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Av. Antônio Carlos, 6627, Caixa Postal 702, 30123-970, Belo Horizonte-MG, Brazil.

E-mail: lgfarah@gmail.com

Hongwei Wang
Faculty of Science, Xi’an Jiaotong University

Xi’an 710049, P.R.China

and

Department of Mathematics, Xinxiang College

Xinxiang 453003, P.R.China.

E-mail: wang.hw@stu.xjtu.edu.cn

Abstract. We show that the Cauchy problem for the defocusing generalized
Boussinesq equation utt − uxx + uxxxx − (|u|2ku)xx = 0, k ≥ 1, on the real
line is globally well-posed in Hs(R) for s > 1− (1/3k). To this end we use the
I-method, introduced by J. Colliander, M. Keel, G. Staffilani, H. Takaoka and
T. Tao [8, 9], to define a modification of the energy functional that is almost
conserved in time. Our result extends the previous one obtained by Farah and
Linares [16] for the case k = 1.

1. Introduction

We study the following initial value problem for a defocussing generalized Boussi-
nesq equation

{
utt − uxx + uxxxx − (|u|2ku)xx = 0, k ≥ 1, x ∈ R, t > 0,
u(x, 0) = φ(x); ∂tu(x, 0) = ψx(x).

(1)

Equations of this type model a large rang of physical phenomena such as disper-
sive wave propagation, nonlinear strings and shape-memory alloys (see, for instance,
Boussinesq [6], Zakharov [28] and Falk et al [12]).

Natural spaces to study the initial value problem above are the classical Sobolev
spaces Hs(R), s ∈ R, which are defined via the spacial Fourier transform

f̂(ξ) ≡
∫

R

e−ixξf(x)dx,

as the completion of the Schwarz class S(R) with respect to the norm

‖f‖Hs(R) = ‖〈ξ〉sf̂‖L2(R)

where 〈ξ〉 = 1 + |ξ|.

0Mathematical subject classification: 35B30, 35Q55, 35Q72.
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2 GENERALIZED BOUSSINESQ EQUATION

Given initial datas (φ, ψ) ∈ Hs(R)×Hs−1(R) and a positive time T > 0, we say
that a function u : R × [0, T ] → R is a real solution of (1) if u ∈ C([0, T ];Hs(R))
and u satisfies the integral equation

u(t) = Vc(t)φ+ Vs(t)ψx +

∫ t

0

Vs(t− t′)(|u|2ku)xx(t′)dt′, (2) INT

where the two operators that constitute the free evolution are defined via Fourier
transform by the formulas

V̂c(t)φ(ξ) =
eit

√
ξ2+ξ4 + e−it

√
ξ2+ξ4

2
φ̂(ξ)

V̂s(t)ψx(ξ) =
eit

√
ξ2+ξ4 − e−it

√
ξ2+ξ4

2i
√
ξ2 + ξ4

ψ̂x(ξ).

In the case that T can be taken arbitrarily large, we shall say the solution is
global-in-time. Here, we focus our attention in this case.

Concerning the local well-posedness question, several results have been obtained
in the last years for the generalized Boussinesq equation (1) ( see Bona and Sachs
[3], Tsutsumi and Matahashi [27], Linares [22] and Farah [14, 15]). As far as we
know, one has local well-posedness in Hs(R) for all s > 1/2− 1/k [14]. The same
holds for the focusing case, that is, equation (1) with positive sign in front of the
nonlinearity. Note that this is exactly the same range obtained by Cazenave and
Weissler[7] for the nonlinear Schrödinger equation

iut + uxx − (|u|2ku) = 0.

We should point out that, up to now, there is no result addressing the ill-posedness
question for the equation (1) with general k, so it is an interesting open problem.

Next we turn attention to the global-in-time well-posedness problem. It is well
know that generalized Boussinesq equation enjoy the following conserved energy

E(u)(t) =
1

2
‖u(t)‖2H1 +

1

2
‖(−∆)−

1
2 ∂tu(t)‖2L2 +

1

2k + 2
‖u(t)‖2k+2

L2k+2. (3) EC

The local theory proved in [22] together with this conserved quantity immediately
yield global-in-time well-posedness of (1) for initial data (φ, ψ) ∈ H1(R) × L2(R).
We should mention that the situation is very different in the focusing case: solutions
may blow-up in finite time for arbitrary initial data (φ, ψ) ∈ H1(R) × L2(R), see
for instance Liu [23] and Angulo and Scialom [1]. We will not deal with this case
in present work.

