\begin{equation*}
z U_{n}(z)-\xi_{n}=-n^{2} K(z) U_{n}(z) \tag{11}
\end{equation*}
$$

or

$$
\begin{equation*}
U_{n}(z)=\frac{\xi_{n}}{z+n^{2} K(z)} \tag{12}
\end{equation*}
$$

(ii) GP2

$$
z^{2} U_{n}(z)-z \xi_{n}-\eta_{n}=-a n^{2} U_{n}(z)+n^{2} K(z) U_{n}(z)
$$

or

$$
\begin{equation*}
U_{n}(z)=\frac{z \xi_{n}+\eta_{n}}{z^{2}+a n^{2}-n^{2} K(z)} . \tag{13}
\end{equation*}
$$

(iii) KV

$$
z^{2} U_{n}(z)-z \xi_{n}-\eta_{n}=-n^{2} U_{n}(z)-\epsilon n^{2}\left[z U_{n}-\xi_{n}\right]+n^{2} K(z) U_{n}(z),
$$

or

$$
\begin{equation*}
U_{n}(z)=\frac{\xi_{n}+z \eta_{n}-\epsilon n^{2} \xi_{n}}{z^{2}+\epsilon z n^{2}+n^{2}-n^{2} K(z)} . \tag{14}
\end{equation*}
$$

Denote the denominators in (12), (13), and (14) by $F_{n}(z), G_{n}(z)$, and $H_{n}(z)$ respectively:

$$
F_{n}(z)=z+n^{2} K(z), \quad G_{n}(z)=z^{2}+a n^{2}-n^{2} K(z)
$$

and

$$
H_{n}(z)=z^{2}+\epsilon z n^{2}+n^{2}-n^{2} K(z) .
$$

Let F_{n}^{0}, G_{n}^{0}, and H_{n}^{0} be the sets of zeros of $F_{n}(z), G_{n}(z)$, and $H_{n}(z)$ respectively. Set

$$
\Lambda_{G P 1}=\bigcup_{1}^{\infty} F_{n}^{0}, \Lambda_{G P 2}=\bigcup_{1}^{\infty} G_{n}^{0}, \Lambda_{K V}=\bigcup_{1}^{\infty} H_{n}^{0}
$$

Definition 3 The sets $\Lambda_{G P 1}, \Lambda_{G P 2}$, and $\Lambda_{K V}$ are the spectra of equations (11), (2) and (3) respectively.

Study of the spectra is important for applications. See [4] and the references therein.

Remark 4 Suppose that in the integro-differential equations (1), (2) and (3) we replace the zero lower limit in the integrals by $-\infty$. Then λ is a point of the spectrum of F_{n} or G_{n} or H_{n} if and only if there is a solution of the form

$$
u_{\lambda}(x, t)=e^{\lambda t} \varphi_{n}(x) .
$$

For such systems a semigroup approach to the equations is possible, (V.V. Vlasov, private communication).

Remark 5 If (5) holds, then $\tilde{K}(z)=k(0)-z K(z)$.
We do not study here the regularity of solutions and consider the solutions as sequences $\left\{u_{n}(t)\right\}$. Regularity of GP1 is studied in [8] and of GP2 in [12]. In [8], under the assumption that $k(t)$ is twice continuously differentiable it was shown, in particular, that the solution $u(x, t)$ of (11) is a continuous $L^{2}(0, T)$-valued function. In [12], the conditions on the kernel $k(t)$ and the initial data are found such that there exists a strong solution: for a $\gamma>0$

$$
\int_{0}^{\infty} e^{-\gamma t}\left[\|u(\cdot, t)\|_{L^{2}(0, \pi)}^{2}+\left\|u_{x x}(\cdot, t)\right\|_{L^{2}(0, \pi)}^{2}+\left\|u_{t t}(\cdot, t)\right\|_{L^{2}(0, \pi)}^{2}\right] d t<\infty
$$

We single out the important special case: the case of discrete measure μ with atoms at $b_{k}>0$ of mass $a_{k}>0$,

$$
\begin{equation*}
K(z)=\sum_{k=1}^{\infty} \frac{a_{k}}{z+b_{k}}, \quad 0<b_{1}<\ldots \rightarrow+\infty, \quad a_{k}>0 \tag{15}
\end{equation*}
$$

Discrete measures arise in applications [4], where parameters a_{k}, b_{k} are connected with auxiliary boundary value problems arising under averaging.

