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Indecomposable representations of the Kronecker quivers

Claus Michael Ringel

Abstract. Let k be a field and A the n-Kronecker algebra, this is the path algebra of the
quiver with 2 vertices, a source and a sink, and n arrows from the source to the sink. It is well-
known that the dimension vectors of the indecomposable A-modules are the positive roots of the
corresponding Kac-Moody algebra. Thorsten Weist has shown that for every positive root there
are even tree modules with this dimension vector and that for every positive imaginary root there
are at least n tree modules. Here, we present a short proof of this result. The considerations
used also provide a calculation-free proof that all exceptional modules over the path algebra of

a finite quiver are tree modules.

Let k be a field and @ a finite quiver without oriented cycle. Let A = kQ be the
path algebra of ). The target of the paper is to look for A-modules which are tree
modules. According to Kac [K], the dimension vectors of the indecomposable A-modules
are the positive roots of the corresponding Lie algebra: for a real root, there is a unique
indecomposable module, for an imaginary root, there are infinitely many provided k is
an infinite field. Unfortunately, no effective procedure is known to construct at least one
indecomposable module for each positive root. On the other hand, it seems that for each
positive root, there exists even a tree module (the definition will be recalled below): that
the indecomposable module corresponding to a real root is a tree module, and that for
any imaginary root, there are even several different tree modules (see [R3], Problem 9).
Thorsten Weist [W] has shown that this is true for all the Kronecker algebras. Here, we
present a short proof of his result by determining the dimension vectors of the “cover-thin”
Kronecker modules (Proposition 1.1).

The Kronecker algebras are the path algebras of the Kronecker quivers, the n-Kronecker
quiver () with n arrows looks as follows:
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For n > 2 we obtain in this way representation-infinite algebras, for n > 3 these algebras are
wild. The importance of the Kronecker algebras and their representations is well-known,
often they are considered as the basic data in non-commutative geometry.

Let M = (Mg, My)a,o be a finite-dimensional representation of a quiver, thus M
attaches to each vertex a of the quiver a vector space M, and to each arrow « a linear
map M,. The sum of the dimension of these vector spaces is called the total dimension
dim M of M. In case M is an indecomposable representation with total dimension d, then
M is said to be a tree module provided that there is a choice of bases for the vector spaces
such that the corresponding matrix presentations of the linear maps involve altogether
only d — 1 non-zero entries (so that the “coefficient quiver” is a tree, see [R2]).

The root system for the n-Kronecker algebra is easy to describe: it consists of the
vectors (x,y) € Z? with 22 + y? — nzy < 1. The vectors (x,y) with 22 + y? —nzy = 1 are
called the real roots, the other roots the imaginary ones. The positive real roots are the di-
mension vectors of the preprojective and the preinjective modules. Now, the preprojective
and the preinjective modules are exceptional modules (a module over a hereditary algebra
is said to be exceptional if it is indecomposable and has no self-extension) and exceptional
modules over the path algebra of a finite quiver are known to be tree modules [R2]. Thus,
in order to show that every positive root is the dimension vector of a tree module, we only
have to deal with the imaginary roots.

Theorem. Let QQ be the n-Kronecker quiver. For any positive imaginary root for @)
there are at least n tree modules with this dimension vector.

The proof of the theorem will be given in section 2, it will rely on the use of covering
theory. Denote by @ the universal covering of (), this is the n-regular tree with bipartite
orientation (n-regular means that every vertex has precisely n neighbors, the bipartite
orientation is characterized by the property that all vertices are sinks or sources). We

denote by 7: mod k:(:j — mod k(@ the push-down functor.

An indecomposable representation of a quiver is said to be thin, provided the non-
zero vector spaces used are 1-dimensional. If M is a thin kQ-module, then (M) will be
said to be cover-thin. Similarly, we say that N is cover-exceptional provided there is an
exceptional k@Q-module M such that N = 7(M).

