Low Complexity Integer Transform and High Definition Coding
Siwei Ma®, Xiaopeng Fan’, Wen Gao®*
“Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
°Harbin Institute of Technology, Harbin, China
E-mail: {swma, xpfan, wgao } @jdl.ac.cn
ABSTRACT

In H.264/AVC, an integer 4x4 transform is used instead of traditional float DCT transform due to its low
complexity and exact reversibility. Combined with the normalization for the integerr transform together, a
division-free quantization scheme is used in H.264/AVC. H.264/AVC is the most outstanding video coding
standard at far. But at first H.264/AVC targets to low bit-rate coding, and almost all experimental results of the
proposals for H.264/AVC are tested at low bit-rate. In the near, experimental results show that 8x8 transform can
further improve the coding efficiency on high definition (HD) coding. In this paper a kind of 8x8 low complexity
integer transforms are studied and corresponding quantization schemes are developed for HD coding. Compared
with 4x4 transform/prediction based coder, the proposed 8x8 based coder can achieve better performance on HD
coding while with much lower encoder/decoder complexity.

Keywords: DCT, BinDCT, IntDCT, integer transform, quantization

1. INTRODUCTION

Block-based transform coding is an important video coding technique and it has been widely used in many
international video coding standards, such as MPEG-1/2 and H.261/2/3. Spatial redundancy is attenuated as the
block of pixels are converted into uncorrelated coefficients through the orthogonal transform. After transform the
block energy can be denoted by a few transform coefficients and compression can be achieved by following
quantization and entropy coding. From energy compaction viewpoint, KL T (Karhunen-Loeve transform) is the best
transform. However, it is difficult to use KLT in image and video coding because it is signal-dependent. DCT is a
better approximation of KLT and it is easy for implementation due to its low complexity. But float point
multiplication in DCT is too complex and can not map integer to integer losslessly due to float approximation. In
the past, many researches have been done to integer-friendly approximation of the float DCT, such as binDCT'"
and IntDCT?, where the float DCT coefficient is approximated as an integer coefficient multiplier and a right shift.
So the DCT transform can be implemented only by using shifts and adds.

In the development of H.264, many proposals on integer cosine transform (ICT, or integer transform: IT) have
been talked about, such as 16x16 ICT*, 4x4 IT> ¢ and adaptive block transform (ABT)7. In the last, a low
complexity 4x4 integer transform™ ®is accepted. The integer transform has much virtue, such as low complexity,
non-mismatch existing in float DCT transform etc. But, at first H.264 mainly targets to low bit rate coding and
almost all test results are provided on QCIF/CIF resolution sequences. For low resolution coding, the variable block
size motion prediction to 4x4 and 4x4 transform can achieve higher coding efficiency. But that would lead to
higher encoder complexity especially for HD coding. Experimental results show that 8x8 based
transform/prediction coder can achieve better performance on HD coding while with much lower complexity. In
the current development of H.264, 8x8 transform” '* has been proposed again for professional extension coding
(PExt). This paper makes a study on the integer transform in H.264/AVC and a kind of 8x8 integer transforms and
corresponding quantization scheme are developed on HD coding.

The rest of this paper is organized as follows. A study on the integer transform and corresponding quantization
scheme in H.264/AVC is detailed in Section 2. Based on the study a kind of 8x8 integer transforms and

corresponding quantization schemes on HD coding are discussed in Section 3. Experimental results are provided in
Section 4. Section 5 concludes the paper.

2. Integer Transform and Quantization in H.264
According to DCT definition, a typical 4x4 DCT-like integer transform can be expressed as:

a a a a

b ¢ -c -b (D
a —a —-a a
c -b b -c

b/c usually is between 1.25~2.5. A 4x4 transform'' with a=13, b=17 and c=7 is proposed for H.264. In the last, a
low complexity 4x4 integer transform is used in H.264 with a=1, b=2, and c=1. The forward transform is shown as
follows:

1 1 1 1 1 2 1 1
U R S X 1 1 -1 -2
-1 -1 1 1 -1 -1 2
1 -2 2 -1 1 -2 1 -1

()

As the integer transform is not a unitary matrix, Y must be normalized after transform, as follows:

a® ab a* ab
Y E Y |ab b ab b’
a® ab a* ab

ab b~ ab b- 3)

, here a=l/2,b=1/\/ﬁ).