2 Main Results

In the general case the non-real part of the spectrum is described as follows.

Theorem 6 (i) For every n, each set F_{n}^{0}, G_{n}^{0}, or H_{n}^{0} contains at most one point in the upper half-plane, and this point, if exists, belongs to the second quadrant.
(ii) For n large enough, the set G_{n}^{0} contains a point z_{n} such that

$$
\begin{equation*}
z_{n}=i \sqrt{a} n+o(n) . \tag{16}
\end{equation*}
$$

(iii) If

$$
\begin{equation*}
A=\int_{0}^{\infty} d \mu(t)<\infty \tag{17}
\end{equation*}
$$

then for n large enough, the set F_{n}^{0} contains a point z_{n} such that

$$
\begin{equation*}
z_{n}=i \sqrt{A} n+o(n) \tag{18}
\end{equation*}
$$

Under the additional assumptions on K, we can find more precise asymptotics of the non-real part of the spectrum.

Theorem 7 Suppose that

$$
\begin{equation*}
\mu(t)=b t^{\rho}+O\left(t^{\alpha}\right), \quad t \rightarrow \infty, \tag{19}
\end{equation*}
$$

where $0<\alpha<\rho<1$. Then:
(i) for n large enough, the set F_{n}^{0} contains a zero z_{n} of $F_{n}(z)$ such that

$$
\begin{equation*}
z_{n}=\left(\frac{b \pi \rho}{\sin \pi \rho}\right)^{1 /(2-\rho)} e^{i \pi /(2-\rho)} n^{2 /(2-\rho)}\left(1+O\left(n^{2(\alpha-\rho) /(2-\rho)}\right)\right), \tag{20}
\end{equation*}
$$

(ii) for n large enough, the set G_{n}^{0} contains a zero z_{n} of $G_{n}(z)$ such that

$$
\begin{equation*}
z_{n}=i \sqrt{a} n+\frac{b \pi \rho}{2 \sin \pi \rho} a^{\rho / 2-1} e^{i \pi(\rho / 2-1)} n^{\rho}(1+o(1)) . \tag{21}
\end{equation*}
$$

In the case of a discrete measure with finite number of atoms the next theorem was conjectured by V. V. Vlasov and N. Rautiyan (private communication).

Theorem 8 Let μ be a measure with compact support, that is

$$
\begin{equation*}
k(t)=\int_{d_{0}}^{d} e^{-t \tau} d \mu(\tau), \quad 0<d_{0}<d<\infty \tag{22}
\end{equation*}
$$

Then the set $\Lambda_{K V}$ contains finite number of non-real points.
In the case (15) it is not hard to study the real spectrum of the systems, see $[7]^{1}$ and the discussion below. The simplest versions of theorems [6(iii) and 7 are contained in [4], [6], [7]. In [10], a study of the spectrum shows the lack of controllability of the system.

[^1]
3 Proof of the Main Results and discussion

Our main tools are the Schwarz Lemma and the Denjoy-Wolff Theorem (see, for example, (9]).

Schwarz's Lemma. Let f be an analytic function which maps the upper half-plane \mathbb{C}_{+}into itself. Then the equation $f(z)=z$ has at most one solution w, and if such solution exists then $\left|f^{\prime}(w)\right|<1$, unless f is an elliptic fractional-linear transformation.

Denjoy-Wolff Theorem. Let f be an analytic function which maps \mathbb{C}_{+}into itself, and suppose that f is not an elliptic fractional-linear transformation. Then there exists a unique point $w \in \mathbb{C}_{+} \cup\{\infty\}$ such that the iterates $f^{* n}$ converge to w uniformly on compact subsets of \mathbb{C}_{+}, the angular limit $f(w)=$ $\lim _{z \rightarrow w} f(z)$ exists and satisfies $w=f(w)$. Moreover, the angular derivative $f^{\prime}(w)$ exists and satisfies $\left|f^{\prime}(w)\right| \leq 1$.

Angular limit means that z is restricted to any angle $\epsilon<\arg (z-w)<\pi-\epsilon$ if $w \in \mathbb{R}$, or $\epsilon<\arg z<\pi-\epsilon$ if $w=\infty$.