Our principal aim in the present work is to loosen the regularity requirements on
the initial data which ensure global-in-time solutions for the initial value problem
(1). This question have been already investigated by Farah and Linares [16] in the
particular case where k = 1. Their approach were based on the I-method, invented
by the I-team: Colliander, Keel, Staffilani, Takaoka and Tao. Although for the
generalized Boussinesq equation (1) scaling argument does not work and there is
no conservation law at level L2, we also successfully applied this method, in its first
generation, obtaining global solutions in Hs(R) with s < 1 for all k ≥ 1.

We shall mention that there exists other refined versions of the I-method also
introduced by the I-team in the context of nonlinear dispersive equations (see,
for instance, [9] and [11]). This approaches have been applied for the Nonlinear
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Schödinger equation and generalized KdV equation

∂tu+ ∂3xu+ ∂x(u
k+1) = 0,

sometimes leading to sharp global results [9]. However, since the generalized Boussi-
nesq equation (1) has two derivatives in time, it is not clear whether this refined
approachs can be use to improve our global result stated in Theorem 1.1 below.

The basic idea behind the I-method is the following: when (φ, ψ) ∈ Hs(R) ×
Hs−1(R) with s < 1 in (1), the norm ‖ψ‖2H1 could be infinity, and so the conser-
vation law (3) is meaningless. To overcome this difficulty, we introduce a modified
energy functional which is also defined for less regular functions. Unfortunately,
this new functional is not strictly conserved, but we can show that it is almost
conserved in time. When one is able to control its growth in time explicitly, this
allows to iterate a modified local existence theorem to continue the solution to any
time T .

Now we state the main result of this paper.

T1 Theorem 1.1. The initial value problem (1) is globally well-posed in Hs(R) for all

1− 1

3k
< s < 1. Moreover the solution satisfies

sup
t∈[0,T ]

{
‖u(t)‖2Hs + ‖(−∆)−

1
2 ∂tu(t)‖2Hs−1

}
≤ C(1 + T )

1−s
6ks−6k+2+ (4) pb

where the constant C depends only on s, ‖φ‖Hs and ‖ψ‖Hs−1 .

The plan of this paper is as follows. In the next section we introduce some
notation and preliminaries. Section 3 describes the modified energy functional. In
Section 4, we prove the almost conservation law. Section 5 contains the variant of
local well-posedness result and the proof of the global result stated in Theorem 1.1.

2. Notations and preliminary results
S3

We use c to denote various constants depending on s. Given any positive numbers
a and b, the notation a . b means that there exists a positive constant c such that
a ≤ cb. Also, we denote a ∼ b when, a . b and b . a. We use a+ and a− to denote
a+ ε and a− ε, respectively, for arbitrarily small ε > 0.

We use ‖f‖Lp to denote the Lp(R) norm and Lq
tL

r
x to denote the mixed norm

‖f‖Lq
tL

r
x
≡
(∫

‖f‖qLr
x
dt

)1/q

with the usual modifications when q = ∞.

We define the spacetime Fourier transform u(t, x) by

ũ(τ, ξ) ≡
∫

R

∫

R

e−i(xξ+tτ)u(t, x)dtdx.

Note that the derivative ∂x is conjugated to multiplication by iξ by the Fourier
transform.

We shall also define D and J to be, respectively, the Fourier multiplier with
symbol |ξ| and 〈ξ〉 = 1+ |ξ|. Thus, the Sobolev norms Hs(R) is also given by

‖f‖Hs = ‖Jsf‖L2
x
.
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To describe our well-posedness results we define the Xs,b(R× R) spaces related
to our problem (see also Fang and Grillakis [13] and [15]).

‖F‖Xs,b(R×R) = ‖〈|τ | − γ(ξ)〉b〈ξ〉sF̃‖L2
ξ,τ
,

where γ(ξ) ≡
√
ξ2 + ξ4.