In H.264/AVC the transform normalization is combined with quantization and the division is replaced with
multiplication and right shift. For a quantization parameter QP, the quantization is implemented as follows:

LEVEL;; = round(W, ;/Qy.,) = round (Y,-,jxscaler,-,j/Z"bi”), 4)
Where scaler; ;/qbits = E; j/Qy.p and gbits = 15+floor(QP/6) and Q,, = 2170

The dequantization and transform normalization on decoder is combined together in the same way as on the
encoder as follows:

COEF, ;= round(LEVEL; ;XQy., XE;) = round(LEVEL;; xde_scaler;;/2""™) (3)

Here, dgbits= 6-QP/6, and scaler; xde_scaler; xM; =2 abitedabits 1n H.264/AVC, scaler;, =A(QP%6,r),
de_scale; =B(QP%6,r) A, B is 6x3 scale matrix, shown as follows:

(13107 5243 8066 0 16 13]
11916 4660 7490 1118 14
10082 4194 6554 13 20 16
A= 9362 3647 5825 B=l14 25 13
8192 3355 5243 16 25 20
7282 2893 4559 18 29 23

M;; is the magnifier from transform. =0 and M;; = 16 for (i,/)={(0,0),(0,2),(2,0),(2,2)}; =1 and M;; = 100 for
(@)=1{(1,1),(1,3),(3,1),(3,3) }; =2 and M;; = 40 for others.

3. Low Complexity 8x8 Integer Transform

Based on the study for the 4x4 integer transform, we propose a kind of low complexity 8x8 integer transform for
HD coding. In general, an 8x8 transform can be expressed in following format ”**:

a a a a a a a a
b c d e —-e —-d -c -b
fo& ¢ -f-f - ¢ f Q)
d e —b -c c b -e -d
a -a -a a a -a -a a

c -b -e d -d e b -c
g -f f -8 -¢& f -g &
le —d c -b b -c d —-e |

The 8x8 transform’ with a=13, b=19, c=15, d=9, e=3, =17, g=7, is named as T8x8-1 in Figure-1. Based on (5),
this paper proposes a kind of 8x8 integer transform for HD coding. The proposed 8x8 transform is denoted as
b:c:d:e = 5:4:3:1. Two examples are shown in Figure 1: the first is T8x8-2 with a=1,b=5,c=4,d=3,e=1,f=2,g=1; the
second is T8x8-3 with a=7, b=10, c=8, d=6, e=2, =9, g=4.

13 13 13 13 13 13 13 13 11111111 7T 777 177 77
1915 9 3 39 -15-1 543 1-1-3-4-5 10 8 6 2 -2 -6 -8 -10
17 7 =1 47177 7 17 2 1-1-2-2-41 2 9 44994 4 9
9 3 -19-151519 3 9 3 1-5+445--3 6 2-10-8 8 102 -6
13 -13-13 3 13-13-13 13 1-1-111-1- 1 71717 7T -1-17
15-19-3 9 9 3 19-15 4 5-13-315-4 8§ -10-2 6 -6 2 10 -8
7 -17 17-71 =1 17 417 7 12 2-1-12-21 4994 49 -9 4
3 -9 15-19 1945 9 3 1-3 4554 3 -1 2 -6 8-1010-8 6 -2
T8x8-1 T8x8-2 T8x8-3

Figure 1. Integer 8x8 transform

Three kinds of measurements* can be used to evaluate the performance of integer transform: transform coding gain,
distortion from DCT and frequency distortion.

Coding Gain
10
— —e—T4x4 9 DA
21| —=—T8x81 3
= T8x8-2 o »
T8x8-3 {
E A b r
3 5 -
o0 4 r
S % I r/
gl o
-1.5 -1 -0.5 0 0.5 1 1.5
Correlation Coefficients

Figure 2. Coding gain for each ICT

For the coding gain, under the assumption of optimum quantization and optimum bit allocation, the coding gain
of an orthonormal block transform can be computed as follows:

N Do ®)
me)

where Oﬁ is the variance of the n-th transformed coefficient. In general the input signal can be modeled by an

Gy =10 -log

AR(1) process, and the AR(1) process is characterized by the correlation coefficient © . The correlation coefficient
P 1isin the range [-0.95, 0.95]. Figure 2 depicts the coding gain in the same range. Table 1 lists the coding gain of
T4x4 (the 4x4 integer transform in H.264), and other three 8x8 transforms.

Table 1. Coding gain for each ICT

0 |T4x4 (dB) [T8x8-1 (dB)|T8x8-2 (dB) [T8x8-3 (dB)
0.95 | 5.0627 | 5.7618 5.7512 5.6904
075 | 1.9692 | 2.3223 2.3926 2.3600
0.55 | 0.9314 1.1071 1.1368 1.1244
035 | 0.3583 | 0.4219 0.4309 0.4278
0.15 | 0.0625 | 0.0756 0.0769 0.0766
0.15 | 0.0685 | 0.0777 0.0788 0.0788
0.35 | 0.4039 | 0.4547 0.4603 0.4607
055 | 1.1370 | 1.2833 1.2951 1.2974
075 | 2.6517 | 3.0264 3.0414 3.0471
0.95 | 7.5541 8.7589 8.7639 8.7730

Except for the coding gain, a transform also can be evaluated by its approximation to the DCT transform. The
squared distortion of the ICT matrices with respect to the DCT is defined as:

: (€))

2

d, =1- AII—Hdiag T pr T*)

where diag(X) denotes the main diagonal of matrix X. Tpcris NxN DCT. T is the normalized ICT matrix. The
distortion reflects the signal energy that is deferred from the individual DCT subbands. In Table 2 the distortion for
each basis vector and the overall d, distortion are given for T4x4, T8x8-1, T8x8-2, and T8x8-3.

