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Abstract. Suppose « is an orientation preserving diffeomorphism (shift)
of Ry = (0,00) onto itself with the only fixed points 0 and co. We es-
tablish sufficient conditions for the Fredholmness of the singular integral
operator
(al —bWea)Py + (cI —dWq)P-

acting on LP(Ry) with 1 < p < oo, where P = (I + S5)/2, S is the
Cauchy singular integral operator, and W, f = f o « is the shift opera-
tor, under the assumptions that the coefficients a, b, ¢, d and the deriv-
ative o of the shift are bounded and continuous on Ry and may admit
discontinuities of slowly oscillating type at 0 and oo.
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1. Introduction

Let B(X) denote the Banach algebra of all bounded linear operators acting
on a Banach space X, let K(X) be the closed two-sided ideal of all compact
operators in B(X), and let B™(X) := B(X)/K(X) be the Calkin algebra of
the cosets A™ := A+ K(X) where A € B(X). An operator A € B(X) is said
to be Fredholm if its image is closed and the spaces ker A and ker A* are
finite-dimensional.
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Through this paper we will assume that 1 < p < co. Let C(R4) denote
the C*-algebra of all bounded continuous functions on Ry := (0, +00), and
let a be an orientation-preserving diffeomorphism of Ry onto itself, which
has only two fixed points 0 and oco. The function « is referred to as an
orientation-preserving non-Carleman shift on R.. If loga’ € Cy(R4), then
the shift operator W, given by W,f = f o «, is an isomorphism of the
Lebesgue space LP(R.) onto itself. As is well known, the Cauchy singular
integral operator S given by

(SF)(t) = nmi/R T 4 ery)

€20 Tl JR \(t—e,t4e) T — t

is bounded on the Lebesgue space LP(R. ). Then the operators Py := £ (I+5)
also are in B(LP(R,)).

The Fredholm theory of singular integral operators with discontinu-
ous coeflicients and shifts on Lebesgue spaces has the long and rich his-
tory. We mention the monographs by Gohberg and Krupnik [12], Mikhlin
and Prossdorf [28], and Bottcher and the second author [5] for the Fred-
holm theory of singular integral operators with jump discontinuities (and
without shifts); the books by Litvinchuk [27], Roch and Silbermann [32],
Kravchenko and Litvinchuk [26], Antonevich [I], Karapetiants and Samko
[14], and the references therein for the Fredholm theory of singular inte-
gral operators with shifts. In all these sources coefficients of singular integral
operators and derivatives of shifts are supposed to be either continuous or
piecewise continuous.

Singular integral operators with coefficients admitting discontinuities of
slowly oscillating type were considered in [30} 3T, [6], [7]. We also mention the
works [2, 8L 4], where C*-algebras of singular integral operators with piecewise
slowly oscillating coefficients and various classes of shifts with continuous
derivatives were considered in the setting of L?-spaces. Singular integral ope-
rators with shifts and slowly oscillating data were studied in [20} 2], 22} 24] by
applying the theory of pseudodifferential operators with so-called compound
(double) non-regular symbols. This approach requires at least three times
continuous differentiability of slowly oscillating shifts.

This paper is devoted to singular integral operators with slowly oscil-
lating coeflicients and slowly oscillating non-Carleman shifts preserving the
orientation in the LP(Rj)-setting. Our results generalize and complement
those of [23] (see also [26] Chap. 4, Section 2]), where a Fredholm criterion
was obtained for a singular integral operator with continuous coefficients and
a shift being an orientation-preserving diffeomorphism of [0, 1] onto itself with
the only fixed points 0 and 1. In contrast to previous applications of pseu-
dodifferential operators, our approach here is based on a simpler theory of
pseudodifferential operators with non-compound non-regular symbols com-
bined with the Allan-Douglas local principle (see [9]) and invertibility results
for functional operators. This allows us to reduce the smoothness of shifts to
the existence of slowly oscillating first derivatives.
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To formulate our main results explicitly, we need several definitions.
Following [33], a function f € Cy(Ry) is called slowly oscillating (at 0 and
o0) if for each (equivalently, for some) A € (0,1),

}1_>mg osc(f,[Ar,r]) =0 (s €{0,00}),

where osc(f, [Ar,7]) := sup {|f(t) — f(7)] : t,7 € [Ar,r]} is the oscillation of
f on the segment [Ar,r] C Ry. Obviously, the set SO(R.) of all slowly oscil-
lating (at 0 and oo) functions in Cy (R ) is a unital commutative C*-algebra.
This algebra properly contains C'(R ), the C*-algebra of all continuous func-
tions on R, := [0, +00].

We say that an orientation-preserving non-Carleman shift « is slowly
oscillating (at 0 and oo) if loga/ € Cp(Ry) and o € SO(R4). We denote
by SOS(R.) the set of such shifts. As we will show in Section 22 the shifts
a € SOS(R,) are represented in the form a(t) = te*® for t € R, where
w € SO(Ry).

Our first concern is the invertibility of binomial functional operators
with slowly oscillating coefficients and a slowly oscillating shift. The following
theorem was obtained in the LP(0,1)-setting in [16], the present version is
derived from that one in Section

Theorem 1.1. Suppose a,b € SO(R;) and o € SOS(R4). The functional
operator al — bW, is invertible on the Lebesgue space LP(Ry) if and only if
either

Jnf [a(t)] > 0, Timinf (Ja(t)] — [b(t)| (@’ (1)) 77) >0 (s € {0,00)): (1)

Jnf [b(0)] >0, lim sup (|a(t)| - |b(t)|(o/(t))_1/p) <0 (se{0,00}). (1.2)

If [d) holds, then

(al =bWo)™' = (¢ '0Wa)"a"'I. (1.3)
n=0
If [T2) holds, then
(al —bWo) ' = =Wy (b~ taW )"0 (1.4)
n=0

By M () denote the maximal ideal space of a unital commutative Ba-
nach algebra 2. Identifling the points ¢ € Ry with the evaluation functionals
t(f) = f(t) for f € C(Ry), we get M(C(Ry)) = R,. Consider the fibers

M,(SO(Ry)) := {¢ € M(SORy)) : {|ew,) = s}
of the maximal ideal space M (SO(R,)) over the points s € {0,00}. By [20,
Proposition 2.1], the set

A= Mp(SO(R+)) U Moo (SO(R4)) (1.5)
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coincides with closgo- R4 \ Ry where closso+ Ry is the weak-star closure of

R4 in the dual space of SO(Ry). Then M(SO(Ry)) = A UR4. In what
follows we write a(§) := &(a) for every a € SO(R4) and every £ € A.
We now formulate the main result of the paper.

Theorem 1.2. Suppose a,b,c,d € SO(Ry) and o € SOS(Ry). The singular
integral operator

N := (al — bW, Py + (cI — dW,a)P_ (1.6)

with the shift « is Fredholm on the space LP(Ry) if the following two condi-
tions are fulfilled:

(i) the functional operators Ay = al — bW, and A_ = ¢l — dW, are
invertible on the space LP(Ry);
(ii) for every pair (§,z) € A X R,

1+ coth[m(x +i/p)]
2
1 — coth[m(x +i/p)]
2

ne(z) = {a(f) - b(f)eiw(i)(mﬂ/p)}
+ [c(g) - d(g)ew@xm/m]

where w(t) := logla(t)/t] € SORL).

70, (1.7)

The paper is organized as follows. In Section 2] we collect properties
of slowly oscillating functions and shifts. In particular, we prove that each
slowly oscillating shift can be represented in the form a(t) = te*® where
w is a real-valued slowly oscillating function. Section B] is devoted to the
proof of Theorem [Tl In Section [ we collect properties of Mellin convolution
operators with piecewise continuous symbols. In particular, we mention the
well-known structure of the commutative algebra A generated by the operator
S and the identity operator. This algebra contains the operator with fixed
singularities

(RA)(#) = — / D wery)

Section Bl contains necessary facts from the theory of Mellin pseudodifferential
operators with slowly oscillating symbols.