Angular derivative is the angular limit

$$
f^{\prime}(w)=\lim _{z \rightarrow w}(f(z)-f(w)) /(z-w)
$$

if $w \in \mathbb{R}$; if $w=\infty$ then it is defined by the angular limit

$$
\frac{1}{f^{\prime}(\infty)}=\lim _{z \rightarrow \infty} f(z) / z
$$

The point w in this theorem is called the Denjoy-Wolff point of f. If $w \in$ $\mathbf{R} \cup\{\infty\}$ is such a point that the angular $\operatorname{limit}^{\lim _{z \rightarrow w}} f(z)=w$ and the angular derivative $\left|f^{\prime}(w)\right| \leq 1$, then w is the Denjoy-Wolff point.

Proof of Theorem 6.
For the equations $F_{n}(z)=0, G_{n}(z)=0$, and $H_{n}(z)=0$, we will show that each of them has at most one solution in the upper half-plane. This solution belongs to the second quadrant.

The Laplace transform of $k(t)$ is

$$
\begin{aligned}
K(z) & =\int_{0}^{\infty} e^{-z x} \int_{0}^{\infty} e^{-t x} d \mu(t) d x \\
& =\int_{0}^{\infty} \int_{0}^{\infty} e^{-x(z+t)} d x d \mu(t)=\int_{0}^{\infty} \frac{d \mu(t)}{z+t}
\end{aligned}
$$

This is called the Cauchy transform of the measure $d \mu$. Condition (4) ensures that the integral defining K is absolutely and uniformly convergent on every
compact in the z-plane that does not intersect the negative ray. So K is analytic in the plane minus the negative ray.

Moreover,

$$
\begin{equation*}
\operatorname{Im} K(z) \operatorname{Im} z<0, \quad z \in \mathbb{C} \backslash \mathbb{R}_{-} \tag{23}
\end{equation*}
$$

We rewrite the equation $F_{n}(z)=0$ as $z=f(z):=-n^{2} K(z)$, then f maps \mathbb{C}_{+}to \mathbb{C}_{+}and by Schwarz's Lemma has at most one fixed point in the upper half-plane. If $\operatorname{Re} z \geq 0$, then

$$
\operatorname{Re}\left(z+n^{2} K(z)\right)=\operatorname{Re} z+n^{2} \int_{0}^{\infty} \frac{t+\operatorname{Re} z}{|t+z|^{2}} d \mu(t)>0
$$

so the solution must lie in the second quadrant.
For $G_{n}(z)=0$, we first prove that there are no solutions in the first quadrant. Indeed $z^{2}+a n^{2}$ maps the first quadrant into \mathbb{C}_{+}, while $n^{2} K(z)$ has negative imaginary part in the first quadrant.

To prove that $G_{n}(z)$ has at most one zero in \mathbb{C}_{+}we consider a branch ϕ of the square root which maps the lower half-plane onto the second quadrant. Then the equation is equivalent to

$$
\begin{equation*}
z=f(z):=n \phi(K(z)-a), \tag{24}
\end{equation*}
$$

because all solutions are in the second quadrant. Function f maps \mathbb{C}_{+}into itself, and thus by Schwarz's Lemma can have at most one fixed point in \mathbb{C}_{+}.

Similar argument applies to $H_{n}(z)=0$. There are no solution in the first quadrant. Indeed, if

$$
z^{2}+\epsilon z n^{2}+n^{2}=n^{2} K(z)
$$

and z is in the first quadrant, then the LHS is in \mathbb{C}_{+}but the RHS is in \mathbb{C}_{-}. So the equation is equivalent to

$$
z=f(z):=n \phi(K(z)-\epsilon z-1),
$$

because all solutions are in the second quadrant. Function F maps \mathbb{C}_{+}into itself, and thus by Schwarz's Lemma can have at most one fixed point in \mathbb{C}_{+}.

This completes the proof of part (i) of Theorem 6.
To prove part (ii), we first notice that

$$
\begin{equation*}
K(z) \rightarrow 0 \quad \text { as } \quad z=r e^{i \theta}, r \rightarrow \infty, \tag{25}
\end{equation*}
$$

uniformly with respect to θ for $|\theta|<\pi-\delta$, for any given $\delta>0$. This will be expressed by saying that $K \rightarrow 0$ as $z \rightarrow \infty$ non-tangentially. To show this we use the following lemma.