These kind spaces were used to systematically study nonlinear dispersive wave
problems by Bourgain [4] and Kenig, Ponce and Vega [19, 20]. Klainerman and
Machedon [21] also used similar ideas in their study of the nonlinear wave equation.
The spaces appeared earlier in the study of propagation of singularity in semilinear
wave equation in the works [26], [2] of Rauch, Reed, and M. Beals.

For any interval I we define the localized Xs,b(R× I) spaces by

‖u‖Xs,b(R×I) = inf
{
‖w‖Xs,b(R×R) : w(t) = u(t) on I

}
.

We often abbreviate ‖u‖Xs,b
and ‖u‖XI

s,b
, respectively, for ‖u‖Xs,b(R×R) and

‖u‖Xs,b(R×I).
We shall take advantage of the Strichartz estimate (see Ginibre, Tsutusumi and

Velo [17] for this inequality in the context of the Scrödinger equation. For the
spaces Xs,b defined above it follows by the argument employed by [16])

‖u‖Lq
tL

p
x
. ‖u‖X

0, 1
2
+
, where

2

q
=

1

2
− 1

p
. (5) L81

Taking p = q, we obtain the spacial case

‖u‖L6
x,t

. ‖u‖X
0, 1

2
+

(6) L8

which interpolate with the trivial estimate

‖u‖L2
x,t

. ‖u‖X0,0 (7) TE

to give

‖u‖L4
x,t

. ‖u‖X
0, 1

2
+
. (8) L6

We also use

‖u‖L∞

t L2
x
. ‖u‖X

0, 1
2
+
,

which together with Sobolev embedding gives

‖u‖L∞

x,t
. ‖u‖X 1

2
+, 1

2
+
. (9) LI

We also have the following refined Strichartz estimate in the case of differing
frequencies (see [16], Bourgain [5]).

L3 Lemma 2.1. Let ψ1, ψ2 ∈ X0, 12+
be supported on spatial frequencies |ξi| ∼ Ni,

i = 1, 2. If |ξ1| . min {|ξ1 − ξ2|, |ξ1 + ξ2|} for all ξi ∈ supp(ψ̂i), i = 1, 2, then

‖(D
1
2
x ψ1)ψ2‖L2

x,t
. ‖ψ1‖Xδ

0, 1
2
+

‖ψ2‖Xδ

0, 1
2
+

. (10) GRU

Inequalities of this kind have been also obtained under the assumption |ξ2| ≫
|ξ1| for both Nonlinear Schrödinger equation and KdV equation (see Ozawa and
Tsutsumi [24], Grünrock [18] and also [5]). Note that this relation implies the
hypothesis of the above lemma.
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3. Modified energy functional

In this section we brifly describe the I-method scheme. Given s < 1 and a
parameter N ≫ 1, define the multiplier operator

ÎNf(ξ) ≡ mN (ξ)f̂(ξ),

where the multiplier mN (ξ) is smooth, radially symmetric, nondecreasing in |ξ| and

mN (ξ) =





1 , if |ξ| ≤ N,(
N

|ξ|

)1−s

, if |ξ| ≥ 2N.

To simplify the notation, we omit the dependence of N in IN and denote it only
by I. Note that the operator I is smooth of order 1− s. Indeed, we have

‖u‖Hs0 ≤ c‖Iu‖Hs0+1−s ≤ cN1−s‖u‖Hs0 . (11) smo

We can apply the operator I in the equation (1), obtaining the following modified
equation

{
Iutt − Iuxx + Iuxxxx − I(|u|2ku)xx = 0, x ∈ R, t > 0,
Iu(x, 0) = Iφ(x); ∂tIu(x, 0) = Iψx(x).

(12)

Moreover, applying the operator (−∆)−
1
2 to the above equation (12), multiplying

the result by (−∆)−
1
2 ∂tIu and then integrating by parts with respect to x, we obtain

1

2

d

dt

(
‖Iu(t)‖2H1 + ‖(−∆)−

1
2 ∂tIu(t)‖2L2

)
+ 〈I

(
|u|2ku

)
, ∂tIu〉 = 0.