Section [@] is dedicated to the localization with the aid of the Allan-
Douglas local principle. We introduce the algebra Z generated by the compact
operators and the operators I, S, and cR, where c are slowly oscillating func-
tions. Further we introduce the algebra A of operators commuting with the
elements of Z modulo compact operators. The Fredholmness of an operator
A € A is equivalent to the invertibility of the coset A™ in the quotient alge-
bra A™ = A/K. The maximal ideal space of its central subalgebra Z™ = Z/K
is homeomorphic to the set {—oco,+o0} U (A x R). Since N € A, by the
Allan-Douglas local principle, the Fredholmness of N is equivalent to the in-
vertibility of the local representatives N™+J7, N™+ J[, and N™ + J,
in the local algebras A™/J” ., A" /T, and A™/J[, with (§,z) € A xR,
respectively, where J and J are ideals of A™.
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In Section [ we prove that certain functions, playing an important role
in the proof of the sufficiency portion of Theorem [[.2] belong to the algebra of
symbols of Mellin pseudodifferential operators commuting modulo compact
operators. Section[lis dedicated to the proof of Theorem[I.2] The invertibility
of the functional operators al — bW, and ¢l — dW,, imply the invertibility
of the cosets N™ + Jfe and N™ + J7_ in the local algebras A’T/j_foo and
AT/ J7 ., respectively. On the other hand, using the technique of Mellin
pseudodifferential operators we show that ng(x) # 0 implies that the coset
N™ + Jf, is invertible in the local algebra A™/J[, for ({,z) € A x R.
The proof is based on the important property: the product W, R of the shift
operator W, and the operator R with fixed singularities at 0 and oo is similar
to a Mellin pseudodifferential operator. To finish the proof of Theorem [I.2]
it remains to apply the Allan-Douglas local principle.

Finally, we note that conditions (i) and (ii) of Theorem are also
necessary for the Fredholmness of the operator V. This statement will be
proved in the forthcoming paper [17].

2. Slowly oscillating functions and shifts

2.1. Fundamental property of slowly oscillating functions

Lemma 2.1 ([20, Proposition 2.2]). Let {ar}7°, be a countable subset of
SORL) and s € {0,00}. For each & € My(SO(RL)) there exists a sequence
{tn} C Ry such that t, — s as n — oo and

&(ag) = nh_}rrolo ar(ty) forall keN. (2.1)

Conversely, if {t,} C Ry is a sequence such that t, — s as n — oo, then
there exists a functional & € Ms(SO(Ry)) such that 1)) holds.

2.2. Exponential representation of slowly oscillating shifts

Lemma 2.2. An orientation-preserving non-Carleman shift o : Ry — Ry
belongs to SOS(Ry) if and only if

alt) =te*®, teRy, (2.2)

for some real-valued function w € SO(R4) N CY(R) such that the function
t — tw'(t) also belongs to SO(R4) and

. ’
tler]%é (1+t/'(t) > 0. (2.3)
Proof. Necessity. Let « € SOS(Ry). Then loga’ € Cp(R4+) and hence
0 < mg := inf o/(t) < sup o' (t) =: M, < o0, (2.4)
teR teR,

o € SO(R,), and a(0) =0, a(o0) = co. As «(0) = 0, we have the represen-

tation .

ty 1

o) = —/ o (z)dz :/ o (tx)d,
t tJo 0



6 A. Yu. Karlovich, Yu. I. Karlovich and A. B. Lebre

which implies due to ([24]) that

0<ma§inf@§sup@§Ma<oo (2.5)
teRy ¢ teR,
and )
@ - @ = /0 (o (tz) — o/ (t2))da. (2.6)

Using ([2.0) and (2.6)), we conclude that the function D(t) := a(t)/t belongs
to Cp(R4). Furthermore, from (Z.0) it follows that

1
osc(D,[r/2,r]) < / sup |o/(tz) — o/ (rz)|dx
0 t,7€[r/2,r]

1
:/0 osc(, [rz /2, r))dz. (2.7)

Since o/ € SO(Ry), we conclude that for every € > 0 there exist positive
numbers dy < do such that osc(a/, [r/2,r]) < e for all r € (0,dp) U (do0, 20).
Hence, for r € (0,40) and all z € (0, 1],

osc(d, [rz/2,rz]) < e, (2.8)
which implies due to 27]) that
}%OSC(D, [r/2,7r]) =0. (2.9)

On the other hand, for r > 0 and all z € (0 /7, 1], we also have (Z.8).
Therefore,

/5 osc(a, [rz/2,rz])dr < (1 — doo /1),

oo/r
Soo /T

/ osc(d, [rz/2, rz])dz < 2||a|| oo (v, )00 /T
0

whence
1
/ osc(a, [rz/2, ra])dr < e(1 — doo /1) + 2| || oo (r ) 000 /T
0

This implies in view of (Z7) that
lim osc(D, [r/2,r]) = 0. (2.10)

T—00

Thus, by ([Z9) and ZI0), the function D(t) = a(t)/t actually belongs to
SO(R4).
Since SO(Ry) is a C*-algebra, we infer from (Z3) that the function
w(t) := log[a(t)/t] also is in SO(R, ). Thus a(t) = te*® where w’ € C(R,).
Finally, since o', e € SO(R.), it follows from the equality
o (t) = (1+ /' (t))e*™ (2.11)

and (Z4)-(Z3) that the function ¢ — tw’'(t) also belongs to SO(Ry) and
23) holds.
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Sufficiency. Let o be an orientation-preserving diffeomorphism of R
onto itself, with the fixed points 0 and oo only; and let a(t) = te®) where
the functions w and t — tw’(t) are in SO(R4) and (Z3)) holds. Since

0 < inf e“® < sup e*® < o,
teERL tER

we infer from (23)) and [ZTII) that loga’ € Cp(R4). Furthermore, as the
functions e* and t — tw'(t) are in SO(R4), from (ZIT)) it follows that o
belongs to SO(R,). Thus, o € SOS(R). O

The representation ([2.2)) will be called the exponential representation of
the slowly oscillating shift a and the function w will be referred to as the
exponent function of a.

2.3. Properties of slowly oscillating shifts

Lemma 2.3. If ¢ € SORy) and o € SOS(R4), then coa € SORL),
c—coa € Cy(Ry), and }gn (c(t) = c((t))) =0 for s € {0,00}.

Proof. Obviously, ¢ — co a € Cp(R4). Since a € SOS(R,), we deduce from
Z3) that mat < at) < Myt for every ¢t € Ry, where the positive numbers
ma < M, are defined in (Z4]). Hence, for every t € Ry we obtain

osc(coa, [t/2,t]) < osc(e, [(A/2)r,7]), |e(t)—c(a(t))| < osc(e, [Ar,r]), (2.12)

where Ar = t min{mg, 1} and r = t max{M,, 1}. Therefore we conclude that
A = min{my, 1}/ max{M,,1} € (0,1) except for the trivial case a(t) = t.
Since ¢ € SO(R4), from (212 it follows that

}gn osc(coa,[t/2,t]) = li_r>n osc(e, [(A/2)r,7]) =0,
lim |e(t) — e(a(t))] = lim osc(c, [Ar,]) = 0
for s € {0, c0}. O
Let 8 := a_1 be the inverse function to a.
Lemma 2.4. If o € SOS(R}), then 5 € SOS(R4).

Proof. Since loga’ € C,(Ry) and o € SO(R4), we infer from the relations

L e (B) — ol (B())
PO= ey 1O G me (66

that log 8’ € Cy(R4) and 8/ € SO(R4) too. Thus S belongs to SOS(R4). O

(ta TE RJr)

3. Invertibility of binomial functional operators

3.1. The case of the unit interval

Let Cy(I) denote the set of all bounded continuous functions on I := (0, 1).
According to [33], a function ¢ € Cy(I) is called slowly oscillating at 0 if

lim osc(p, [Ar, 7]) = 0
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for every (equivalently, some) A € I. A function ¢ € Cp(I) is called slowly
oscillating at 1 if the function y — (1 — y) slowly oscillates at 0. Let SO(I)
denote the set of all functions in Cy(I) that slowly oscillate at 0 and 1. In this
subsection we assume that « is an orientation-preserving diffeomorphism of
I onto itself that has only two fixed points 0 and 1. According to [16], we say
that « is a slowly oscillating shift if loga’ € Cyp(I) and o € SO(I). In the
latter case we will write & € SOS(I). The shift operator W, on the space
LP(I) is defined by W, f = f o a. It is easy to see that W, W1 € B(LP(I))
whenever a € SOS(T).

From Theorem 1.2, Lemma 2.2, and Proposition 5.2 of [16] we extract
the following.