1. Cover-thin Kronecker-modules.

1.1. Proposition. Consider (z,y) € N3 with x < y. There exists a cover-thin kQ-
module N with dimension vector dim N = (x,y) if and only if 0 <y < (n—1)z+ 1. In
this case, there are at least n isomorphism classes of such modules N, unless (xz,y) = (0, 1)
or (1,3).

Proof: Since k@ is a tree, the thin indecomposable k@—modules are uniquely deter-
mined by the corresponding support, this is just a finite connected subtree of kQ. Take a
finite connected subtree T' of kQ with |T'| vertices and let M (T') be the k@Q-module with
support T and N(T') = n(M(T)) Let (z,y) be the dimension vector of N(T').
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If |T| = 1, then T consists either of a sink or a source. The condition x < y means that
(x,y) = (0,1), that T consists of a sink and that N (7') is the simple projective k@Q-module.

Now, let |T'| > 2. Since T is a tree, there is a vertex a in T with a unique neighbor. In
case a is a sink, let b = a, otherwise denote by b the unique neighbor of a; thus always b
is a source. If b is the unique source in 7', then |T'| < n+ 1 and dim N(T') = (1,y) with
1<y<n=(n-1)+1.If y =n, then 7(M) is indecomposable projective and uniquely
determined by its dimension vector, otherwise there are at least n isomorphism classes of
modules of the form N(T).

Now assume that T contains at least 2 sources. Removing from T the source b we
obtain the disjoint union of a connected tree T’ with |T’| > 2 and t < n — 1 isolated
vertices. By induction, we know that dim 7 (M (7")) = (2/,y") with0 <y’ < (n—1)2" +1
and (z,y) = («/,y')+(1,t). This shows that y = ¢/ +t < (n—1)2’+1+(n—1) = (n—1)x+1.
(Note that only in case ' = y’ and t = 0, the pair (z,y) will not satisfy the inequality
x < y we are interested in.) This shows that the dimension vectors (x, y) of the kQ-modules
N(T) are as stated.

Conversely, consider (z,y) with x <y and 0 <y < (n — 1)z 4+ 1. We try to construct
a corresponding 7. This is clear for x < 1 and it is easy to see that for (z,y) = (0,1)
or (1,3), the corresponding module N(7T') is uniquely determined, wheres for (1,y) with
1 <y < n—1, there are at least n different isomorphism classes (for y = 1 and for y = n—1,
there are precisely n isomorphism classes.

Thus assume 2 <z <y < (n—1)z+1. Writey = >, y(i) with 1 <y(i) <n—1for
1<i<z—1and 1 <y(x) <n (such a decomposition exists, since r <y < (n— 1)z + 1).

Fix some sink s; of @ and take the unique path

[e %1 e 7% [e %1 Oy aq (7% aq
§1 — 1] — Sg ¢— t9g — — tp 1 —> Sy — 1y

starting at s;. For 1 < i < x, we add the arrows «; (and their endpoints) starting at ¢;,
with 2 < j < y(i). We see that we obtain in this way a subtree T of Q, with z sources and
> y(i) = y sinks, thus dim N(7T') = (z,y).

Finally, observe that the module M(T') constructed here for x > 2 has the property
that Im(a;) N Im(ey,) # 0, whereas Im(a;) N Im(e;) = 0 for @ < j and (¢,5) # (1,n).
Thus, using a permutation of the labels of the arrows, the same construction yields (g)
different isomorphism classes and (Z) > n for n > 3. It remains to consider the case n = 2.

Here, @ is just a line and the positive imaginary roots are of the form (m,m) with m > 1.
Obviously, for every m > 1, there are precisely two cover-thin k@Q-modules. This completes
the proof.

Duality provides in a similar way cover-thin kQ-modules with dimension vectors (z, y)
where 0 <y<zand 0 <z < (n—1)y+ 1.

It is well-known that the region 7 = {(z,y) € N | -Lso < y < (n— 1)z} is a
fundamental domain for the action of the Coxeter transformation on the set of positive
imaginary roots. Note that this region is contained in the set of dimension vectors of
cover-thin £Q-modules and that the vectors (0,1), (1,0), (1,3), (3,1) are real roots. Thus

Wwe see:



1.2. Corollary. For every (z,y) € F, there are at least n isomorphism classes of
cover-thin kQ-modules N with dim N = (z,y).

