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ABSTRACT 

In H.264/AVC, an integer 4×4 transform is used instead of traditional float DCT transform due to its low 
complexity and exact reversibility. Combined with the normalization for the integerr transform together, a 
division-free quantization scheme is used in H.264/AVC. H.264/AVC is the most outstanding video coding 
standard at far. But at first H.264/AVC targets to low bit-rate coding, and almost all experimental results of the 
proposals for H.264/AVC are tested at low bit-rate. In the near, experimental results show that 8×8 transform can 
further improve the coding efficiency on high definition (HD) coding. In this paper a kind of 8×8 low complexity 
integer transforms are studied and corresponding quantization schemes are developed for HD coding. Compared 
with 4×4 transform/prediction based coder, the proposed 8×8 based coder can achieve better performance on HD 
coding while with much lower encoder/decoder complexity. 
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1. INTRODUCTION 

Block-based transform coding is an important video coding technique and it has been widely used in many 
international video coding standards, such as MPEG-1/2 and H.261/2/3. Spatial redundancy is attenuated as the 
block of pixels are converted into uncorrelated coefficients through the orthogonal transform. After transform the 
block energy can be denoted by a few transform coefficients and compression can be achieved by following 
quantization and entropy coding. From energy compaction viewpoint, KLT (Karhunen-Loeve transform) is the best 
transform. However, it is difficult to use KLT in image and video coding because it is signal-dependent. DCT is a 
better approximation of KLT and it is easy for implementation due to its low complexity. But float point 
multiplication in DCT is too complex and can not map integer to integer losslessly due to float approximation. In 
the past, many researches have been done to integer-friendly approximation of the float DCT, such as binDCT1,2 
and IntDCT3, where the float DCT coefficient is approximated as an integer coefficient multiplier and a right shift. 
So the DCT transform can be implemented only by using shifts and adds.  

In the development of H.264, many proposals on integer cosine transform (ICT, or integer transform: IT) have 
been talked about, such as 16x16 ICT4, 4×4 IT5, 6 and adaptive block transform (ABT)7. In the last, a low 
complexity 4×4 integer transform5, 6 is accepted. The integer transform has much virtue, such as low complexity, 
non-mismatch existing in float DCT transform etc. But, at first H.264 mainly targets to low bit rate coding and 
almost all test results are provided on QCIF/CIF resolution sequences. For low resolution coding, the variable block 
size motion prediction to 4×4 and 4×4 transform can achieve higher coding efficiency. But that would lead to 
higher encoder complexity especially for HD coding. Experimental results show that 8×8 based 
transform/prediction coder can achieve better performance on HD coding while with much lower complexity. In 
the current development of H.264, 8×8 transform9, 10 has been proposed again for professional extension coding 
(PExt). This paper makes a study on the integer transform in H.264/AVC and a kind of 8×8 integer transforms and 
corresponding quantization scheme are developed on HD coding. 

The rest of this paper is organized as follows. A study on the integer transform and corresponding quantization 
scheme in H.264/AVC is detailed in Section 2. Based on the study a kind of 8×8 integer transforms and 



corresponding quantization schemes on HD coding are discussed in Section 3. Experimental results are provided in 
Section 4. Section 5 concludes the paper. 

2. Integer Transform and Quantization in H.264 

According to DCT definition, a typical 4×4 DCT-like integer transform can be expressed as: 
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b/c usually is between 1.25~2.5. A 4×4 transform11 with a=13, b=17 and c=7 is proposed for H.264. In the last, a 
low complexity 4×4 integer transform is used in H.264 with a=1, b=2, and c=1. The forward transform is shown as 
follows: 
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As the integer transform is not a unitary matrix, Y must be normalized after transform, as follows: 
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, here 10/1,2/1 == ba .  

In H.264/AVC the transform normalization is combined with quantization and the division is replaced with 
multiplication and right shift. For a quantization parameter QP, the quantization is implemented as follows: 

LEVELi,j = round(Wi,j /Qstep) = round (Yi,j×scaleri,j /2
qbits),                                            (4) 

Where scaleri,j /qbits = Ei,j /Qstep and qbits = 15+floor(QP/6) and Qstep = 2((QP-4)/6). 

The dequantization and transform normalization on decoder is combined together in the same way as on the 
encoder as follows:  

COEFi,j = round(LEVELi,j ×Qstep ×Ei,j) = round(LEVELi,j ×de_scaleri,j /2
dqbits)                (5) 

Here, dqbits= 6-QP/6, and scaleri,j×de_scaleri,j×Mi,j=2 qbit+dqbitss. In H.264/AVC, scaleri,j=A(QP%6,r), 
de_scalei,j=B(QP%6,r) A, B is 6x3 scale matrix, shown as follows:  
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Mi,j is the magnifier from transform. r=0 and Mi,j = 16 for (i,j)={(0,0),(0,2),(2,0),(2,2)}; r=1 and Mi,j = 100 for 
(i,j)={(1,1),(1,3),(3,1),(3,3)}; r=2 and Mi,j = 40 for others. 