Another distortion measure is frequency distortion measure. The first-order frequency distortion d’; and the
second-order frequency distortion d’, are defined as:

1 N N |T
4 =L (10)
DI

i=0

$

and
1 N N R (11)
d', = — -t
R

where T represents the normalized ICT matrices. Table 3 shows the frequency distortion for the four kinds of
transform.

Table 2. Distortion of the DCT basis vectors for each ICT

T8x8-1 T8x8-2 T8x8-3
dr o 0.0000 0.0000 0.0000
dy. 0.0042 0.0016 0.0016
dy o 0.0000 0.005 0.0007
da. 3 0.1517 0.129 0.129
do. 4 0.0000 0.0000 0.0000
dy s 0.1517 0.129 0.129
dr s 0.0000 0.005 0.0007
dy.7 0.0042 0.0016 0.0016
dy 0.038975 0.0339 0.032825
Table 3. The first and second-order frequency distortions of each ICT
T4x4 T8x8-1 T8x8-2 T8x8-3
d’ 0.0355 0.1451 0.1411 0.0391
d’ 0.0025 0.0458 0.0387 0.0017

For T8x8-1, all rows have the same module, and the following quantization scale matrixes A; and
dequantization scale matrixes B; are used on encoder and decoder set in the proposal’ for H.264/AVC. Here,
Al[i]><B1[i]><M2236 (i=0..5). M is the magnifier from transform, and M = 13522 scaler;; and de_scale; ; are defined
as: scaler; =A(QP%6), de_scale; =B,(QP%6) (i, j=0..5).

2506 [15]
2211 17
A, = 1979 B, = 19
1709 22
1566 24
1392 | 27 |

T8x8-2 has the same feature as the 4x4 transform used in H.264 that is not all rows have the same norm. In our
implementation the following scale matrixes A, and B, are used at encoder/decoder for quantization and
dequantization, and A[i, jIxBs[i, jIxM;; = 2%, M;; is the multiplier from transform: scaler;; and de_scale;; are
defined as: scaler; =A(QP%6, r;;), de_scale; =B,(QP%6, r;;) (i, j=0..5). r is mapped as follows:

21960
19329
17332
27114926
13707
12193

1720
1518
1358
1173
1075
956

8715 6092
7714 5393
6918 4838
5992 4164
5501 3825
4863 3427

13865 3870
12246 3463
10966 306

9479 2632

B

8648 2437
7696 2157

191
217
242
281
306
344

15
17
19
22
24
27

71
87
97
22
24
27

54
61
68
79
86
96

121 34
137 38
153 43
177 50
194 54
218 61

WA WO WL WO

3
1
5
1
3
1
5
1

TR IT RV SIS

3
1
5
1
3
1
5
1

W R, 0w R WO

3
1
5
1
3
1
5
1

S S ERTE O N SR
o =

For T8x8-3, the module of every row is approximated and the normalization can be implemented on the encoder.
On the encoder set, a 6x6 scale matrix A; can be used to reach normalization and quantization, but on the decoder
set only a 6x1 scale matrix Bj is used instead that would reduce hardware memory requirement.

26306
23436
20879

} 18601
16572
14764

24283 26851 25274
21634 23922 22517
19273 21312 20060
17171 18987 17871
15297 16915 15922
13628 15070 14185

26577 25535
23677 22749
21094 20267
18793 18056
16742 16086
14916 14331

17

For software implementation, T8x8-2 can be implemented by using 6 shifts and 32 adds through butterfly
decomposition. T8x8-3 can be implemented by using 36 adds and 10 shifts. Figure 3 shows the butterfly
decomposition for T8x8-2.

Figure 3. Butterfly decomposition of T8x8-2

Here,
| 2 5 4 3 1
G, = 3 1 5
-2 1 G, =
4 -5 -1
1 3 4

and G, can be further decomposed as shown in Figure 4:

"
<3
[‘

. e
<]
<}

.
=
5

® o o

e
=3
s

& o ®out3

outd

Figure 4. Butterfly decomposition of G4
4. Experimental Results

To test the performance of proposed 8x8 transform, the JVT reference software-JMS5.0c is selected as test
platform, in which an ABT scheme is implemented.