Lemma 9 If

$$
\begin{equation*}
|\arg z|<\pi-\delta, \tag{26}
\end{equation*}
$$

then

$$
\begin{equation*}
|z+t| \asymp|z|+t, t \geq 0 \tag{27}
\end{equation*}
$$

Proof of the lemma. First, $|z+t| \leq|z|+t$. Second,

$$
|z+t|=|z||1+t / z| \geq|z| \cos \delta,
$$

and similarly

$$
|z+t|=t|1+z / t| \geq t \cos \delta .
$$

Thus $|z+t| \geq(1 / 2)(|z|+t) \cos \delta$. This gives (27).
Now

$$
|K(z)| \leq C \int_{0}^{\infty} \frac{d \mu(t)}{|z|+t},
$$

in the sector (26), and we obtain (25).
We rewrite the equation $G_{n}(z)=0$ as

$$
z_{n}=i n \sqrt{a} \sqrt{1-K\left(z_{n}\right) / a} .
$$

As $K(z) \rightarrow 0$ by Lemma 9 , we obtain (ii).
Now we prove (iii). Condition (17) permits to obtain asymptotics of K :

$$
\begin{equation*}
K(z)=A / z+o\left(|z|^{-1}\right), \quad z \rightarrow \infty, \tag{28}
\end{equation*}
$$

uniformly with respect to $\arg z$ in $|\arg z| \leq \pi-\epsilon$. Indeed,

$$
\begin{aligned}
|K(z)-A / z| & =\left|\int_{0}^{\infty}\left(\frac{1}{z+t}-\frac{1}{z}\right) d \mu(t)\right| \\
& \leq \frac{1}{|z|} \int_{0}^{\infty} \frac{t}{|z|+t} d \mu(t)=o\left(|z|^{-1}\right)
\end{aligned}
$$

Now we rewrite $F_{n}\left(z_{n}\right)=0$ as

$$
z_{n}=-n^{2}\left(A \frac{1}{z_{n}}+o\left(z^{-1}\right)\right) .
$$

which gives (iii). This completes the proof of Theorem 6.
To find out whether a solution in \mathbb{C}_{+}exists for a given n, we consider the case of discrete measure μ. In the case that μ has a finite support,

$$
K(z)=\sum_{k=1}^{N} \frac{a_{k}}{z+b_{k}},
$$

our arguments are elementary. In this case, $K(z)$ is a real rational function with N poles, all of them on the real line. Then F_{n} is a rational function of degree $N+1$ because it has an additional pole at infinity. So it must have $N+1$ zeros in the complex plane. On each interval $I_{k}=\left(-b_{k+1},-b_{k}\right)$, $1 \leq k \leq N-1$ there is one zero by the Bolzano-Weierstrass Theorem. The remaining two zeros can lie either one in \mathbb{C}_{+}and one in \mathbb{C}_{-}or both on some interval I_{k}, (which then contains three zeros), or both on the interval $I_{0}=\left(-b_{1}, 0\right)$. One can give examples of each possibility.

Examples.

1. Suppose that the measure $d \mu$ has two atoms, that is

$$
k(t)=\frac{1}{10}\left(e^{-t}+e^{-2 t}\right) .
$$

Then it easy to check that

$$
F_{1}(z)=K(z)+z=\frac{10}{z+1}+\frac{1}{z+2}+z
$$

has 3 real zeros (and no non-real zeros). The additional two zeros are in $(-1,0)$.
2. Let

$$
k(t)=e^{-t}+200 e^{-50 t} .
$$

It is easy to check that the equation

$$
K(x)+x=\frac{1}{x+1}+\frac{200}{x+50}+x
$$

has 3 roots on the interval $[-50,-1]$.
In the case of a measure with finitely many atoms, the question whether the Denjoy-Wolff point belongs to the real line can be solved in finitely many steps by using the criterion that all roots of a polynomial equation are real, see, for example [3].