3. Low Complexity 8×8 Integer Transform 

Based on the study for the 4×4 integer transform, we propose a kind of low complexity 8×8 integer transform for 
HD coding. In general, an 8×8 transform can be expressed in following format 7, 8: 
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The 8×8 transform7 with a=13, b=19, c=15, d=9, e=3, f=17, g=7, is named as T8×8-1 in Figure-1. Based on (5), 
this paper proposes a kind of 8×8 integer transform for HD coding. The proposed 8×8 transform is denoted as 
b:c:d:e = 5:4:3:1. Two examples are shown in Figure 1: the first is T8×8-2 with a=1,b=5,c=4,d=3,e=1,f=2,g=1; the 
second is T8×8-3 with a=7, b=10, c=8, d=6, e=2, f=9, g=4.  
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Figure 1. Integer 8×8 transform 

Three kinds of measurements4 can be used to evaluate the performance of integer transform: transform coding gain, 
distortion from DCT and frequency distortion.  
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 Figure 2. Coding gain for each ICT 



For the coding gain, under the assumption of optimum quantization and optimum bit allocation, the coding gain 
of an orthonormal block transform can be computed as follows:   
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where 
2
nσ  is the variance of the n-th transformed coefficient. In general the input signal can be modeled by an 

AR(1) process, and the AR(1) process is characterized by the correlation coefficient ρ . The correlation coefficient 

ρ  is in the range [-0.95, 0.95]. Figure 2 depicts the coding gain in the same range. Table 1 lists the coding gain of 

T4×4 (the 4×4 integer transform in H.264), and other three 8×8 transforms.  

Table 1. Coding gain for each ICT 

ρ  T4×4 (dB) T8×8-1 (dB) T8×8-2 (dB) T8×8-3 (dB) 
-0.95 5.0627 5.7618 5.7512 5.6904 
-0.75 1.9692 2.3223 2.3926 2.3600 
-0.55 0.9314 1.1071 1.1368 1.1244 
-0.35 0.3583 0.4219 0.4309 0.4278 
-0.15 0.0625 0.0756 0.0769 0.0766 
0.15 0.0685 0.0777 0.0788 0.0788 
0.35 0.4039 0.4547 0.4603 0.4607 
0.55 1.1370 1.2833 1.2951 1.2974 
0.75 2.6517 3.0264 3.0414 3.0471 
0.95 7.5541 8.7589 8.7639 8.7730 

Except for the coding gain, a transform also can be evaluated by its approximation to the DCT transform. The 
squared distortion of the ICT matrices with respect to the DCT is defined as: 
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where diag(X) denotes the main diagonal of matrix  X. TDCT is N×N DCT. T is the normalized ICT matrix. The 
distortion reflects the signal energy that is deferred from the individual DCT subbands. In Table 2 the distortion for 
each basis vector and the overall d2 distortion are given for T4×4, T8×8-1, T8×8-2, and T8×8-3. 

Another distortion measure is frequency distortion measure. The first-order frequency distortion d’1 and the 
second-order frequency distortion d’2 are defined as: 
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where T represents the normalized ICT matrices. Table 3 shows the frequency distortion for the four kinds of 
transform. 



Table 2. Distortion of the DCT basis vectors for each ICT 

 T8×8-1 T8×8-2 T8×8-3 
d2, 0 0.0000 0.0000 0.0000 
d2, 1 0.0042 0.0016 0.0016 
d2, 2 0.0000 0.005 0.0007 
d2, 3 0.1517 0.129 0.129 
d2, 4 0.0000 0.0000 0.0000 
d2, 5 0.1517 0.129 0.129 
d2, 6 0.0000 0.005 0.0007 
d2, 7 0.0042 0.0016 0.0016 
d2 0.038975 0.0339 0.032825 

Table 3. The first and second-order frequency distortions of each ICT 

 T4×4 T8×8-1 T8×8-2 T8×8-3 
d’1 0.0355 0.1451 0.1411 0.0391 
d’2 0.0025 0.0458 0.0387 0.0017 

For T8×8-1, all rows have the same module, and the following quantization scale matrixes A1 and 
dequantization scale matrixes B1 are used on encoder and decoder set in the proposal7 for H.264/AVC. Here, 
A1[i]×B1[i]×M≈236 (i=0..5). M is the magnifier from transform, and M = 13522. scaleri,j  and de_scalei,j are defined 
as: scaleri,j=A1(QP%6), de_scalei,j=B1(QP%6) (i, j=0..5). 
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T8×8-2 has the same feature as the 4×4 transform used in H.264 that is not all rows have the same norm. In our 
implementation the following scale matrixes A2 and B2 are used at encoder/decoder for quantization and 
dequantization, and A2[i, j]×B2[i, j]×Mi,j = 228. Mi,j is the multiplier from transform: scaleri,j  and de_scalei,j are 
defined as: scaleri,j=A1(QP%6, ri,j), de_scalei,j=B1(QP%6, ri,j) (i, j=0..5). r is mapped as follows: 
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For T8×8-3, the module of every row is approximated and the normalization can be implemented on the encoder. 
On the encoder set, a 6×6 scale matrix A3 can be used to reach normalization and quantization, but on the decoder 
set only a 6×1 scale matrix B3 is used instead that would reduce hardware memory requirement. 
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For software implementation, T8×8-2 can be implemented by using 6 shifts and 32 adds through butterfly 
decomposition. T8×8-3 can be implemented by using 36 adds and 10 shifts. Figure 3 shows the butterfly 
decomposition for T8×8-2.  

