
A PLATFORM-BASED ARCHITECTURE OF LOOP FILTER FOR AVS

Bin Sheng1 Wen Gao1, 2, 3 Di Wu1

1(Department of Computer Science and Technology, Harbin Institute of Technology, China)
2(Institute of Computing Technology, Chinese Academy of Sciences, China)

3(Graduate School of Chinese Academy of Sciences, China)
E-mail: {bsheng, wgao, dwu}@jdl.ac.cn

ABSTRACT

AVS is Chinese new audio and video coding standard, in which a
loop filter has been applied to remove blocking artifacts. A
platform-based architecture for the loop filter of AVS standard is
proposed in this paper. The advantages of column-separated
SRAM organization and two configurable matrix transposers have
been adopted to accelerate loop filtering in this architecture. The
architecture has been described in Verilog HDL, simulated with
VCS and synthesized using 0.18µm CMOS cells library by
Synopsys Design Compiler. The circuit totally costs about 38k
logic gates when the working frequency is set to 150MHz.
Simulation results show that the architecture can support real-time
loop filter of HDTV (1280x720, 60fps) AVS video. This
architecture is valuable for the hardware design of AVS CODEC.

1. INTRODUCTION

Audio Video Coding Standard Working Group of China is
finalizing a national standard for the coding of video and audio.
The new standard is known as AVS [1]. Comparing with similar
international standards such as MPEG-2 [2], MPEG-4 [3] and
H.264 [4], the advantages of AVS include higher performance,
lower complexity, lower implementation cost and sample licensing.
The functional blocks of AVS encoder and decoder are shown in
Fig. 1 and Fig. 2 respectively.

The transformation algorithm adopted by AVS is 8x8 integer
DCT (Discrete Cosine Transform). In DCT-based standards, such
as H.263 [5], MPEG-2 and MPEG-4, annoying blocking artifacts
rise when compression ratio is high. This effect is caused by the
non-overlapping nature of the block-based DCT coding and the
quantization of DCT coefficients. Nowadays, there are two kinds
of techniques to deal with the blocking artifacts, one of which is to
reduce their occurrence and the other is to remove them.

H.263 and MPEG-4 adopt OBMC (Overlapped Block
Motion Compensation) [6] to reduce the blocking artifacts.
Although OBMC works well with the blocking artifacts, its
computation requirement of encoder motion estimation is much
higher. Therefore, AVS adopts loop filter to remove blocking
artifacts and to achieve much better subjective visual effects. The
filter processing is applied after the inverse transformation and
before reconstruction of the macroblock in both decoder and
encoder, as shown in Fig. 1 and Fig. 2.

Fn

(current)

..., F’n-1
(reference)

F’n
(reconstructed)

ME

MC

Intra
prediction

Choose
Intra

prediction

Filter

T Q

T -1 Q -1

Reorder Entropy
encode

+

Inter

Intra

uF’n

-

+

+
D’n

Dn Bit
stream

P

Fig. 1 Functional Blocks of AVS Encoder

..., F’n-1
(reference)

F’n
(reconstructed)

MC

Intra
prediction

Filter T -1 Q -1 Reorder Entropy
decode

Inter

Intra

uF’n
+

+
D’n

Bit
stream

P

Fig. 2 Functional Blocks of AVS Decoder

The main application of AVS is HDTV playback. Going
alone with a higher compression ratio, the algorithms of AVS are
more complex. Its computation requirement is so high that pure
software CODEC running on an ordinary processor cannot provide
real-time encoding/decoding for HDTV 720p (1280x720, 60fps)
video. So hardware accelerators are needed. Since AVS is a very
new standard, neither hardware CODEC has been developed, nor
hardware accelerator for loop filter has been described in detail. In
this paper, we propose a platform-based loop filter accelerator,
which is valuable for the hardware design of AVS real-time
CODEC. Furthermore, the accelerator can be easily embedded into
AVS CODEC SoC (System on Chip).

The remainder of the paper is organized as follows. In
Section 2, algorithm of the loop filter applied by AVS will be
explained. We will describe the implemented architecture of loop
filter accelerator in Section 3. Simulation results and VLSI
implementation will be shown in Section 4. Finally, we will draw
a conclusion in Section 5.

2. ALGORITHM

In AVS, the transformation is 8x8 integer DCT, and the smallest
block size of motion estimation is 8x8 too. Therefore, loop filter
should be applied to all 8x8-block boundaries of a picture, except

boundaries at the edge of the picture or any boundary for which
the loop filter is disabled by a special coding flag.

