
Low Complexity Integer Transform and High Definition Coding

Siwei Maa, Xiaopeng Fanb, Wen Gaoa

aInstitute of Computing Technology, Chinese Academy of Sciences, Beijing, China

bHarbin Institute of Technology, Harbin, China

E-mail: {swma, xpfan, wgao}@jdl.ac.cn

ABSTRACT

In H.264/AVC, an integer 4×4 transform is used instead of traditional float DCT transform due to its low
complexity and exact reversibility. Combined with the normalization for the integerr transform together, a
division-free quantization scheme is used in H.264/AVC. H.264/AVC is the most outstanding video coding
standard at far. But at first H.264/AVC targets to low bit-rate coding, and almost all experimental results of the
proposals for H.264/AVC are tested at low bit-rate. In the near, experimental results show that 8×8 transform can
further improve the coding efficiency on high definition (HD) coding. In this paper a kind of 8×8 low complexity
integer transforms are studied and corresponding quantization schemes are developed for HD coding. Compared
with 4×4 transform/prediction based coder, the proposed 8×8 based coder can achieve better performance on HD
coding while with much lower encoder/decoder complexity.

Keywords: DCT, BinDCT, IntDCT, integer transform, quantization

1. INTRODUCTION

Block-based transform coding is an important video coding technique and it has been widely used in many
international video coding standards, such as MPEG-1/2 and H.261/2/3. Spatial redundancy is attenuated as the
block of pixels are converted into uncorrelated coefficients through the orthogonal transform. After transform the
block energy can be denoted by a few transform coefficients and compression can be achieved by following
quantization and entropy coding. From energy compaction viewpoint, KLT (Karhunen-Loeve transform) is the best
transform. However, it is difficult to use KLT in image and video coding because it is signal-dependent. DCT is a
better approximation of KLT and it is easy for implementation due to its low complexity. But float point
multiplication in DCT is too complex and can not map integer to integer losslessly due to float approximation. In
the past, many researches have been done to integer-friendly approximation of the float DCT, such as binDCT1,2
and IntDCT3, where the float DCT coefficient is approximated as an integer coefficient multiplier and a right shift.
So the DCT transform can be implemented only by using shifts and adds.

In the development of H.264, many proposals on integer cosine transform (ICT, or integer transform: IT) have
been talked about, such as 16x16 ICT4, 4×4 IT5, 6 and adaptive block transform (ABT)7. In the last, a low
complexity 4×4 integer transform5, 6 is accepted. The integer transform has much virtue, such as low complexity,
non-mismatch existing in float DCT transform etc. But, at first H.264 mainly targets to low bit rate coding and
almost all test results are provided on QCIF/CIF resolution sequences. For low resolution coding, the variable block
size motion prediction to 4×4 and 4×4 transform can achieve higher coding efficiency. But that would lead to
higher encoder complexity especially for HD coding. Experimental results show that 8×8 based
transform/prediction coder can achieve better performance on HD coding while with much lower complexity. In
the current development of H.264, 8×8 transform9, 10 has been proposed again for professional extension coding
(PExt). This paper makes a study on the integer transform in H.264/AVC and a kind of 8×8 integer transforms and
corresponding quantization scheme are developed on HD coding.

The rest of this paper is organized as follows. A study on the integer transform and corresponding quantization
scheme in H.264/AVC is detailed in Section 2. Based on the study a kind of 8×8 integer transforms and

corresponding quantization schemes on HD coding are discussed in Section 3. Experimental results are provided in
Section 4. Section 5 concludes the paper.

2. Integer Transform and Quantization in H.264

According to DCT definition, a typical 4×4 DCT-like integer transform can be expressed as:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−

cbbc

aaaa

bccb

aaaa

 (1)

b/c usually is between 1.25~2.5. A 4×4 transform11 with a=13, b=17 and c=7 is proposed for H.264. In the last, a
low complexity 4×4 integer transform is used in H.264 with a=1, b=2, and c=1. The forward transform is shown as
follows:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−
=

1121

2111

2111

1121

1221

1111

2112

1111

X
Y

 (2)

As the integer transform is not a unitary matrix, Y must be normalized after transform, as follows:

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⊗

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

22

22

22

22

babbab

abaaba

babbab

abaaba

YEY
W

 (3)

, here 10/1,2/1 == ba .

In H.264/AVC the transform normalization is combined with quantization and the division is replaced with
multiplication and right shift. For a quantization parameter QP, the quantization is implemented as follows:

LEVELi,j = round(Wi,j /Qstep) = round (Yi,j×scaleri,j /2
qbits), (4)

Where scaleri,j /qbits = Ei,j /Qstep and qbits = 15+floor(QP/6) and Qstep = 2((QP-4)/6).