 

Figure 3. Butterfly decomposition of T8×8-2 
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and G4 can be further decomposed as shown in Figure 4: 

 

 Figure 4. Butterfly decomposition of G4 

4. Experimental Results 

To test the performance of proposed 8×8 transform, the JVT reference software-JM5.0c is selected as test 
platform, in which an ABT scheme is implemented.  

First the performance comparison between 4×4 transforms based coder and 8×8 transform coder is studied. The 
test conditions are listed in Table 4. Table 5 shows the complexity ration between 8×8 transform and 4×4 
transform platform. Figure 5 shows the PSNR curve of two coders. From Table 5 and the curve, we can see that 
8×8 transform based coder can reach similar or even better performance compared with 4×4 based coder. But the 
encoder and decoder complexity of 8×8 coder is reduced heavily, because variable block size is restricted to vary 
from 16x16 to 8×8.   



Figure 6 show the performance for different integer transform, including the 4×4 transform used in H.264 and 
two proposed 8×8 transforms. From the curve, we can see the proposed 8×8 transform can achieve similar or even 
better performance. 

Table 4, Test conditions for 8×8/4×4 transform/prediction coder based on JM5.0c 

 8×8 coder 4×4 coder 
Transform T8×8-1 H.264 4×4 

Entropy Coding CABAC CABAC 
Variable Block Size MC 16x16, 16x8, 8x16, 

8×8 
16x16, 16x8, 8x16, 
8×8, 8x4, 4x8, 4×4 

RDO On On 
Multiple Reference 2 reference frames 2 reference frames 

Search Range +64 +64 

 Table 5, Complexity comparison between 8×8/4×4 transform platform 

 Harbour (8×8/4×4) Night (8×8/4×4) 
Time-Ratio (encoder) 67.68% 67.68% 
Time-Ratio (decoder) 89.31% 96.51% 
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Figure 5. PSNR performance comparison between 8×8/4×4 transform platform 
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Figure 6. PSNR performance comparison between proposed ICT 

5. Conclusion 

In this paper, low complexity integer transform and its corresponding quantization scheme used in H.264 have 
been studied, and based on this research, a kind of low complexity 8×8 integer transforms and corresponding 
quantization scheme are implemented for HD coding. The proposed 8×8 transform based coder can achieve similar 
or even better performance compared with 4×4 transform based coder. But the encoder/decoder complexity of 
proposed 8×8 transform based coder is much lower than the 4×4 coder.  



6. Reference 

1. Trac D. Tran, “The BinDCT: Fast Multiplierless Approximation of the DCT,” IEEE Signal Processing 
Letters, Vol. 7, No.6 2000. pp. 141-144. 

2. Ying-jui Chen, Soontorn Oraintara, Trac D. Tran, Kevin Amaratunga, Truong Q. Nguyen, “Multiplierless 
Approximation of Transforms with Adder Constraint,” IEEE Signal Processing Letters, Vol. 9, No. 11, 
November 2002. pp. 344-347. 

3. Ying-jui Chen, Soontorn Oraintara, Truong Q. Nguyen, “Video Compression Using Integer DCT,” ICIP 2000. 
4. Mathias Wien, Shijun Sun, “ICT Comparison for Adaptive Block Transform,” VCEG-L12. 2003, Jan 01. 
5. A. Hallapuro, M. Karczewicz, and H. Malvar, “Low Complexity Transform and Quantization – Part I: Basic 

Implementation,” ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6 Document JVT-B038, January 2002. 
6. A. Hallapuro, M. Karczewicz, and H. Malvar, “Low Complexity Transform and Quantization – Part II: 

Extensions,” ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6 Document JVT-B039, January 2002. 
7. M. Wien, “Clean-up and improved design consistency for ABT”, Doc. JVT-E025. 
8. J.A. Michell, G. A. Ruiz, A. M. Burón, “Parallel-pipelined Architecture for 2-D ICT VLSI Implementation,” 

ICIP 2003. 
9. S. Gordon, D. Marpe, T. Wiegand, “Simplified Use of 8×8 Transforms – Proposal”, Doc. JVT-J029, 

Waikaloa, Dec. 2003. 
10. S. Gordon, D. Marpe, T. Wiegand, “Simplified Use of 8×8 Transforms – Updated Proposal & Results”, Doc 

JVT-K028, 11th Meeting: Munich, Germany, 15-19 March, 2004. 
11. Gisle Bjontegaard, “Coding improvement by using 4×4 blocks for motion vectors and transform”, Doc Q15-

C-23,  Eibsee, Bavaria, Germany, 2-5 December, 1997. 