On the other hand,

d

dt
‖Iu(t)‖2k+2

L2k+2 = (2k + 2)

∫

R

|Iu|2kIu∂tIu.

Therefore
d

dt
E(Iu)(t) = 〈|Iu|2kIu− I

(
|u|2ku

)
, ∂tIu〉. (13) ACL

By the Fundamental Theorem of Calculus, we have

E(Iu)(δ)− E(Iu)(0) =

∫ δ

0

d

dt
E(Iu)(t′)dt′. (14) FTC

Therefore, to control the growth of E(Iu)(t) we need to understand how the
quantity (13) varies in time.

4. Almost conservation law

In this section we will establish estimates showing that the quantity E(Iu)(t) is
almost conserved in time.

p4.1 Proposition 4.1. Let s > 1/2, N ≫ 1 and Iu be a solution of (12) on [0, δ] in
the sense of Theorem 5.1. Then the following estimate holds

|E(Iu)(δ)− E(Iu)(0)| 6 CN−2+‖Iu‖2k+1
X

1, 1
2
+
‖(−△)−

1
2 ∂tIu‖Xδ

0, 1
2
+

. (15) CC
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Before proceeding to the proof of the above proposition, we would like to make
an interesting remark. The exponent −2+ on the right hand side of (15) is directly
tied with the restriction s > 1− (1/3k) in our main theorem. If one could replace
the increment N−2+ by N−α+ for some α > 0 the argument we give in Section 5
would imply global well-posedness of (1) for all s > 1− (α/6k).

Proof. Applying the the Parseval formula to identity (14) and using (13), we
have

E(Iu)(δ)− E(Iu)(0) =

=

∫ δ

0

∫
∑2k+2

i=1 ξi=0

(
1− m(ξ2 + ξ3 + · · ·+ ξ2k+2)

m(ξ2)m(ξ3) · · ·m(ξ2k+2)

)
̂∂tIu(ξ1)Îu(ξ2) · · · ̂Iu(ξ2k+2).

Therefore, our aim is to obtain the following inequality

Term 6 N−2+‖Iφ1‖Xδ

0, 1
2
+

2k+2∏

i=2

‖Iφi‖Xδ

1, 1
2
+

,

where

Term ≡
∣∣∣∣∣

∫ δ

0

∫
∑2k+2

i=1 ξi=0

(
1− m(ξ2 + ξ3 + · · ·+ ξ2k+2)

m(ξ2)m(ξ3) · · ·m(ξ2k+2)

)
̂∂tIu(ξ1)Îu(ξ2) · · · ̂Iu(ξ2k+2)

∣∣∣∣∣

and ∗ denotes integration over
∑2k+2

i=1 ξi = 0.
We estimate Term as follows. Without loss of generality, we assume the Fourier

transforms of all these functions to be nonnegative. First, we bound the symbol
in the parentheses pointwise in absolute value, according to the relative sizes of
the frequencies involved. After that, the remaining integrals are estimated using
Plancherel formula, Hölder’s inequality and Lemma 2.1. To sum over the dyadic
pieces at the end we need to have extra factors N0−

j , j = 1, · · · , 2k+2, everywhere.
We decompose the frequencies ξj , j = 1, · · · , 2k + 2 into dyadic blocks Nj . By

the symmetry of the multiplier

1− m(ξ2 + ξ3 + · · ·+ ξ2k+2)

m(ξ2)m(ξ3) · · ·m(ξ2k+2)
(16) MULT

in ξ2, ξ3, · · · , ξ2k+2, we may assume for the remainder of this proof that

N2 > N3 > · · · > N2k+2.

Also note that
∑2k+2

i=1 ξi = 0 implies N1 . N2. We now split the different fre-
quency interactions into several cases, according to the size of the parameter N in
comparison to the Ni.

Case 1: N ≫ N2.

In this case, the symbol (2) is identically zero and the desired bound holds triv-
ially.

Case 2: N2 & N ≫ N3.
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Since Σ2k+2
i=1 ξi = 0, we have here N1 ∼ N2. By the mean value theorem

∣∣∣∣
m(ξ2)−m(ξ2 + ξ3 + · · ·+ ξ2k+2)

m(ξ2)

∣∣∣∣ .
|∇m(ξ2) · (ξ3 + ξ4 + · · ·+ ξ2k+2)|

m(ξ2)
.
N3

N2
.