The dequantization and transform normalization on decoder is combined together in the same way as on the
encoder as follows:

COEFi,j = round(LEVELi,j ×Qstep ×Ei,j) = round(LEVELi,j ×de_scaleri,j /2
dqbits) (5)

Here, dqbits= 6-QP/6, and scaleri,j×de_scaleri,j×Mi,j=2 qbit+dqbitss. In H.264/AVC, scaleri,j=A(QP%6,r),
de_scalei,j=B(QP%6,r) A, B is 6x3 scale matrix, shown as follows:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

455928937282

524333558192

582536479362

6554419410082

7490466011916

8066524313107

A

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

232918

202516

182314

162013

141811

131610

B

Mi,j is the magnifier from transform. r=0 and Mi,j = 16 for (i,j)={(0,0),(0,2),(2,0),(2,2)}; r=1 and Mi,j = 100 for
(i,j)={(1,1),(1,3),(3,1),(3,3)}; r=2 and Mi,j = 40 for others.

3. Low Complexity 8×8 Integer Transform

Based on the study for the 4×4 integer transform, we propose a kind of low complexity 8×8 integer transform for
HD coding. In general, an 8×8 transform can be expressed in following format 7, 8:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−
−−−−

−−−−
−−−−

−−−−
−−−−

−−−−

edcbbcde

ggfggffg

cbeddebc

aaaaaaaa

debccbed

fggffggf

bcdeedcb

aaaaaaaa

 (7)

The 8×8 transform7 with a=13, b=19, c=15, d=9, e=3, f=17, g=7, is named as T8×8-1 in Figure-1. Based on (5),
this paper proposes a kind of 8×8 integer transform for HD coding. The proposed 8×8 transform is denoted as
b:c:d:e = 5:4:3:1. Two examples are shown in Figure 1: the first is T8×8-2 with a=1,b=5,c=4,d=3,e=1,f=2,g=1; the
second is T8×8-3 with a=7, b=10, c=8, d=6, e=2, f=9, g=4.

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−
−−−−

−−−−
−−−−

−−−−
−−−−

−−−−

391519191593
717177717177
151939931915
1313131331131313
931915151939

177717177717
191593391519
1313131313131313

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−
−−−−

−−−−
−−−−

−−−−
−−−−

−−−−

13455431
12211221
45133154
11111111
31544513

21122112
54311345

11111111

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−
−−−−

−−−−
−−−−

−−−−
−−−−

−−−−

2681010862
49944994
8102662108
77777777
6210881026
94499449
1086226810
77777777

T8×8-1 T8×8-2 T8×8-3

Figure 1. Integer 8×8 transform

Three kinds of measurements4 can be used to evaluate the performance of integer transform: transform coding gain,
distortion from DCT and frequency distortion.

Coding Gain

0

1

2

3

4

5

6

7

8

9

10

-1.5 -1 -0.5 0 0.5 1 1.5
Correlation Coefficients

C
o
d
i
n
g

G
a
i
n

(
d
B
)

T4x4
T8x8-1
T8x8-2
T8x8-3

 Figure 2. Coding gain for each ICT

For the coding gain, under the assumption of optimum quantization and optimum bit allocation, the coding gain
of an orthonormal block transform can be computed as follows:

() N
1

1N

0n

2
n

1N

0n

2
n

10N
N

1

log10G

∏

∑

−

=

−

=

σ

σ
⋅= (8)

where
2
nσ is the variance of the n-th transformed coefficient. In general the input signal can be modeled by an

AR(1) process, and the AR(1) process is characterized by the correlation coefficient ρ . The correlation coefficient

ρ is in the range [-0.95, 0.95]. Figure 2 depicts the coding gain in the same range. Table 1 lists the coding gain of

T4×4 (the 4×4 integer transform in H.264), and other three 8×8 transforms.

Table 1. Coding gain for each ICT

ρ T4×4 (dB) T8×8-1 (dB) T8×8-2 (dB) T8×8-3 (dB)
-0.95 5.0627 5.7618 5.7512 5.6904
-0.75 1.9692 2.3223 2.3926 2.3600
-0.55 0.9314 1.1071 1.1368 1.1244
-0.35 0.3583 0.4219 0.4309 0.4278
-0.15 0.0625 0.0756 0.0769 0.0766
0.15 0.0685 0.0777 0.0788 0.0788
0.35 0.4039 0.4547 0.4603 0.4607
0.55 1.1370 1.2833 1.2951 1.2974
0.75 2.6517 3.0264 3.0414 3.0471
0.95 7.5541 8.7589 8.7639 8.7730

Except for the coding gain, a transform also can be evaluated by its approximation to the DCT transform. The
squared distortion of the ICT matrices with respect to the DCT is defined as:

() 2

22

1
1 A

DCT TTdiag
N

d ⋅−= (9)

where diag(X) denotes the main diagonal of matrix X. TDCT is N×N DCT. T is the normalized ICT matrix. The
distortion reflects the signal energy that is deferred from the individual DCT subbands. In Table 2 the distortion for
each basis vector and the overall d2 distortion are given for T4×4, T8×8-1, T8×8-2, and T8×8-3.