For the benefit of the reader, we provide an illustration for the case n = 3:

Y

The union of the shaded areas is the imaginary cone, the dark part being the fundamental
domain F for the action of the Coxeter transformation on the imaginary cone. The bullets
indicate the dimension vectors (0,1), (1,0), (1,3), (3,1), they are outside of the imaginary
cone. There are two lines with slope 2 as well as two lines with slope %: those going
through the origin bound the fundamental region F, the parallel ones bound the region of

the dimension vectors of cover-thin k@Q-modules.

2. Cover-exceptional k()-modules.

Thin (indecomposable) modules are exceptional. Thus:

2.1. Corollary. For every positive imaginary root (z,y) there are at least n isomor-
phism classes of cover-exceptional kQ-modules with dim N = (z,y).

2.2. Lemma. Any cover-exceptional module is a tree module.

Proof: According to [R2], any exceptional module over a hereditary k-algebra is a tree
module. But is M is a tree kQ-module, then 7w(M) is a tree kQ-module.

The main theorem is a direct consequence of 2.1 and 2.2.

3. Exceptional modules are tree modules.

The proof of Lemma 2.2 is based on the fact that for A a finite-dimensional hereditary
k-algebra, any exceptional module is a tree module. On the other hand, one can use the
considerations of section 2 in order to provide a proof of this result which avoids any
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calculations. Indeed, the proof given in [R2] required explicit matrix presentation of the
preprojective and preinjective Kronecker modules, and, in this way, was quite technical.
Here we show that using induction and the covering theory for the Kronecker algebras,
one can avoid the matrix calculations.

Using induction on m, we want to show:

3.1. Let A be the path algebra of a finite quiver and m > 0 a natural number. Any
exceptional A-module of length m is a tree module.

In the case m = 1 nothing has to be shown. Thus let us deal with the induction step,
thus let m > 1.

First, consider the case where A is the n-Kronecker algebra for some n > 1. In the
case n = 1, only one module N has to be considered: it has length 2 and obviously is a
tree module. Thus, assume that n > 2. The exceptional A-modules are the preprojective
modules Py, Pi, P2, ... and the preinjective modules Qg, Q1.Q2, . ... These modules are
of the form m(M) with M an indecomposable representation of k@ (the corresponding
dimension vectors in the case n = 3 have been displayed in [FR]). Take such a module M.
Of course, we can assume that M is not simple. It is easy to see that there is an exact

sequence
0O—-M —>M-—->M'"—=0

with dim Ext'(M”, M’) = 1 such that one of the representations M’, M" is simple and
the supports of M’, M" are disjoint (on the level of dimension vectors, we deal with a
subtree T' of @ and a vertex a in T having only one neighbor, say b; the coefficients of the
dimension vector of M both at a and b are equal to 1. In case a is a sink, S(a) embeds
into M say with image M’, then M"” = M/M’. In case a is a source, there is a surjective
map M — S(a) = M"”, in this case M’ is chosen as its kernel.

Clearly, with M also M’ and M" are exceptional modules. Thus, by induction both
are tree modules, and therefore also M is a tree module.

Now assume that we are dealing with an exceptional module M of dimension M such
that the support of M has at least three vertices. Schofield induction (see [CB] or also
[R1]) asserts that there is an exact sequence

0= X*>M-—=Yb—0

where X, Y are pairwise orthogonal exceptional modules and the pair (a, b) is the dimension
vector of a sincere preprojective or preinjective representation Z of an e-Kronecker module,
with e = dim Ext' (Y, X). Since a > 0,b > 0, it follows that dim X < m, and dimY" < m.
Since the support of M has at least three vertices, we see that not both modules X,Y can
be simple, thus also dim Z = a + b < m. By induction, all three modules X, Y, Z are tree
modules (here, X,Y are A-modules, whereas Z is an e-Kronecker module), but then also
M is a tree module, see [R2], section 5. This completes the proof.
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