Theorem 3.1. Suppose a,b € SO(I) and o € SOS(I). The functional operator
al — bW, is invertible on the Lebesgue space LP(I) if and only if either

inf la(y)] > 0. liminf (Ja(w)| — b(w)| (@) 7") >0 (s € (0.1)): 3.)
inf [b(y)| > 0, lmsup (Ja(y)] - b(w)| (') ") <0 (s € {0.1)). (32)

y—s
If @) holds, then (al —bW,)~"! is given by (L3). If B2) is fulfilled, then
(aI —bW,)~1 is given by ([L4).
3.2. Transplantation from the half-line to the unit interval
Let n : [0,1] — Ry = [0, +0c0] be defined by n(y) = y/(1 — y). Then its
inverse is given by n~1(t) = t/(1 + t). Consider the isometric isomorphism
G : LP(R;) — LP(I) defined by
(Go)(y) == (L =y)"*Peln(y)] (y ).
Its inverse is given by
GO = A+ )2Pf~ ' (®)] (¢ € Ry).
Let Iy be the identity operator on LP(I) and
L [ e)
S = — d ).
(S0 == [Eay @e
It is well known that the operator Sy is bounded on LP(I).

Lemma 3.2. Suppose 1 < p < oo.
(a) We have GSG™! = w, ' SywyI1, where wy(y) :== (1 — y)2/P=1 fory € I
(b) Ifa € L>®°(Ry), then G(al)G™! = (aon)l;.
(¢) If a : Ry — Ry is a diffeomorphism such that loga’ € L>®(R,), then
GW,G™! = ¢, ,W5, where

N 1-& 2/p
Q= 77—1 oaon, Ca,p(y) = (%;y)) for yel
The proof of this lemma is straightforward and therefore it is omitted.

Lemma 3.3. Let 1 < p < 0.
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(a) Ifa € SORy), then aon € SO(I).
(b) If o« € SOS(R4), then o € SOS(I), co,p € SO(I), and

0< %%Eca7p( y) < blépco,p( y) < +oo. (3.3)
Proof. (a) Let ¢(y) :==1—yfory e L. If y € (0,1/2], then y < n(y) < 2y and
1/(2y) <n(¥(y)) < 1/y. Hence for A € (0,1) and r € (0,1/2],
[n(Ar),n(r)] C [Ar, 2r] = [(271N)2r, 271,

),
[(mow)(r), (moy)(Nr)]  [(2r)~H, (M) ™1 = 27" A(Ar) ™, (W) 1.
Therefore,
osc(a o, [Ar,7]) = osc(a, [n(Ar),n(r)]) < osc(a, [(277N)2r,2r]),  (3.4)
osc(aono v, [Ar,r]) = osc(a, [(n o ¥)(r), (1 0 ¢)(Ar)])
< osc( 2710 ()71, (3.5)
Since a € SO(R4), we get
III%OSC( [(27'\)2r, 2r]) = hm osc( 27O () ) = 0.
These equalities and inequalities (B4)—(B38) imply that a on and aono)

slowly oscillate at zero. Thus a o € SO(I). Part (a) is proved.
(b) Let y € I. Since 1 — a(y) = 1/[1 + (a0 n)(y)], we have

T = T = (@ oW, (36)
where
_1-ay)
By Lemma [Z2 a(t) = te*® with w € SO(R..). Hence, for t € R,
(con 1) = b = et AL

1+ tew® € 14t le—w(®’
Since SO(R4) is a C*-algebra, e™* € SO(R4) C Cp(R4). Therefore

1 R S 1
oo T+ t-le—w(®
This implies that the function ¢ o ™! slowly oscillates at +0o. On the other
hand, ¥ € SO(R4) C Cp(R4). Then
1+t
-1 _ _
oo™ 0 = i

In particular, this implies that c o ™! slowly oscillates at zero. Thus con™!

belongs to SO(R4). By part (a) of this lemma, ¢ € SO(I). Similarly it can
be shown that 1/c € SO(I).

Since SO(I) is a C*-algebra, we conclude that c,, = /7 € SO(I)
and ¢ € SO(I). By definition of a slowly oscillating shift, o/ € SO(R,).
Then from part (a) we deduce that o/ on € SO(I) C Cp(I). Combining this
observation with ¢? € SO(I) and (B.6), we conclude that &’ € SO(I).
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We have already known that ¢, 1/c € SO(I) C Cy(I). Hence (B3) holds
and log(c?) € Cy(I). On the other hand, o € SOS(R..). Then loga’ € Cy(R4.)
and thus log(a’ o n) € Cy(I). Taking into account ([B.6]), we get

log(a) = log(a 0 ) +log(c?) € Cy(),
which concludes the proof of & € SOS(I). O

3.3. Proof of Theorem [I.1]
From Lemma B2(b)-(c) it follows that

Glal —bWo)G™' = (aon)I; — (bon)cap,Wa. (3.7)

From Lemmal[B3 we know that aon € SO(I), (bon)ca,p € SO(I), & € SOS(I),
and

0< Cp:=infeqp(y) <supcqp(y) =: Cy < +00.
y€l yel

It is easy to see that

inf[(aom) ()| = inf la()]. nf|Gom@) = inf O (38)

Hence
i <i < i . .
C1 inf (o) < int (b0 (y)can(®)] < Co inf (Ol (3.9
Further, it can be checked straightforwardly that for every y € I

(@ on)@)| = (b mH)ear®)|(@ )"

= (aom()| - (o)) (& om)(y)) ™"
Therefore

timsup / liminf (I(a 0 m) ()] - |(b o m))ea, )@ ) ")

y—0
= limsup /lim inf (|a( ) — |b(t)|(a'(t))*1/p), (3.10)

t—0

timsup / lim inf (|(a o m)(v)] - |(b o ) )ea, )@ ) ")

= limsup / lim inf (|a( = |b(t)|(o/(t))_1/p), (3.11)

t—o0

respectively. Equality ([B.1) says that al — bW, is invertible on L?(R) if and
only if (a on)I1 — (b o n)capWs is invertible on LP(I). On the other hand,

equality (38), inequalities (3.9), and equalities (BI0)-(@E.II) imply that the
conditions of Theorems [[LT] and 3] are equivalent.

Further, if (IT)) holds, then B is fulfilled. Then, by Theorem B

(o) n
-1 bon 1
((a e} T])I]] - (b e} T])Ca7pWa) = nX:;) <a 5 ,r’Co“pWa’) GIT/’]I]I (312)
Applying Lemma B2(b)—(c), we obtain

bon " 1 _ - —1 n, —1 —1
Z(aon a.p ) aonIH—G<Z(a bWo)"a I)G . (3.13)

n=0 n=0
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Combining (7)), BI2), and BI3), we get ([L3).
Analogously it can be shown that if ([2)) is fulfilled, then (aI —bW,)~"
is calculated by (L4]). O

4. Convolution operators

4.1. Fourier convolution operators
Let F: L?(R) — L?(R) denote the Fourier transform,

(Ff)(x) = / fw)e vy (z € R),

and let F~1 : L2(R) — L2?(R) be the inverse of F. A function a € L*(R)
is called a Fourier multiplier on LP(R) if the mapping f — F~'aF f maps
L?(R) N LP(R) onto itself and extends to a bounded operator on LP(R). The
latter operator is then denoted by W°(a). We let M,(R) stand for the set
of all Fourier multipliers on LP(R). One can show that M,(R) is a Banach
algebra under the norm

lallar, @) == IW(a)llBcLr(r))-

We denote by PC' the C*-algebra of all bounded piecewise continuous func-
tions on R = RU {oo}. By definition, a € PC' if and only if a € L*°(R) and
the one-sided limits

a(zg —0):= lim a(x), a(xog+0):= lim a(zx)

z—xo—0 z—x0+0

exist for each zo € R. If a function a is given everywhere on R, then its total
variation is defined by

V(a) :== supz la(zk) — a(xp—1)],

k=1
where the supremum is taken over all n € N and
—co<xg < T < < Ty < F00.

If @ has a finite total variation, then it has finite one-sided limits a(x —0) and
a(z +0) for all z € R, that is, a € PC (see, e.g., [29, Chap. VIII, Sections 3
and 9]). The following theorem gives an important subset of M, (R). Its proof
can be found, e.g., in [8, Theorem 17.1].