In the general case of a discrete measure μ with atoms at b_{k}, we denote $I_{k}=\left(-b_{k+1},-b_{k}\right), k \geq 1$, and $I_{0}=\left(-b_{1}, 0\right)$. If there is a solution w in the upper half-plane, it must be the Denjoy-Wolff point of $f(z)=-n^{2} K(z)$. If there is no solution in the upper half-plane, then the Denjoy-Wolff point w belongs to some interval I_{k}, and that $-1 \leq f^{\prime}(w) \leq 1$.

So theoretically we can find out whether there is a solution in the upper half-plane, by iterating f, starting from any point in \mathbb{C}_{+}, for example from the point $z_{0}=i$. The sequence $z_{k}=f_{n}\left(z_{k-1}\right), k=0,1, \ldots$, must converge. If it converges to a point in \mathbb{C}_{+}, then this point is the unique solution in \mathbb{C}_{+}.

Convergence in this case is geometric. If z_{k} converges to a point on the real line then there is no solution in \mathbb{C}_{+}, but convergence in this case may be extremely slow, if $\left|f^{\prime}(w)\right|=1$.

Let w be the Denjoy-Wolff point of f. If $w \in \mathbb{C}_{+}$, then w is the unique solution of $F_{n}(z)=0$ in \mathbb{C}_{+}. The case $w=\infty$ is excluded because the angular limit of $f(z)$ as $z \rightarrow \infty$ is 0 . If $w \in \mathbb{R}$ and $w \in I_{k}$ for some k, then $f^{\prime}(w) \in[-1,1]$ and this I_{k} is the unique interval of the I_{j} which contains two additional real zeros of F_{n}.

We conclude that in the case $w \in \mathbb{C}_{+}$, each interval $I_{k}, k \geq 1$ contains one solution of $F_{n}(z)=0$ while I_{0} contains no solutions.

The situation with GP2 and KV are similar: it has a solution in \mathbb{C}_{+}if and only if the Denjoy-Wolff of the function $f=n \phi(K-a)$ is in \mathbb{C}_{+}, and the Denjoy-Wolff point can in principle be found by iteration.

Now we prove the theorem 7
Lemma 10 Under the assumption (19) we have

$$
K(z)=\frac{b \pi \rho}{\sin \pi \rho} z^{\rho-1}+O\left(z^{\alpha-1}\right), \quad|z| \rightarrow \infty
$$

uniformly with respect to $\arg z$ in any angle $|\arg z|<\pi-\delta$. Here the use the principal branch of $z^{\rho-1}$ which is positive on the positive ray.

Proof. First,

$$
\int_{0}^{\infty} \frac{d t^{\rho}}{z+t}=\frac{\pi \rho}{\sin \pi \rho} z^{\rho-1}
$$

see, for example, [2, Probl. 28.22] or [13, Probl. 878].
So it is sufficient to prove our Lemma for the case that $\mu(t)=O\left(t^{\alpha}\right)$. We integrate by parts:

$$
K(z)=\lim _{R \rightarrow \infty} \int_{0}^{R} \frac{d \mu(t)}{t+z}=\lim _{R \rightarrow \infty}\left(\frac{\mu(R)}{z+R}+\int_{0}^{R} \frac{\mu(t)}{(t+z)^{2}}\right) .
$$

In a sector $|\arg z|<\pi-\delta$ this gives

$$
\begin{aligned}
|K(z)| & \leq C \lim _{R \rightarrow \infty}\left(\frac{\mu(R)}{|z|+R}+\int_{0}^{R} \frac{t^{\alpha}}{t^{2}+|z|^{2}} d t\right) \\
& =C \int_{0}^{\infty} \frac{t^{\alpha}}{t^{2}+|z|^{2}} d t=C_{1}|z|^{\alpha-1} .
\end{aligned}
$$

This proves the lemma.
Now the proof of Parts (i) and (ii) follows the scheme of the proofs of Theorem 6, Parts (i) and (ii).