This pointwise bound together with Lemma 2.1 and Plancherel’s theorem yield

Term .
N1N3

N2
‖Iφ1Iφ3‖L2(R×[0,δ])‖Iφ2Iφ4‖L2(R×[0,δ])

2k+2∏

j=5

‖Iφj‖L∞(R×[0,δ])

.
N1N3

N2N
1
2
1 N

1
2
2 N2〈N3〉〈N4〉〈N5〉

1
2− · · · 〈N2k+2〉

1
2−

‖Iφ1‖Xδ

0, 1
2
+

2k+2∏

i=2

‖Iφi‖Xδ

1, 1
2
+

. N−2+N0−
max‖Iφ1‖Xδ

0, 1
2
+

2k+2∏

i=2

‖Iφi‖Xδ

1, 1
2
+

,

where in the second inequality we have used Sobolev embedding (9) to bound the
terms with j ≥ 5.

Case 3: N2 ≫ N3 & N .

We use in this instance a trivial pointwise bound on the symbol
∣∣∣∣1−

m(ξ2 + ξ3 + · · ·+ ξ2k+2)

m(ξ2)m(ξ3) · · ·m(ξ2k+2)

∣∣∣∣ .
m(ξ1)

m(ξ2)m(ξ3) · · ·m(ξ2k+2)
(17) MULT2

Since m(N1) ∼ m(N2), applying Lemma 2.1 we have

Term .
N1

m(N3)m(N4) · · ·m(N2k+2)
‖Iφ1Iφ3‖L2(R2×[0,δ])‖Iφ2Iφ4‖L2(R2×[0,δ])

2k+2∏

j=5

‖Iφj‖L∞(R×[0,δ])

.
N1

m(N3)m(N4) · · ·m(N2k+2)N
1
2
1 N

1
2
2 N2N3〈N4〉〈N5〉

1
2− · · · 〈N2k+2〉

1
2−

‖Iφ1‖Xδ

0, 1
2
+

2k+2∏

i=2

‖Iφi‖Xδ

1, 1
2
+

.
1

m(N3)N3m(N4)〈N4〉m(N5)〈N5〉
1
2− · · ·m(N2k+2)〈N2k+2〉

1
2−N2

‖Iφ1‖Xδ

0, 1
2
+

2k+2∏

i=2

‖Iφi‖Xδ

1, 1
2
+

. N−2+N0−
max‖Iφ1‖Xδ

0, 1
2
+

2k+2∏

i=2

‖Iφi‖Xδ

1, 1
2
+

.

where in the last inequality we use the fact that, for any p > 0, such that s+ p ≥ 1
the function m(x)xp is increasing and m(x)〈x〉p is bounded below, which im-

plies m(N3)N3 & m(N)N = N and m(N4)〈N4〉 & 1, m(Ni)〈Ni〉
1
2− & 1, i =

5, · · · , 2k + 2.

Case 4: N2 ∼ N3 & N and N3 ≥ N4.

The condition
∑2k+2

i=1 ξi = 0 implies N1 . N2. We again bound the multiplier
(16) pointwise by (17). To obtain the decay N−2+ we split this case into four sub-
cases.
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Case 4.(a): N4 & N and N4 ≪ N3.

From (17), (8) and Lemma 2.1, we have that

Term .
N1m(N1)

m(N2)m(N3) · · ·m(N2k+2)

∏

i={1,3}

‖Iφi‖L4(R2×[0,δ])‖Iφ2Iφ4‖L2(R2×[0,δ])

2k+2∏

j=5

‖Iφj‖L∞(R×[0,δ])

.
N1m(N1)

m(N2)m(N3) · · ·m(N2k+2)N
1
2
2 N2N3N4〈N5〉

1
2− · · · 〈N2k+2〉

1
2−

‖Iφ1‖Xδ

0, 1
2
+

2k+2∏

i=2

‖Iφi‖Xδ

1, 1
2
+

.
N0−

max

m(N2)N
3
4−
2 m(N3)N

3
4
3 m(N4)N4

‖Iφ1‖Xδ

0, 1
2
+

2k+2∏

i=2

‖Iφi‖Xδ

1, 1
2
+

. N− 5
2+N0−

max‖Iφ1‖Xδ

0, 1
2
+

2k+2∏

i=2

‖Iφi‖Xδ

1, 1
2
+

. N−2+N0−
max‖Iφ1‖Xδ

0, 1
2
+

2k+2∏

i=2

‖Iφi‖Xδ

1, 1
2
+

.