Another distortion measure is frequency distortion measure. The first-order frequency distortion d’1 and the
second-order frequency distortion d’2 are defined as:

∑ ∑
=

≠
=

=
N

i

N

ij
j ii

ji

T

T

N
d

0 0
1 ||

||1
' (10)

and

∑ ∑
=

≠
=

=
N

i

N

ij
j ii

ji

T

T

N
d

0 0
2

2

2 ||

||1
' (11)

where T represents the normalized ICT matrices. Table 3 shows the frequency distortion for the four kinds of
transform.

Table 2. Distortion of the DCT basis vectors for each ICT

 T8×8-1 T8×8-2 T8×8-3
d2, 0 0.0000 0.0000 0.0000
d2, 1 0.0042 0.0016 0.0016
d2, 2 0.0000 0.005 0.0007
d2, 3 0.1517 0.129 0.129
d2, 4 0.0000 0.0000 0.0000
d2, 5 0.1517 0.129 0.129
d2, 6 0.0000 0.005 0.0007
d2, 7 0.0042 0.0016 0.0016
d2 0.038975 0.0339 0.032825

Table 3. The first and second-order frequency distortions of each ICT

 T4×4 T8×8-1 T8×8-2 T8×8-3
d’1 0.0355 0.1451 0.1411 0.0391
d’2 0.0025 0.0458 0.0387 0.0017

For T8×8-1, all rows have the same module, and the following quantization scale matrixes A1 and
dequantization scale matrixes B1 are used on encoder and decoder set in the proposal7 for H.264/AVC. Here,
A1[i]×B1[i]×M≈236 (i=0..5). M is the magnifier from transform, and M = 13522. scaleri,j and de_scalei,j are defined
as: scaleri,j=A1(QP%6), de_scalei,j=B1(QP%6) (i, j=0..5).

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

1392

1566

1709

1979

2211

2506

A 1

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

27

24

22

19

17

15

1B

T8×8-2 has the same feature as the 4×4 transform used in H.264 that is not all rows have the same norm. In our
implementation the following scale matrixes A2 and B2 are used at encoder/decoder for quantization and
dequantization, and A2[i, j]×B2[i, j]×Mi,j = 228. Mi,j is the multiplier from transform: scaleri,j and de_scalei,j are
defined as: scaleri,j=A1(QP%6, ri,j), de_scalei,j=B1(QP%6, ri,j) (i, j=0..5). r is mapped as follows:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

215776963427486395612193

2437864838255501107513707

2632947941645992117314926

30601096648386918135817332

34631224653937714151819329

38701386560928715172021960

A2

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

61218962727344

54194862424306

50177792222281

43153689719242

38137618717217

34121547715191

2B

For T8×8-3, the module of every row is approximated and the normalization can be implemented on the encoder.
On the encoder set, a 6×6 scale matrix A3 can be used to reach normalization and quantization, but on the decoder
set only a 6×1 scale matrix B3 is used instead that would reduce hardware memory requirement.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

14331 14916 14185 15070 13628 14764

16086 16742 15922 16915 15297 16572

18056 18793 17871 18987 17171 18601

20267 21094 20060 21312 19273 20879

22749 23677 22517 23922 21634 23436

25535 26577 25274 26851 24283 26306

A 3

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

30

27

24

21

19

17

3B

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

15131513

52545254

15131513

34303430

15131513

52545254

15131513

34303430

r

For software implementation, T8×8-2 can be implemented by using 6 shifts and 32 adds through butterfly
decomposition. T8×8-3 can be implemented by using 36 adds and 10 shifts. Figure 3 shows the butterfly
decomposition for T8×8-2.

Figure 3. Butterfly decomposition of T8×8-2

Here,

⎥
⎦

⎤
⎢
⎣

⎡

−
=

12

21
2G

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

5- 4 3- 1

3 1- 5- 4

4- 5- 1 3

1 3 4 5

4G

and G4 can be further decomposed as shown in Figure 4:

 Figure 4. Butterfly decomposition of G4

4. Experimental Results

To test the performance of proposed 8×8 transform, the JVT reference software-JM5.0c is selected as test
platform, in which an ABT scheme is implemented.