Proof of Theorem [8,
In view of Theorem 6, it is enough to prove that all roots of $H_{n}(z)$ are real for n large enough. We rewrite the equation $H_{n}(z)=0$ as

$$
n^{2} f(z)=z^{2},
$$

where

$$
f(z)=K(z)-\epsilon z-1 .
$$

We know from Theorem 6 that all solutions belong to the second quadrant. Function f maps the upper half-plane into the lower half-plane. Let ϕ be the branch of the square root that maps the lower half-plane onto the second quadrant. Now we rewrite our equation as $n \phi(f(z))=z$. Function f is strictly decreasing on $(-\infty,-d)$ and $f(x) \sim-\epsilon x$ as $x \rightarrow-\infty$. So there is a point $r<-d$ such that $f(x)>0$ on $(-\infty, r]$. We have $n \phi(f(x)) \sim-n \sqrt{-\epsilon x}$ as $x \rightarrow-\infty$, It follows that

$$
\begin{equation*}
n \phi(f(x))>x \quad \text { for } \quad x<x_{0}, \tag{29}
\end{equation*}
$$

where $x_{0}<0$ depends on n, K, ϵ.
Now suppose that n is so large that

$$
\begin{equation*}
n \phi(f(r))<r . \tag{30}
\end{equation*}
$$

This will hold for n large enough because $\phi(f(r))<0$ as we established above. Comparison of (29) with (30) shows that there must be a point $r_{0} \in(-\infty, r)$ such that

$$
n \phi\left(f\left(r_{0}\right)\right)=r_{0} \quad \text { and }\left.\quad \frac{d}{d x} n \phi(f(x))\right|_{x=r_{0}} \in(0,1] .
$$

This shows that r_{0} is an attracting fixed point of the function $n \phi(f)$, and application of the Denjoy-Wolff theorem completes the proof.

We finish with the following
Question. Can one extend Theorem 8 to arbitrary measure $d \mu$ satisfying (4)?

References

[1] C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal., 37 (1970), 297-308.
[2] M. A. Evgrafov, Collection of problems in the theory of analytic functions, Moscow, "Nauka", 1972 (Russian).
[3] F. R. Gantmakher, Theory of Matrices, Moscow, Nauka, 1988. English translation by AMS 1998.
[4] A. A. Gavrikov, S.A. Ivanov, D.Yu. Knyazkov, V.A. Samarain , A.S. Shamaev, V. V. Vlasov, Spectral properties of composite media, Contemporary Problems of Mathematics and Mechanics, v.1, 2009, 142-159 (Russian).
[5] M. E. Gurtin, A. C. Pipkin A general theory of heat conduction with finite wave speeds. Archive for Rational Mechanics and Analysis 1968; 32:113-126.
[6] S. A. Ivanov, "Wave type" spectrum of the Gurtin-Pipkin equation of the second order, arXiv; arxiv.org/abs/1002.2831, 8 p.
[7] S. A. Ivanov, T. L. Sheronova, Spectrum of the heat equation with memory, arXiv; arxiv.org/abs/0912.1818v1, 10p.
[8] L. Pandolfi, The controllability of the Gurtin-Pipkin equation: a cosine operator approach. Appl. Math. Optim. 52 (2005), no. 2, 143-165.
[9] J. Shapiro, Composition operators and classical function theory, Springer, 1993.
[10] Ivanov, S., Pandolfi, L., Heat equation with memory: lack of controllability to rest, Journal of Math. Analysis and Appl., pp. 1-11, 2009, Vol. 355.
[11] F. M. Vegni, Dissipativity of a condensed phase field systems with memory, Discrete and continuous dynamical systems, Volume 9, Number 4, July 2003.
[12] V. V. Vlasov, J. Wu, Solvability and Spectral Analysis of Abstract Hyperbolic Equations with Delay. Funct. Differ. Equ. 16 (2009), no. 4, 751-768.
[13] L. I. Volkovyskii, G. Lunz and I. Aramanovich, Collection of problems in the theory of functions of a complex variable, Moscow, Fizmatgiz, 1960; there is an English translation published by Dover.
[14] D. Widder, Laplace transform, Princeton UP, 1946.

Purdue University
West Lafayette IN 47907-2067
USA
eremenko@math.purdue.edu
State Marine Technical University, St. Petersburg, Russia
sergei.ivanov@pobox.spbu.ru

[^0]: *Supported by NSF and by the Humboldt Foundation.
 ${ }^{\dagger}$ Supported in part by the Russia Foundation for Basic Research, grant 08-01-00595a.

[^1]: ${ }^{1}$ The assertions of Theorem 1 in [7] are correct only for n large enough.