Case 4.(b): N4 & N and N4 ∼ N3.

Applying the same arguments as above

Term .
N1m(N1)

m(N2)m(N3) · · ·m(N2k+2)

4∏

i=1

‖Iφi‖L4(R2×[0,δ])

2k+2∏

j=5

‖Iφj‖L∞(R×[0,δ])

.
N1m(N1)

m(N2)m(N3) · · ·m(N2k+2)N2N3N4〈N5〉
1
2− · · · 〈N2k+2〉

1
2−

‖Iφ1‖Xδ

0, 1
2
+

2k+2∏

i=2

‖Iφi‖Xδ

1, 1
2
+

.
N0−

max

m(N2)N
2
3−
2 m(N3)N

2
3
3 m(N4)N

2
3
4

‖Iφ1‖Xδ

0, 1
2
+

2k+2∏

i=2

‖Iφi‖Xδ

1, 1
2
+

. N−2+N0−
max‖Iφ1‖Xδ

0, 1
2
+

2k+2∏

i=2

‖Iφi‖Xδ

1, 1
2
+

.

Case 4.(c): N4 ≪ N and N1 ≪ N2.

Again using the bound (17) and Lemma 2.1, we have

Term .
N1m(N1)

m(N2) · · ·m(N2k+2)
‖Iφ1Iφ2‖L2(R×[0,δ]) ‖Iφ3Iφ4‖L2(R×[0,δ])

2k+2∏

j=5

‖Iφj‖L∞(R×[0,δ])

.
N1m(N1)

m(N2)m(N3)m(N4)N
1
2
2 N

1
2
3 N2N3〈N4〉〈N5〉

1
2− · · · 〈N2k+2〉

1
2−

‖Iφ1‖Xδ

0, 1
2
+

2k+2∏

i=2

‖Iφi‖Xδ

1, 1
2
+

.
N0−

max

m(N2)N
1−
2 m(N3)N3m(N4)〈N4〉

‖Iφ1‖Xδ

0, 1
2
+

2k+2∏

i=2

‖Iφi‖Xδ

1, 1
2
+

. N−2+N0−
max‖Iφ1‖Xδ

0, 1
2
+

2k+2∏

i=2

‖Iφi‖Xδ

1, 1
2
+

.
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Case 4(d): N4 ≪ N and N1 ∼ N2 ∼ N3 & N .

In this case, we use an argument inspired by Pecher [25, Proposition 5.1]. Since∑2k+2
i=1 ξi = 0, two of the large frequencies have different sign, say, ξ1 and ξ2.

Indeed, if all have the same size, we obtain |ξ1 + ξ2 + ξ3| ≥ |ξ3| ≫ |ξ4+ · · ·+ ξ2k+2|,
a contradiction with

∑2k+2
i=1 ξi = 0). Thus,

|ξ1| ≤ |ξ1 − ξ2| ≤ 2|ξ1|

and

|ξ1 + ξ2| = |ξ3 + ξ4| ∼ |ξ1|.
Therefore, using the bound (17) and Lemma 2.1, we have

Term .
N

1
2
1 m(N1)

m(N2) · · ·m(N2k+2)

∥∥∥(D
1
2
x Iφ1)Iφ2

∥∥∥
L2

x,t

‖Iφ3Iφ4‖L2
x,t

2k+2∏

j=5

‖Iφj‖L∞(R×[0,δ])