First the performance comparison between 4x4 transforms based coder and 8x8 transform coder is studied. The
test conditions are listed in Table 4. Table 5 shows the complexity ration between 8x8 transform and 4x4
transform platform. Figure 5 shows the PSNR curve of two coders. From Table 5 and the curve, we can see that
8x8 transform based coder can reach similar or even better performance compared with 4x4 based coder. But the
encoder and decoder complexity of 8x8 coder is reduced heavily, because variable block size is restricted to vary
from 16x16 to 8x8.

Figure 6 show the performance for different integer transform, including the 4x4 transform used in H.264 and
two proposed 8x8 transforms. From the curve, we can see the proposed 8x8 transform can achieve similar or even

better performance.

Table 4, Test conditions for 8x8/4x4 transform/prediction coder based on JM5.0c

8x8 coder 4x4 coder
Transform T8x8-1 H.264 4x4
Entropy Coding CABAC CABAC
Variable Block Size MC | 16x16, 16x8, 8x16, 16x16, 16x8, 8x16,
8x8 8x8, 8x4, 4x8, 4x4
RDO On On
Multiple Reference 2 reference frames 2 reference frames
Search Range +64 +64
Table 5, Complexity comparison between 8x8/4x4 transform platform
Harbour (8x8/4x4) Night (8x8/4x4)
Time-Ratio (encoder) | 67.68% 67.68%
Time-Ratio (decoder) | 89.31% 96.51%
Harbour Night
2 F 43
40 b 41 ¢
~ 138 F 39 F
S | Sa7 |
Z 34 £ 135 - —
2 LA ——18x8-1 2 s +218§§s414x4 |
30 ——1H. 264 4x4 | 91 k -
2 : : : 2% ‘ ‘
500 5500 10500 15500 20500 25500 0 50000 10000 15000 20000 25000
Bitrate (kbps) Bitrate (l%bps)
Figure 5. PSNR performance comparison between 8x8/4x4 transform platform
Harbour Night
40 40
e
38 8 /L
Z36 | S | /’-
= =
Z 34 ——Tixd | | 2y - T4x4 —
= 4 - T8x8-2 = / —m— T8x8-2
32 { T8x8-3 || 32 L T8x8-3 | |
30 30 :
0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000
Bitrate (kbps) Bitrate (kbps)

Figure 6. PSNR performance comparison between proposed ICT

5. Conclusion

In this paper, low complexity integer transform and its corresponding quantization scheme used in H.264 have
been studied, and based on this research, a kind of low complexity 8x8 integer transforms and corresponding
quantization scheme are implemented for HD coding. The proposed 8x8 transform based coder can achieve similar
or even better performance compared with 4x4 transform based coder. But the encoder/decoder complexity of
proposed 8x8 transform based coder is much lower than the 4x4 coder.

10.

11.

6. Reference

Trac D. Tran, “The BinDCT: Fast Multiplierless Approximation of the DCT,” IEEE Signal Processing
Letters, Vol. 7, No.6 2000. pp. 141-144.

Ying-jui Chen, Soontorn Oraintara, Trac D. Tran, Kevin Amaratunga, Truong Q. Nguyen, “Multiplierless
Approximation of Transforms with Adder Constraint,” IEEE Signal Processing Letters, Vol. 9, No. 11,
November 2002. pp. 344-347.

Ying-jui Chen, Soontorn Oraintara, Truong Q. Nguyen, “Video Compression Using Integer DCT,” ICIP 2000.
Mathias Wien, Shijun Sun, “ICT Comparison for Adaptive Block Transform,” VCEG-L12. 2003, Jan O1.

A. Hallapuro, M. Karczewicz, and H. Malvar, “Low Complexity Transform and Quantization — Part I: Basic
Implementation,” ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6 Document JVT-B038, January 2002.

A. Hallapuro, M. Karczewicz, and H. Malvar, “Low Complexity Transform and Quantization — Part II:
Extensions,” ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6 Document JVT-B039, January 2002.

M. Wien, “Clean-up and improved design consistency for ABT”, Doc. JVT-E025.

J.A. Michell, G. A. Ruiz, A. M. Burdn, “Parallel-pipelined Architecture for 2-D ICT VLSI Implementation,”
ICIP 2003.

S. Gordon, D. Marpe, T. Wiegand, “Simplified Use of 8x8 Transforms — Proposal”, Doc. JVT-J029,
Waikaloa, Dec. 2003.

S. Gordon, D. Marpe, T. Wiegand, “Simplified Use of 8x8 Transforms — Updated Proposal & Results”, Doc
JVT-KO028, 11th Meeting: Munich, Germany, 15-19 March, 2004.

Gisle Bjontegaard, “Coding improvement by using 4x4 blocks for motion vectors and transform”, Doc Q15-
C-23, Eibsee, Bavaria, Germany, 2-5 December, 1997.