Theorem 4.1 (Stechkin’s inequality). If a € PC has finite total variation
V(a), then a € M,(R) and
lallar, @) < I1SellBLr@®)) (el Le@) + V(a)),
where Sy is the Cauchy singular integral operator on R.
According to [8, p. 325], let PC), be the closure in M,(R) of the set of

all functions @ € PC with finite total variation on R. Following 8, p. 331],
put C,(R) := PC, N C(R), where R := [—00, +].
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4.2. Mellin convolution operators

Let du(t) = dt/t be the (normalized) invariant measure on R.. Consider the
Fourier transform on L2?(R,,du), which is usually referred to as the Mellin
transform and is defined by
—ix dt
M ®Redi) - DR, (MO = [ e
+
It is an invertible operator, with inverse given by
1 A
MU LR) 5 PR, (4700 = o [ gt do
T JR
Let E be the isometric isomorphism
E:LP(Ry,du) — LP(R), (Ef)(z):= f(e®) (z€R). (4.1)
Then the map A — E~'AFE transforms the Fourier convolution operator
W9(a) = F~1aF to the Mellin convolution operator
Co(a) :== M~ taM

with the same symbol a. Hence the class of Fourier multipliers on LP(R)
coincides with the class of Mellin multipliers on LP(R4,dpu).

The following result was obtained in [T, Proposition 1.6], its proof can
also be found in [32] Proposition 12.7].

Theorem 4.2 (Duduchava). If a € Cy,(Ry) and b € PC, are such that

then a Co(b) € KC(L? (R4, du)).

4.3. The algebra A

Let 2 be a Banach algebra and & be a subset of 2. By closy & we denote
the closure of & in the norm of 2. Following [9] Section 3.45], we denote by
algy © the smallest closed subalgebra of 2 containing & and by idy & the
smallest closed two-sided ideal of 2 containing &.

Let 1 < p < 0co. Put

B:=B(L*(Ry)), K:=K(LP(Ry)), A:=algg{l,S}.
Obviously, the algebra A is commutative. For g € C, let

0=~ [ A0 wer)

m T — bt

and write R for R,. Further, put
e(e+i/p)(m—P)
sinh[r(z + i/p)]
and write 7, for r, .. Consider the isometric isomorphism
O LP(Ry) — LP(Ry,dpy), (f)(8) = 1/7f(t) (t€Ry).  (42)

The following facts are well known. Their proofs can be found, e.g., in [32]
Propositions 2.1-2.5] (see also [11]).

sp(z) == coth[r(z +i/p)], rpa(x):= (z € R)
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Theorem 4.3. Suppose 1 < p < co.
(a) The algebra A is the smallest closed subalgebra of B that contains the
operators ®~! Co(a)® with a € C,(R).
(b) If B € C and Re B € (0,27), then sp,1p 5 € Cp(R) and
®SP~! = Co(spy), PRzP ' = Co(ryp).

(¢) The mazimal ideal space of the commutative Banach algebra A is home-
omorphic to R. In particular, an operator ®=* Co(a)® with a € C,(R)
is invertible if and only if a(x) # 0 for all x € R. Thus A is an inverse
closed subalgebra of B.

(d) An operator =1 Co(a)® with a € Cp(R) belongs to id4{ R} if and only
if a(—o0) = a(+o0) = 0.

From s — r2 = 1 and Theorem E3|(b) it follows that
4P, P_ =4P P, =1 S*=-R% (4.3)

Let us describe the quotient algebra A™ := (A + K)/K. Since a Mellin
convolution operator is Fredholm if and only if it is invertible, from Theo-
rem [£3] we obtain the following.

Corollary 4.4. (a) The algebra A™ is commutative and its mazimal ideal

space is homeomorphic to R. _
(b) The Gelfand transform of a coset (®~! Co(a)®)™ € A™ for a € Cp(R)
is given by

[(@7' Co(a)®)"| (z) =a(z) for z€R.
In particular,
(S™) (£o0) = %1, (S™)"(z) =sp(x) for x€eR,
and if B € C and Re B € (0,27), then
(RE) (£o0) =0, (Rj) (z)=rpp(x) for zeR.
(¢) An operator H € A belongs to id4{R} if and only if
(H™)"(—00) = (H™)"(+00) = 0.

5. Mellin pseudodifferential operators

5.1. Boundedness
If a is an absolutely continuous function of finite total variation on R, then
a’ € L'(R) and
V() = [ o @)ds
R

(see, e.g., |29, Chap. VIII, Sections 3 and 9; Chap. XI, Section 4]). The set
V(R) of all absolutely continuous functions of finite total variation on R forms
a Banach algebra when equipped with the norm

lallv = llall L@ + V(a) = [lal| L~ @) + /R o/ (z)|dz.
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Following [I8] [19], let Cy(R4, V(R)) denote the Banach algebra of all
bounded continuous V (R)-valued functions on R4 with the norm

la(, Mey@, vy = sup la(t,)|lv-
teERL

As usual, let C§°(R4) be the set of all infinitely differentiable functions of
compact support on R .

The following boundedness result for Mellin pseudodifferential operators
was obtained in [I9, Theorem 3.1] (see also [I8, Theorem 3.1]).

Theorem 5.1. Ifa € Cyp(Ry, V(R)), then the Mellin pseudodifferential opera-
tor Op(a), defined for functions f € C§°(R4.) by the iterated integral

[Op(a) 27r/dx/R+ a(t, z) (;)”f(r)dg for teRy,

extends to a bounded linear operator on the space LP(R.,du) and there is a
number Cp € (0,00) depending only on p such that

|l Op(a)lBLr(r,dn)) < Cpllallc, @, vm)-

5.2. Compactness of commutators

Let SO(R4,V(R)) denote the Banach subalgebra of Cy (R, V(R)) consisting
of all V(R)-valued functions a on R, that slowly oscillate at 0 and oo, that
is,

C C _
Thg(l)cm (a) = Tlglgo cm,’ (a) =0,

where

em& (a) = max { ||a(t a(r, ')HLa@(R) tt,7 € [r,2r]}.

Let £(R4, V(R)) be the Banach algebra of all V(R)-valued functions a be-
longing to SO(R4, V(R)) and such that

=0 (5.1)

lim sup || ) —ah ,-)HV

[h] =0 teRr

where a”(t, ) := a(t,z + h) for all (t,x) € Ry x R.
The following result on compactness of commutators of Mellin pseudo-

differential operators was obtained in [20, Theorem 3.5] (see also [I8, Corol-
lary 8.4]).

Theorem 5.2. If a,b € E(Ry, V(R)), then the commutator
Op(a) Op(b) — Op(b) Op(a)

is compact on the space LP(R,du).
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6. Localization

6.1. The Allan-Douglas local principle
The Allan-Douglas local principle is one of the main tools in studying singular

integral operators in the last decades. The aim of this section is to apply this
principle to operators in the algebra

F=algg{al,S,Wo, Wi :a € SOR,)}.

Here is the formulation of the local principle taken from [9, Theorem 1.35(a)].
Let 2 be a Banach algebra with identity. A subalgebra 3 of 2 is said to be a
central subalgebra if za = az for all z € 3 and all a € 2.

Theorem 6.1 (Allan-Douglas). Let 2 be a Banach algebra with identity e
and let 3 be a closed central subalgebra of A containing e. Let M (3) be the
maximal ideal space of 3, and for w € M(3), let J., refer to the smallest closed
two-sided ideal of A containing the ideal w. Then an element a is invertible
in A if and only if a + J., is invertible in the quotient algebra A/J., for all
we M(3).

The algebra /3, is referred to as the local algebra of A at w € M(3).

Now we are going to construct an algebra A that contains the algebra
F and such that the quotient algebra A™ := A/K has a center properly
containing A™. To this end we need several compactness results.

6.2. Compactness results

The following compactness results were obtained in [I5, Corollaries 5.2-5.3].

Theorem 6.2. Let 1 < p < oo.

(a) If a € SO), then aSy — Sraly € K(LP(T)).
(b) If « € SOS(I), then W, S1 — S1W, € K(LP(D)).

Now we prove their counterparts for the case of R;..

Theorem 6.3. Let 1 < p < 0.

(a) If a € SO(R,), then aS — Sal € K.
(b) If « € SOS(Ry), then W, S — SW, € K.

Proof. (a) If a € SO(R,), then aon € SO(I) by Lemma[B3(a). Then in view
of Theorem [6.2(a), the operator (a on)S; — Si(a o n)I; is compact on L2(I).
For p = 2 from Lemma B.2(a),(b) it follows that

aS — Sal = G~ (aon)Sy — Si(aon) )G € K(L*(Ry)).