.
N

1
2
1 m(N1)

m(N2)m(N3)m(N4)N
1
2
3 N3〈N4〉〈N5〉

1
2− · · · 〈N2k+2〉

1
2−

∥∥∥(D
1
2
x Iφ1)Iφ2

∥∥∥
L2

x,t

4∏

i=3

‖Iφi‖Xδ

1, 1
2
+

2k+2∏

j=5

‖Iφj‖Xδ

1, 1
2

.
N0−

max

m(N2)N
1−
2 m(N3)N3m(N4)〈N4〉

‖Iφ1‖Xδ

0, 1
2
+

2K+2∏

i=2

‖Iφi‖Xδ

1, 1
2
+

. N−2+N0−
max‖Iφ1‖Xδ

0, 1
2
+

2k+2∏

i=2

‖Iφi‖Xδ

1, 1
2
+

,

where we have estimated ‖(D
1
2
x Iφ1)Iφ2‖L2

x,t
via Lemma 2.1.

�

5. Global theory
GWP

Before proceeding to the proof of Theorem 1.1 we need to establish a variant of
local well-posedness result for the modified equation (12). Clearly if Iu ∈ H1(R) is
a solution of (12), then u ∈ Hs(R) is a solution of (1) in the same time interval.

Next we prove a local existence result for this modified equation. Since we do
not have scaling invariance we also need to estimate the solution existence time.
The crucial nonlinear estimate for the local existence is given in the next lemma.

NLEL Lemma 5.1. If s >
4k − 5

4(2k − 1)
, k ∈ N, then

‖|u|2ku‖Xs,0 . ‖u‖2k+1
X

s, 1
2
+
, (18) NLE

Proof. It is easy to see that, for all s > 0

〈ξ1 + · · ·+ ξ2k+1〉s . 〈ξ1〉s + · · ·+ 〈ξ2k+1〉s for all s > 0.

Thus, by duality and a Leibniz rule, (18) follows from
∣∣∣∣∣

∫

R

∫

R

Jsψ1

2k+2∏

i=2

ψidxdt

∣∣∣∣∣ .
(

2k+1∏

i=1

‖ψi‖X
s, 1

2
+

)
‖ψ2k+2‖X0,0 . (19)
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First, we use Hölder’s inequality on the left hand side of (18), taking the factors

in L6
x,t, L

12
x,t, L

4(2k−1)
x,t , · · · , L2

x,t. Thus, applying the Sobolev embedding and the
Strichartz inequality (5), we have

‖Jsψ1‖L6
x,t(R

1+1) . ‖Jsψ1‖X
0, 1

2
+

= ‖ψ1‖X
s, 1

2
+
,

‖ψ2‖L12
x,t(R

1+1) . ‖J 1
4ψ2‖L12

t L3
x(R

1+1))

. ‖J 1
4ψ2‖X

0, 1
2
+

. ‖ψ2‖X
s, 1

2
+
,

‖ψ3‖L4(2k−1)
x,t (R1+1)

. ‖J
4k−5

4(2k−1)ψ3‖
L

4(2k−1)
t L

2k−1
k−1

x (R1+1))

. ‖J
4k−5

4(2k−1)ψ3‖X
0, 1

2
+

. ‖ψ3‖X
s, 1

2
+
.

By similar arguments as the previous one above, for j = 4, 5, · · · , 2k + 1, we
obtain

‖ψj‖L4(2k−1)
x,t (R1+1)

. ‖ψj‖X
s, 1

2
+
.

Finally, applying the trivial estimate (7) we have

‖ψ2k+2‖L2
tL

2
x
6 ‖ψ2k+2‖X0,0 .

Therefore, the above inequalities together with the fact that
1

4
<

4k − 5

2(2k − 1)
<

1

2
for all k > 2 yield (18).

�

Remark 5.1. It should be interesting to prove inequality (18) for s > 1/2− 1/k.
As a consequence, one can recover all the well known range of existence for the local
theory given in Farah [14] in terms of the Xs,b spaces.