First the performance comparison between 4×4 transforms based coder and 8×8 transform coder is studied. The
test conditions are listed in Table 4. Table 5 shows the complexity ration between 8×8 transform and 4×4
transform platform. Figure 5 shows the PSNR curve of two coders. From Table 5 and the curve, we can see that
8×8 transform based coder can reach similar or even better performance compared with 4×4 based coder. But the
encoder and decoder complexity of 8×8 coder is reduced heavily, because variable block size is restricted to vary
from 16x16 to 8×8.

Figure 6 show the performance for different integer transform, including the 4×4 transform used in H.264 and
two proposed 8×8 transforms. From the curve, we can see the proposed 8×8 transform can achieve similar or even
better performance.

Table 4, Test conditions for 8×8/4×4 transform/prediction coder based on JM5.0c

 8×8 coder 4×4 coder
Transform T8×8-1 H.264 4×4

Entropy Coding CABAC CABAC
Variable Block Size MC 16x16, 16x8, 8x16,

8×8
16x16, 16x8, 8x16,
8×8, 8x4, 4x8, 4×4

RDO On On
Multiple Reference 2 reference frames 2 reference frames

Search Range +64 +64

 Table 5, Complexity comparison between 8×8/4×4 transform platform

 Harbour (8×8/4×4) Night (8×8/4×4)
Time-Ratio (encoder) 67.68% 67.68%
Time-Ratio (decoder) 89.31% 96.51%

Harbour

28

30

32

34

36

38

40

42

500 5500 10500 15500 20500 25500
Bitrate(kbps)

P
S
N
R
(
d
B
)

T8x8-1

H.264 4x4

Night

29

31

33

35

37

39

41

43

0 5000 10000 15000 20000 25000
Bitrate(kbps)

P
S
N
R
(
d
B
)

T8x8-1

H.264 4x4

Figure 5. PSNR performance comparison between 8×8/4×4 transform platform

Harbour

30

32

34

36

38

40

0 5000 10000 15000 20000 25000 30000
Bitrate(kbps)

P
S
N
R
Y
(
d
B
)

T4x4

T8x8-2

T8x8-3

Night

30

32

34

36

38

40

0 5000 10000 15000 20000
Bitrate(kbps)

P
S
N
R
(
d
B
)

T4x4
T8x8-2
T8x8-3

Figure 6. PSNR performance comparison between proposed ICT

5. Conclusion

In this paper, low complexity integer transform and its corresponding quantization scheme used in H.264 have
been studied, and based on this research, a kind of low complexity 8×8 integer transforms and corresponding
quantization scheme are implemented for HD coding. The proposed 8×8 transform based coder can achieve similar
or even better performance compared with 4×4 transform based coder. But the encoder/decoder complexity of
proposed 8×8 transform based coder is much lower than the 4×4 coder.

6. Reference

1. Trac D. Tran, “The BinDCT: Fast Multiplierless Approximation of the DCT,” IEEE Signal Processing
Letters, Vol. 7, No.6 2000. pp. 141-144.

2. Ying-jui Chen, Soontorn Oraintara, Trac D. Tran, Kevin Amaratunga, Truong Q. Nguyen, “Multiplierless
Approximation of Transforms with Adder Constraint,” IEEE Signal Processing Letters, Vol. 9, No. 11,
November 2002. pp. 344-347.

3. Ying-jui Chen, Soontorn Oraintara, Truong Q. Nguyen, “Video Compression Using Integer DCT,” ICIP 2000.
4. Mathias Wien, Shijun Sun, “ICT Comparison for Adaptive Block Transform,” VCEG-L12. 2003, Jan 01.
5. A. Hallapuro, M. Karczewicz, and H. Malvar, “Low Complexity Transform and Quantization – Part I: Basic

Implementation,” ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6 Document JVT-B038, January 2002.
6. A. Hallapuro, M. Karczewicz, and H. Malvar, “Low Complexity Transform and Quantization – Part II:

Extensions,” ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6 Document JVT-B039, January 2002.
7. M. Wien, “Clean-up and improved design consistency for ABT”, Doc. JVT-E025.
8. J.A. Michell, G. A. Ruiz, A. M. Burón, “Parallel-pipelined Architecture for 2-D ICT VLSI Implementation,”

ICIP 2003.
9. S. Gordon, D. Marpe, T. Wiegand, “Simplified Use of 8×8 Transforms – Proposal”, Doc. JVT-J029,

Waikaloa, Dec. 2003.
10. S. Gordon, D. Marpe, T. Wiegand, “Simplified Use of 8×8 Transforms – Updated Proposal & Results”, Doc

JVT-K028, 11th Meeting: Munich, Germany, 15-19 March, 2004.
11. Gisle Bjontegaard, “Coding improvement by using 4×4 blocks for motion vectors and transform”, Doc Q15-

C-23, Eibsee, Bavaria, Germany, 2-5 December, 1997.