Since the operator a.S—Sal is bounded on all spaces LP(R4 ), p € (1, 00), from
the Krasnosel’skii interpolation theorem (see [25] Theorem 3.10]) it follows
that the operator aS — Sal is compact on all spaces LP(R}), p € (1, 00).

(b) If &« € SOS(R,), then @ € SOS(Ry) and cq2 € SO(I) due to
Lemma B3|(b). From Theorem [62 it follows that

K= W&S]I — S[[W& S ]C(L2(H)), Ky = CQ’QS[[ — S]ICQ’QIH S ]C(L2(]I))
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Then
ca,QWaS]I - S]Icoz,QWa - Ca,QKl + KQWa S K:(LQ(I[))
From Lemma B2(a),(c) we get
WoS — SW, = G ea 2aWaSt — Sica 2aWa]G € K(L*(R4)).

Since the operator W, .S — SW,, is bounded on all spaces LP(Ry), 1 < p < oo,
we conclude that the operator W, S — SW, is compact on all spaces L (R.),
1 < p < 00, by analogy with part (a). O

Corollary 6.4. If a € SO(Ry) and o € SOS(R.), then for every A € A,
aA— Aal €K, W,A— AW, € K.

Proof. Tt is easy to see that if B € B is such that BS — SB € K, then for
every A € A, the commutator BA — AB is compact. It remains to apply
Theorem 6.3 O

Theorem 6.5. If a € Cy(R4) and }E}n a(t) =0 for s € {0,00}, then aR € K.
S

Proof. By Theorem EE3(b), 7, € C,(R) € PC, and R = &~ Co(r,)®. It is
easy to see that

Hence, by Theorem 2 a Co(ry) € K(LP(R4,dp)). Therefore the operator
aR = a®~ ! Co(r,)® = & 1aCo(r,)® is compact on LP(R). O

Corollary 6.6. If a € Cp(Ry), }gn a(t) =0 for s € {0,00} and H € id1{R},
then aH € K. o

Proof. Since A is commutative, we see that id 4{ R} = closg{RA : A € A}.
From this equality and Theorem we immediately get the statement. [

6.3. Algebras Z, D, and A

Let us consider
Z:=algg{I,5 cR,K: ce SOR,), K €K},
D:=algg{al,S: a€ SOR,)},
A:={AeB: AC-CAecK foral Ce Z}.

Lemma 6.7. (a) The set A is a closed unital subalgebra of B.
(b) The set K is a closed two-sided ideal of the algebra A.
(¢) An operator A € A is Fredholm if and only if the coset A™ := A+ K is
invertible in the quotient algebra A™ := A/K.

The proof is straightforward and therefore it is omitted.

Theorem 6.8. We have K C Z C D C F C A.
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Proof. The inclusion K C Z follows from the definition of the algebra Z. The
inclusion D C F is obvious.

To prove that Z C D, it is sufficient to show that all the generators of Z
belong to D. Obviously, I,S € D. Further, ¢cR € D for ¢ € SO(R4) because
R € A CD. It is well known that K C algg{al,S : a € C(Ry)} (see, e.g.,
[5, Lemma 8.23] for Carleson Jordan curves, in the present case the proof is
analogous). Since C'(Ry) C SO(R,), from the above inclusion it follows that
K C D. Thus, Z C D.

Let us show F C A. By Corollary 6.4, al, S € A for a € SO(R,) and

WoS — SW, €K, WoR— RW, € K. (6.1)

Since o € SOS(R4), from Lemma 24 we infer that a_; € SOS(R4), too.
From Lemma [2.3] and Theorem [6.8 it follows that

(c—coa_1)ReKk. (6.2)
Combining the second relation in (6.1 and relation ([6.2)), we get
WacR — ¢cRW, =Wy(c—coa_1)R+ ¢(W,R— RW,) € K. (6.3)

From (1) and (G.3) it follows that W, € A.

Taking into account that W, = W, _, and repeating the above argu-
ment with a_; € SOS(R,) in place of a we finally get W, ! € A. We have
proved that all the generators of F belong to A. Thus F C A. (]

From the above theorem it follows that the quotient algebras Z7 :=
Z/K, D™ .= D/K, and A™ := A/K are well defined. Clearly, Z™ lies in the
center of A™. Our next aim is to describe the maximal ideal space of Z™. We
start with a description of the maximal ideal space of the bigger algebra D™,
which is commutative in view of Theorem [6.3)(a).

6.4. Maximal ideal space of D™

Theorem 6.9. The mazimal ideal space M (D™) of the commutative Banach
algebra D™ is homeomorphic to the set

M := (M(SO(R4)) x {—00,400}) U (A x R), (6.4)
where A is given by (L3).

Proof. The proof is similar to that of [2, Theorem 6.3]. It is clear that C™ :=
{(cI)™ : c € SO(R4)} and A™ are commutative Banach subalgebras of the
algebra D™ and their maximal ideal spaces can be identified with M (SO(R..))
and R, respectively. Fix (¢,7) € M(SO(R4)) x R and consider the maximal
ideals {(cI)™ : ¢ € SO(R4),c(§) = 0} of C™ and {A™ € A™ : (A™)"(z) = 0}
of A™. Let ./\/S’TT denote the closed two-sided (not necessarily maximal) ideal
of D™ generated by the above maximal ideals of C™ and A™. Identifying the
pair (¢,7) € M(SO(R4)) x R with the ideal N7, and taking into account
©4) and M(SO(R4)) = R, UA, we see that M(D™) is homeomorphic to a
subset of M(SO(R;)) x R = (R; x R) U9
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Observe that due to [@3)) any coset D™ € D7 is of the form
D™ = (4 Pu)™ + (c_P)" + Y™, (6.5)

where cx € SO(R4), P = (I +5)/2, and

Y :T}gr;o];(cn,kffn,k) (6.6)

with ¢, € SORy), Hp i € id4{R}, and m,, € N.

Fix ({,z) € Ry x R. Given a coset D™ of the form (G3)—(60), we can
choose continuous functions ¢4, ¢, with compact support on R, such that
21 (&) = cx(€), Enp(€) = cni(€) and operators Ha, H,, € id4{R} such that

(HI)(x) = (PT)"(x), (HF ) (x) = (HZ ;)" (x). Then
(caPe)™ = [(cx —Cu)Pe]™ + [Eo(Py — Hy)]™ + (CeHy)™,

respectively, where the first two terms on the right-hand side belong to the
ideal W, ¢ whereas the terms (Eiﬁi) are zero by Corollary [6.6] Hence,
(cxPy)™ € N{,. Analogously, (¢, kHn k)™ € N, for all pairs (n, k) Thus,
Ngw for (§,x) € Ry X R contains every coset D7 € D™ and hence cannot be
a maximal ideal. In fact, it is not even a proper ideal, since it contains the
unit I™. Consequently, M (D™) C 9.

Consider now a point (£, z) € 9. Then /\/gw is a proper ideal of D™
because it does not contain the unit I™. Let us show that the ideal N is
maximal. Assume the contrary: the ideal ./\f r . is not maximal. Then there is

a maximal ideal N, ¢, of DT that contains properly /\/ I .. For any D™ € D7
of the form (6.5), we have D™ = (D™)™ (&, )™ + ng, Where O, e NZ,,

(D (Ex) = e (@2 e (9 =2y e, )
(V) (6) = im > cur€)(HL) (). (6.
k=1

Hence every coset D™ € /\~/”T \ NZ, is of the form D™ = (6I)™ + OF , with
6 € C\ {0} and OF , € N7,. But then D™ —Of , = (4I)" is invertible in D"
and this contradicts the max1mahty of N .T hus NZ, is a maximal ideal of
D™ for (§,2) € M, and therefore M(D”) = sm. O

Theorem immediately implies the following.

Corollary 6.10. A coset D™ € D™ given by (6X)-([@8) is invertible in the
Banach algebra D™ if and only if the Gelfand transform (D7) (&, x) given by

@) -[68)) does not vanish for every (&, x) € M.
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6.5. Maximal ideal space of Z™

Now we are ready to describe the maximal ideal space of Z™.

Theorem 6.11. The mazimal ideal space M(Z™) of the commutative Banach
algebra Z™ is homeomorphic to the set {—oo0,+00} U (A X R).

Proof. From ([{3) it easily follows that any coset Z™ € Z7 is of the form
(E3) where now cy are complex constants. Hence, Corollaries L4(b) and
6.10/ imply that Z™ is invertible in D™ if and only if

(Z7)7(62) = e (L +8p(2)) /2 + e (L= sp(2)) /2 4+ (YT)7(§,2) #0 (6.9)
for every (£, z) € M. If (63) holds, then (Z™)~! = (dy P1)™ +(d-P-)"+GT,
where di € SO(R4) and G™ is a coset of the form (6.6]).