Applying the interpolation lemma (see [10], Lemma 12.1) to (18) we obtain

‖I(|u|2ku)‖X1,0 . ‖u‖2k+1
X

1, 1
2
+
.

where the implicit constant is independent of N . Now standard arguments invoking
the contraction-mapping principle give the following variant of local well posedness.

t3.2 Theorem 5.1. Assume s < 1, (φ, ψ) ∈ Hs(R) × Hs−1(R) be given. Then there
exists a positive number δ such that IVP (12) has a unique local solution Iu ∈
C([0, δ], H1(R)) such that

max{‖(−∆)−
1
2 ∂tIu‖Xδ

0, 1
2
+

, ‖Iu‖Xδ

1, 1
2
+

} 6 C(‖Iφ‖H1 + ‖Iψ‖L2). (20)

Moreover, the existence time can be estimates by

δ
1
2− ∼

1

(‖Iφ‖H1 + ‖Iψ‖L2)2k
. (21) MDE
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We should note that the power 1
2− in (21) is also closely related to the index

s obtained in our global result. Since we need to iterate at the very end of the
method, we would like to maximize the time of existence δ (given in the above
theorem) in each step of iteration. Since the denominator in the right hand side of
(21) is very large the only way to do that is to maximize the power of δ in the left
hand side. By standards linear estimates in Xs,b spaces (see [16, Lemma 4.2]) the
best that we can obtain is 1

2−.
Now, we have all tools to prove our global result stated in Theorem 1.1.

Proof of Theorem 1.1. Let (φ, ψ) ∈ Hs(R)×Hs−1(R) with 1/2 ≤ s < 1. Our
goal is to construct a solution to (12) (and therefore to (1)) on an arbitrary time
interval [0, T ]. From the definition of the multiplier I we have

‖Iφ‖H1 ≤ cN1−s‖φ‖Hs ,

‖Iψ‖L2 ≤ cN1−s‖ψ‖Hs−1 .

Therefore, there exists c1 > 0 such that

max {‖Iφ‖H1 , ‖Iψ‖L2} ≤ c1N
1−s.

We use our local existence theorem on [0, δ], where δ
1
2− ∼ N−2k(1−s) and con-

clude

max

{
‖Iu‖Xδ

1, 1
2
+

, ‖(−∆)−
1
2 ∂tIu‖Xδ

0, 1
2
+

}
≤ c (‖Iφ‖H1 + ‖Iψ‖L2) (22)

≤ c2N
1−s. (23)

From the conservation law (3), we obtain

‖Iu(δ)‖2H1 + ‖(−∆)−
1
2 ∂tIu(δ)‖2L2 ≤ c3E(Iu(δ)). (24) CC2

On the other hand, since ‖f‖L2k+2 . ‖f‖Hs , for s >
k

2(k + 1)
(note that

k

2(k + 1)
<

1

2
), we have

E(Iu(0)) ≤ cN2(1−s) + c‖φ‖2k+2
L2k+2 ≤ c4N

2(1−s).

By the almost conservation law stated in Proposition 4.1 and (22), we have

E(Iu(δ)) ≤ E(Iu(0)) + cN−2+N4(1−s) < 2c4N
2(1−s).

We iterate this process M times obtaining

E(Iu(δ)) ≤ E(Iu(0)) + cMN−2+N4(1−s) < 2c4N
2(1−s)., (25) UB

as long as cMN−2+N4(1−s) < c4N
2(1−s), which implies that the lifetime of the

local results remains uniformly of size δ
1
2− ∼ N−2k(1−s).

Given a time T > 0, the number of iteration steps to reach this time is Tδ−1.
Therefore, to carry out Tδ−1 iterations on time intervals, before the quantity
E(Iu)(t) doubles, the following condition has to be fulfilled

N−2+N (2k+2)(1−s)Tδ−1 ≪ N2−2s. (26)

Since δ
1
2− ∼ N−2k(1−s), the condition (26) can be obtained for

T ∼ N (6ks−6k+2)−. (27) expot
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Remark 5.2. Note that the exponent of N on the right hand side of (27) is positive
provided s > 1 − (1/3k), hence the definition of N makes sense for arbitrary large
T .

Finally, we need to establish the polynomial bound (4). By our choice of N ,
relation (11) and (24) imply for T ≫ 1 that

sup
t∈[0,T ]

{
‖u(t)‖2Hs , ‖(−∆)−

1
2 ∂tu(t)‖2Hs−1

}
. E(Iu(T )) . N2(1−s) ∼ T

2(1−s)
6ks−6k+2+

which implies the polynomial bound (4).
�
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