From Corollary L 4(b) we know that (H ;)" (00) = 0 for every ope-
rator Hy 1 in the representation (6.6]). Hence for every coset Y7 of the form

(638), we deduce from (6.8)) that
(Y™)"(€,£00) =0 for &€ M(SO(RL)). (6.10)
Taking the Gelfand transform of the coset
1" =Z7(Z7) 7! = (c4dy Pr)" + (c-d-P-)" +QT,

where Q7 is of the form ([G.6]), at the points (£, £o0) for £ € M(SO(R4.)), from
Corollary I 4(b) and (6I0) we see that c1dy(§) =1 for all £ € M(SO(R4)).
Therefore dy = c;" € C\ {0}, whence (Z7)~! = ¢'PT+cZ'P"+G™ € Z™.
Thus Z™ € Z™ is invertible in Z7 if and only if (G.9)) holds for all (£, z) € M.

From (@.7) and (G.I0) it follows that only one element in M (Z™) corre-
sponds to any pair in the set M (SO(R.)) x {o00}. We will denote it by Z7 .
Let N7, be the maximal ideal of D™ corresponding to the point (¢, z) € 9.
It is clear that for every £ € M (SO(R4)) we have

Il =N NZT ={Z" € Z7 : (Z7)(§,£00) = 0}.
Finally,
fe =N NZT={Z" € 2" (Z7)7(§2) =0}
is a maximal ideal of the algebra Z7 for every (¢,2) € AxR. Thus, M(Z7)
{—00, 400} U (A x R).

Ol

6.6. Fredholmness of operators of local type
According to the proof of Theorem [6.11]
T7.,. = idze (P2, (gR)" : g€ SOR,)},
7, ={Z2"e€ 27 : (Z")"(&,x) =0} for (£,2) € AXR.
Further, let Jf, and J7, be the closed two-sided ideals of the Banach alge-

bra AT generated by the ideals ZT  and 17, of the algebra Z7, respectively,
and put

7:‘l-:oo = AW/J:Z:Toov g,m = Aﬂ/JgT
for the corresponding quotient algebras.
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Theorem 6.12. An operator A € A is Fredholm on the space LP(Ry) if and
only if the following two conditions are fulfilled:

(i) the cosets A™ + JF., are invertible in the quotient algebras AT, re-
spectively;

(i) for every (§,x) € AXR, the coset A™ +J{, is invertible in the quotient
algebra A7 ..

Proof. By Lemma [67(c), the Fredholmness of an operator A € A is equiva-
lent to the invertibility of the coset A™ = A + K in the quotient algebra A™.
By Theorem [G.11] Z™ is its central subalgebra, whose maximal ideal space
is homeomorphic to the set {—o0, +00} U (A x R). Therefore, by the Allan-
Douglas local principle (Theorem [G.]), the invertibility of the coset A™ in the
quotient algebra A™ is equivalent to the invertibility of the local representa-
tives A" + T, AT+ I, and AT + J{, in the local algebras AT o, AT,
and A7, for all ({,z) € A x R, respectively. O

7. Some functions in C,(R,, V(R)) and £(R,, V(R))

7.1. Functions s,, r,, and slowly oscillating functions

In this section we will prove that certain functions, playing a major role in
the proof of the sufficiency portion of Theorem [} belong to £(Ri, V(R))
or to Cp(Ry, V(R)).

Lemma 7.1. Let g € SO(R4). Then the functions
g(t,z) == g(t), sp(t,x) :=sp(x), vp(t,x) :=rp(z), (£ z) Ry xR,
belong to the algebra £(R4, V(R)).

Proof. The statement is obvious for g. Let us prove it for s, and t,. Since s,
and t, are constant in the first variable, the only nontrivial property is (5.1]).
Because sp,,7, € V(R), we conclude that s}, and 7/, belong to L*(R). Taking
into account that for X = Cy(R), L'(R) and f € X,

[fC+h) = fO)llx =0 as [h[—=0

(see, e.g., [10, Chap. 2, Section 6] and also [34, Chap. III, Section 2] for
L'(R)), we conclude that

sup [1sp(t, ) = 53 (t,)llv =lsp(- + 1) = sp( W Lo w)
teER L

+ s, (- + h) — s, ()l 1@y = 0

as |h| — 0. The same property is true with s, sp, and s;, replaced by t,, ),
and r,,, respectively. Thus (5.) holds for s, and t,. O
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7.2. A function in the algebra C;(Ry, V(R))

We start with the following obvious auxiliary statement.

Lemma 7.2. For every j € NU {0}, we have

G5 = Sgg@ +i/pl|rp(2)] < o0, (7.1)

Ci= [ la ifplilr(o)] < oc, (7.2)
R

My := sup |7sp(z)| < 0. (7.3)
T€R

Lemma 7.3. Suppose a is a slowly oscillating shift and w is its exponent
function. The function

c(t,x) = e OEH/PIp () (1) € Ry xR, (7.4)
belongs to the algebra Cy(R4, V(R)).

Proof. Through the proof we will assume that (¢, ), (r,z) € Ry x R. Since
w € SO(Ry) is real-valued, we have

My := sup |w(t)], Ms:= sup (—w(t)) < 0. (7.5)
teR, teR
Then
|eiw®@+i/p)| — o=w(D)/p < Ma/P (7.6)
whence due to (T4,
et )] < eM2/Plry (). (7.7)
From this estimate and (1)) it follows that
lle(t, )l Lo m) < eM2/PCee. (7.8)
It is easy to see that
Oc )
%(t,x) = (iw(t) — wsp(x))c(t, z). (7.9)
Hence from (1), (C2)—(Z3) and (1) we obtain
0
V(e(t,")) :/ 8_;(75,@ dz < (M + My)eM=/PCl. (7.10)
R

Further, for t,7 € Ry, we get
wt)
o(t,z) —c(r,z) =i(z +i/p) </ ew(IJrl/p)d@) rp(x).
w(r)
For every 6 in the segment with the endpoints w(7) and w(t), we have
|ei9(m+i/l7)| = /P < M2/p,
Hence
le(t,2) = e(r, 2)| < eM2/Plw(t) — w(r)| |z +i/p] rp(2)]. (7.11)
From (7)) and (ZI1) we get for t,7 € Ry,
le(t, ) = e(7, ) oo ) < CTeM2/Plw(t) — w(T)]. (7.12)
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From (79) it follows that
Oc Oc )
% (1)~ 2 r,2) = i (1) — ()t 2)
+ (iw(r) — wsp(x)) (c(t, ) — ¢(7,2)). (7.13)
Combining (73)) and (TH) with inequalities (Z17) and (1)), we deduce from
(C13)) that

Oc

o 1,5) = 55 ()| <X PLu(0) — ()

x (Irp(@)| + (M1 + Moz +i/p| [rp(x)]).

Therefore, taking into account (Z2) we infer from the latter inequality that
for t,7 € Ry,

Viett) —ero) = [ |5
< (Ch+ (My + MOCHM Plu(t) — (). (7.14)
Combining (7IZ) and (TI4), we arrive at the estimate
le(t,) = el v < Llolt) —w(r)] (1,7 € Ry),

where L := (C{° 4+ C} + (My + My)C})eM2/P, This inequality implies that
¢ is a continuous V' (R)-valued function. Moreover, it is bounded in view of

() and [TI0). Thus ¢ € Cy(R4, V(R)). O

7.3. Key lemma

Oc Oc
(tvx) - %(Ta {E) dx

The main result of this section is the following.

Lemma 7.4. Suppose a is a slowly oscillating shift and w is its exponent
function. Let £ € A and

a(t,z) = O/ (0 ()2 (t2) € (Ry x R)U (A x R).
Then there exists a function be € E(R4, V(R)) such that
a(t,z) —a(& z) = (wt) —w(€))rp(@)be(t,x), (t,z) e Ry xR, (7.15)

Proof. We divide the proof into ten steps. Through the proof we will assume
that (¢,z), (7,2) € Ry x R and all estimates are uniform in ¢, 7, x.

1. Definition of b¢. Consider

w(t)
(i O+i/p) _ i ©@Hi/D) — (g 1 i /p) / ci0(a+i/p) g
w(©)

= (w(t) — w(©))i(z +i/p) / £, w(t), y)dy,

where

Ee(x,0,y) = ei[tu(ﬁ)er(G*w(E))](ﬂﬂJri/p)7 (z,0,y) € R x R x [0, 1].



Singular integral operators with shifts 23

Then we obtain (ZI5) with
be (1, ) 1= 1, (2)ee (£, ) (7.16)

ee(t,x) =iz + i/p)/0 Ee(z,w(t),y)dy. (7.17)

2. Uniform estimate for b¢(¢,z). From Lemma [21] we obtain —w(§) < Mo,
where My is defined by (). Therefore, for 6 = w(§) + y(w(t) — w(§)) and
y €[0,1],
(2, w(t), )| = [T = 707 < M/,
This estimate and (CI0)—(CI7) imply that
[be(t,2)] < eM/Pla +i/p|[ry(x)]. (7.18)
3. Uniform estimate for %(t, x). Differentiating (CI7) we get

dee

FE(ta) =i [ Eelow(t). )y

1
+i(z +i/p) / i[w(€) + y(w(t) — w(©))] Sl w(t), v)dy.

Integrating by parts the first integral and splitting the second integral into
two integrals, we get

%(t, z) = ieMETP) 4y (E)ec(t, x). (7.19)
x
Taking into account (ZI8)), the definition of r,, (CI9) and (Z4]), we obtain
855 o dTp (92,5
8—x(t’x) = %(x)eg(t,x) + Tp(x)%(t, x)
= (= msp(z) + iw(€))be(t, ) +ic(t, z). (7.20)
From (C20), (73), (C3), (C7) and (I8) it follows that
ob .
T (t,2)| < Mol + /ol Irp(@)] + M5y ()], (T.21)
where M3z := (Mo + M;)eM2/P.
4. Uniform estimate for %2;25 (t,z). From (C20) and (Z.9) it follows that

O (1) =((rry()” + (— wp(a) + () ol 2)

+ (= 2msp(x) + iw(§) + iw(t))ic(t, z). (7.22)
Taking into account (1)), (Z3)) and (X)), we infer from (T22), (71), and
([I]) that

0%b .
‘ (1, 2)| < Malz + /| Irpl)| + 2Ms]ry ()], (7.23)

8332 (tﬂ x)

where My = (mC§°)? + (Mo + My)?)eMz/P.
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5. Uniform estimate for b¢ (¢, z) — be(7, z). For y € [0, 1] we have

w(t)
Ee(z,w(t),y) — Eelz,w(r),y) =i(z+ z/p)y/ Ee(x,0,y)db.

w(7)

Then, taking into account (L.I7), we get

1 w(t)
ee(t,z) —ee(r,2) = —(z+ i/p)Q/ (y/ Eg(x,ﬁ,y)cw) dy.
0 w(T)
As in Step 2, we obtain
[Ee,0,9)] = [HEHIP| = VP < Mot

for v = w(§) + y(0 — w(§)) with y € [0,1] and 6 in the segment with the
endpoints w(7) and w(t). Therefore

1
lec(t,z) —ee(r,2)| < |2 +i/p|2/O ye2/Plw(t) — w(7)|dy
= (/P /2)|w(t) — w(7)| |z +i/p|*.
Thus, by (ZIG),
[be(t, @) — be(r,2)| < eM/Plu(t) — w(r)| |z +i/pl*|rp ()] (7.24)
Obe

6. Uniform estimate for %(t, r) — 5=(7,2). From (Z20) it follows that

%(t, 2) = 5= (1.2) =( = msp (@) + iw(€)) (be(+ 7) — be(7, 7))

+i(c(t,z) — (7, ). (7.25)
Taking into account (73), (ZH), from (Z25), (.24)) and (Z.II) we obtain

Obe, Db

e (t.2) = ZE(r,2)| <(Male +i/pPlry ()] + €2/7la + i/p] Iry(a)])

X |w(t) —w(T)]. (7.26)
7. Uniform estimate for b¢ (¢, z+h)—be(t, z). From (Z.21]) and (7.I)) we obtain

for h € R,
oth Hp
¢
—(t,y)d
/m 8y(,y)y

z+h x+h
/ ly + i/p| [ro(9) dy / Iy ()\dy

< Ms|hl, (7.27)

[bg(t, x + h) = be(t, )| =

< M; + M2/

where My := MO + eM2/PCg0.
8. Proof of by € Cp(R4, V(R)). From (ZI8) and (1)) it follows that
lbe(t, )l Loe(r) < eM2/PCoe, (7.28)
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Further, from (C2I)) and (T2) we get

Vioe(t ) = [ |55

Combining (728)) and ([729), we obtain
1belle,my vry) = sup (I16&(t, )l ooy + V (be(t, -)))

dz < MsC} + eM2/PC. (7.29)

< M/PCO 4 MO + eM2/PCL < 0. (7.30)
From (1)) and (T24) we see that
[1Be(t, ) = be(T, )| Lo (r) < eM2/PC®lw(t) — w(T)]. (7.31)
Further, from (Z.26) and (T2) it follows that for all ¢,7 € Ry,
V(be(t,-) — be(r / ‘abg abE —(7,7) | dz
< (M3C5 + eMQ/pCl)|w( t) —w(T)]. (7.32)

Combining (Z31)) and (T32) we see that for all t,7 € R,

[[be(t,-) = be(T:)llv < Me|w(t) - w(T)],
where Mg := eM2/PCS® + M3C} + €M2/PCY. From this inequality it follows
that be is a continuous V' (R)-valued function. Moreover, it is bounded in view
of (T30). Thus, be € Cp(R4, V(R)).
9. Proof of by € SO(R4,V(R)). Estimate (Z3])) immediately implies that

em&(be) < M2/PCS° osc(w, [r,2r]), € R,

Since w € SO(R4), from this estimate we obtain

hm em&(be) = hm osc(w, [r,2r]) =0 (s € {0,00}).

Thus, taking into account the result of Step 8, we conclude that b belongs
to the algebra SO(R4, V(R)).

10. Proof of b € E(Ry, V(R)). From (T.27)) it follows that for h € R,
sup |[be(t,-) — b?(ta')||L°°(R) < Ms|hl. (7.33)

teR

On the other hand, from (T.23]) we obtain for t € Ry and h > 0,

V(be(t, ) — b2(t, /‘— +h—%—bx(tx)

z+h 826 z+h 82
§
= t,y)d dx<//
/R/ 8y (t,y)dy
<M4// ly +i/p| |rp(y) |dydx+2M3// |rp(y)|dy d.

(7.34)

dx

(t y)| dy dx
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Changing the order of integration and taking into account (2], we get for
heR and j €{0,1},

x+h ) Yy .
// w+mwmmwm://|wwwm@m@
RJz RJy—h
—hn / v+ i/prp(u)ldy = C*h.  (7.35)

Combining (7.34) and ([Z30)), we see that
V(be(t,) = b (t,) < Meh (h>0), (7.36)

where My := M,C} + 2M30§. Analogously it can be shown that

V(be(t,") — be(t,-)) < Mz(—h) (h <0). (7.37)
From (Z306) and (C31) we get for h € R,
sup V(be(t,) = bZ(t,-)) < Mq|hl. (7.38)

Combining (7Z.33) with (T3]), we arrive at the equality

lim sup ||be(t,-) — b (t, )|l = 0. (7.39)
[h|—=0 teR

From Step 9 and equality (Z39) it finally follows that be € E(R, V(R)). O

8. Sufficient conditions for Fredholmness

8.1. Invertibility in the quotient algebras A7 and A™
Theorem 8.1. Suppose a,b,c,d € SO(Ry), a € SOS(R,), and the operator
N is given by (LG)).
(a) If the operator Ay = al — bW, is invertible on the space LP(Ry), then
the coset N™ + JT_ is invertible in the quotient algebra AT .

(b) If the operator A_ := cI — dW,, is invertible on the space LP(R,), then
the coset N™ + J™ is invertible in the quotient algebra AT .

Proof. (a) If Ay is invertible in B, then from Theorem [[1] it follows that
A;l € F. Then from Theorem [6.8 we see that Ay € A and A} is invertible
in the algebra A. Hence the coset AT = A, + K is invertible in the quotient
algebra A™, which implies the invertibility of the coset AT + J[_ in the
quotient algebra AT __. It remains to observe that

NT+ Tl = (A4 Py + AP )"+ T = AL + T

Part (a) is proved. The proof of part (b) is analogous. O
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8.2. Invertibility in the quotient algebras A7  with (&z)e AxR

Lemma 8.2. Suppose « is a slowly oscillating shift and w is its exponent
function. For £ € A, let the function be be defined by (L16)-(CIT). Then the
operator @~ Op(bg)® belongs to the algebra A.

Proof. Let g € SO(R4) and
gp(t, ) == g(t)rp(x), sp(t,2) = sp(x), (f,2) € Ry xR

Lemmas [l and [74] imply that the functions s,,g,, and be belong to the
algebra £(R4, V(R)). From this observation and Theorem [5.2it follows that

Op(sp) Op(be) — Op(be) Op(s,) € K(LP (R4, du)),
Op(gp) Op(be) — Op(be) Op(g,) € K(LP (R4, dp)).

Since £(Ry, V(R)) C Cp(Ry, V(R)), we infer from Theorem [b.] that Be :=
®~1 Op(be)® € B. Then relations (B1]) and the equalities

S=®"1Co(sy)® =P ' Op(s,)®, gR=gP 'Co(r,)® = 'Op(g,®

(see Theorem E3|(b)) imply that SBe — BeS € K and gRBy — BegR € K.
Hence B¢ € A. O

(8.1)

Lemma 8.3. Suppose « is a slowly oscillating shift and w is its exponent
function. If (£,x) € A X R, then

(WQRQ)W _ 6iw(§)(m+i/p) (rp(x))QI” c :757;
Proof. From [13] formula 3.194.4] it follows that for £ > 0 and y € R,
1 e dt 1 1

= . —_ i(y+i/p) logk )
i Jr, 1+ Kt t kt/p=iv  jsin[r(1/p — iy)] € p(y)

Taking the inverse Mellin transform, we get for k,t € R,

1 ¢i/p 1

- = i(y+i/p)logk Y du.
mi 1+ kt 277‘/]1@6 rp(y)tYdy

Assume that f € C3°(Ry). Since a(7) = ()7, from the above identity it
follows that for t € Ry,

B s ars
((I)WQR(I) f)(t) - ™ R4 T"’Oé(t) dr = e K, 1_|_ew(t)(t/7.) T

1 ) ) t\% dr
— iw(t)(y+i/p) Z) 4 -
o - (/RG p(y) (7_) y) f(7) -

1 w y+i l v dr
= 2—/dy/ e (t)(J+,/p)rp(y) (_) f(r)—.
™ Jr Ry T T

Hence, for f € C§°(Ry), we have ®W,R® ! f = Op(c) f, where
c(t,y) = @O/ () (t,y) € (Ry x R)U (A x R).
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By Lemma [[3 this function belongs to the algebra Cp(R4,V(R)). Then
from Theorem [B.1] it follows that Op(c) extends to a bounded operator on
LP(Ry,du) and therefore

dW,R®™ = Op(c). (8.2)
On the other hand, from Theorem A3|(b) and Lemma [Tl it follows that
®RO ™ = Co(r,) = Op(t,), (8.3)
where v, (t,y) = rp(y) for (t,y) € Ry x R. From (82) and (83)) we obtain
W,R? = & ! Op(a)®, (8.4)

where
a(t,y) = clt, y)eplt, ) = €O ()2, (ty) € Ry x R)U (A X R).
Let us represent this function in the form
a(t,y) = a(t,y) — a(&,y) + c(& y)rp(y)
= (alt,y) —a(&y)) + (c(§,y) — (& 2))rp(t,y)

+e(&2) (vt y) —wp(t,2)) +a(g, ). (8.5)

From Lemma [(4] and Theorem 3|(b) it follows that
&1 0p (@ — a6, ))® = (w—w(€)) RS~ Op(b)®,

where be € E(Ry, V(R)). By Lemma B2 the operator ®~! Op(b)® belongs
to the algebra A. It is easy to see that by Corollary E4(b),

([(w = w(©)R]") (& 2) = (w(&) = w(§))rp(x) =0
Therefore [(w — w(§))R]™ € I7 , and thus
[ 'Op (a—a(&,)®]" = [(w—w()RP " Op(be)®]" € JT,.  (8.6)

Since w(§) € R, we see that Re(m—iw(§)) = 7 € (0, 27). From Theorem [L3|b)
we conclude that

O~ Op(c(&,))® = D' Cory r—iw(e))® = Rr_iu(e) € A.
Hence, by Corollary E4(b),
([@71 Op (c(fa ) - C(ﬁ, x))q)]ﬂ')/\(é-’ x) = ([R‘fr—iw(f) - C({, x)‘[]ﬂ-)/\(fa {E)
= rp,ﬂ'—iw(ﬁ) (if) - c(fa {E) =0.
Therefore
[(I)_l Op (c(ﬁ, ) - C(f, x))q)]ﬂ- = [waiw(ﬁ) - C(f, x)I]W € Iﬂ-,ac

and thus

[(I)_l Op [(C({, ) - C(f, x))tp] (I)]ﬂ- = [(Rﬂ'—iw(g) - c(fa x)I)R}ﬂ- € JET:-x (87)
Finally, in view of Corollary 4(b),
([(I)71 Op(tp—rp(x))@]”)’\(f, T) = ([R_rp(x)I]W)A(fa z) = rp(x) —rp(x) = 0.

Hence
c(gvx)[q)il Op(tp - Tp(x))q)]ﬂ € Iﬂ:"c c JgT (88)
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Combining (84)—(&H), we arrive at
(WoR?)"™ — @ OEHP) (1 (2))217 = [@7' Op(a)® — a(¢, 2)1]" € TZ,
which finishes the proof. O

Theorem 8.4. Suppose a,b,c,d € SO(Ry), a € SOS(R,), and the operator
N is given by (LO). If ne(z) # 0 for some (§,z) € A xR, where the function
ne is defined by (L), then the coset N™ + ng s tnvertible in the quotient
algebra Af .

Proof. Fix (§,2) € A x R and consider the operators
Tts,(z) [ 1 \°
Hy = & R 8.9
- 2 <Tp($)) (8.9)
Then from Corollary EZ(b) it follows that

(HI) () = 22222,

Therefore (Py. — Hy)™ € If , and
[(al = bWa)(Py = Hy) + (el — dWo)(P- — HO)]" € TE,,

whence
N™+ JF, = [(al = bWo)Hy + (cI — dWo)H_]" + I, (8.10)
Since Hy € id4{R} C A, we infer from Corollary [6.4] that

(WoH)" = (H Wo)™, (WoH_)" = (H_-W,)". (8.11)
Taking into account Corollary [£4Yb), it is easy to see that
(BT (&) )] (6x) =0, [(H_ Y —(@d€H_ )] (6,2) =0 (812)
and
[(aH1)™ — (a(§)Hy)™]"(62) =0,  [(cH-)" — (c(§)H-)"]"(&,2) = 0.
Hence
(WHL )™ — (@€ HL ), (H_ ) — (€ H )" € TF, € 5. (8.13)
Taking into account (8I1)-(BI2), we also see that
(W H )™ — (D)W L) = [(BHL )T — (& H )W € T8, (8.14)
(AWaH_)" — (d(E)WaH_)" = [(dH-)" — (d(€)H_ )W € JZ,. (8.15)
From (8I0) and (8I3)-@IH) it follows that
N+ T8, = (al€) s — e Wo . + (@) H_ — dOWaH_)" + 7, (8.16)
It is easy to see that

([A/rp(2))* R = 1]7) (&, x) = 0.

1 sp(z)
2

Hence

HY I" eI, C IS, (8.17)
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By Lemma R3] and (&3],
™ iw 41 = (Z‘) T T
(W )7 — @G L2500 g g (8.18)
Combining (BI6)—-(8I8), we arrive at the relation

where ng(z) is given by (7). If ne(z) # 0, then one can check straightfor-
wardly that (1/n¢(z))I™ + J¢7, is the inverse of the coset N™ + J[ in the
quotient algebra Af . O

8.3. Proof of Theorem [1.2]

If condition (i) of Theorem is fulfilled, then by Theorem B1] the cosets
N™+ JI are invertible in the quotient algebras A7, respectively. On the
other hand, if condition (ii) of Theorem holds, then in view of Theo-
rem R4 the coset N™ + J¢, is invertible in the quotient algebra A’im for
every pair (§,2) € A x R. Then, by Theorem [6.12] the operator N € A is
Fredholm. O
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