In AVS standard, the processing order of loop filter is
described as follows. The loop filter is applied to the luminance
and chrominance components separately. For each macroblock,
vertical boundaries are filtered first, from left to right, and then
horizontal boundaries are filtered from top to bottom, as described
in Fig. 3. Pixels in macroblock above or left to the current one,
which may be modified by loop filter on previous macroblocks,
shall be used as input and may be further modified during the
filtering of current macroblock. Pixels, modified during filtering of
vertical boundaries, are used as input and may be further modified
during the filtering of horizontal boundaries for the same
macroblock.

1 2 34

5

6 78

(Luminance) (Chrominance)

Cb Cr

Bsh00 Bsh01

Bsh10 Bsh11 Bsh00 Bsh01 Bsh00 Bsh01

Bsv00

Bsv10

Bsv01

Bsv11

Bsv00

Bsv10

Bsv00

Bsv10

Vertical Boundary

Horizontal Boundary

Fig. 3 AVS Filtering Order of Block Boundaries (4:2:0)

Block boundary
between

block p and q

p or q is
intra coded?

p and q have different
reference pictures

|MVx(p) - MVx(q)| >= 4
or

 |MVy(p) - MVy(q)| >= 4

Bs = 2

Bs = 1 Bs = 0
(skip)

YES NO

NO

NO

YES

YES

Fig. 4 Assignment of Boundary Strength (Bs)

p2 p1 p0 q0 q1 q2

Vertical
boundary

p2

p1

p0

q0

q1

q2

Horizontal
boundary

Fig. 5 Pixels across Vertical or Horizontal Boundaries

The loop filter of AVS is conditional. Its output depends on
the boundary strength and the gradient of image samples across
the boundary. The boundary strength parameter "Bs" is assigned
as described in Fig. 4. If either of the neighboring blocks across
the boundary is intra coded, the strongest filter processing is
applied (Bs=2). Otherwise, if the two blocks have different

reference frames or different motion vector values, a medium
strength is assigned (Bs=1). When none of the previous conditions
is satisfied, the filter processing is not evoked (Bs=0). The
boundary strength of any chrominance component is same with
that of luminance component on the same boundary, as shown in
Fig.3.

Fig. 5 shows three pixels on either side of a vertical or
horizontal boundary in adjacent blocks p (p0, p1, p2) and q (q0, q1,
q2). Each filtering operation affects up to two pixels on either side
of the boundary, which is dependent on the values of Bs and two
thresholds, α and β . Here α and β are derived from two
quantization parameters (QPs) of the neighboring blocks and two
control parameters "alpha_c_offset" and "beta_offset". Only if the
following conditions are all satisfied, a group of samples from the
set {p1, p0, q0, q1} will be filtered to produce filtered output {P1,
P0, Q0, Q1}.

ββα <−<−<−≠ 01,01,00,0 qqppqpBs

(a) If 2=Bs , P0 is produced by a 3-tap linear filtering of p1,
p0 and q0, Q0 is produced by 3-tap linear filtering of q1, q0 and
p0. For luminance component, if β<− 02 pp , P1 is produced
by a 3-tap linear filtering of p1, p0 and q0. Similarly,
if β<− 02 qq , Q1 is produced by a 3-tap linear filtering of q1, q0
and p0.

(b) If 1=Bs , a 4-tap filter is used to produce filtered output
P0 and Q0. For luminance component, if β<− 02 pp , a 5-tap
filtering is used to produce filtered output P1. Similarly,
if β<− 02 qq , a 5-tap linear filtering is used to produce filtered
output Q1.

For more information about the loop filter algorithm, please
refer to [1].

3. IMPLEMENTED ARCHITECTURE

The implemented architecture of loop filter is designed as a
platform-based accelerator, which can be easily embedded into an
AVS CODEC SoC, as shown in Fig. 6.

RAM_1

Data Bus

RAM_0

Filter

Controller

External
RAM

Control Bus

MTs

Fig. 6 Proposed Loop Filter Architecture

Because the main application of AVS is HDTV playback,
the throughput of system bus is much higher than that of any other

application. Therefore, a 64-bit or even wider system data bus is
necessary. Here, we assume the system data bus is 64-bit width.
RAM_0 and RAM_1 in Fig. 6 are two on-chip SRAMs. In order to
simplify our design, RAM_0 and RAM_1 are assigned to two-port
SRAM (one read port and one write port). Before the beginning of
loop filtering for a macroblock, pixels of the macroblock and some
necessary pixels in its upper or left macroblock should be loaded
from external RAM to the on-chip SRAMs. The two on-chip
SRAMs are carefully organized, as shown in Fig. 7, to support the
parallel loop filtering on a high processing speed. The Filter
module is a configurable linear filter. The MTs module consists of
two configurable matrix transposers, which are buffers during
horizontal loop filter and transposers during vertical loop filter.
The Controller module can configure Filter by coding information
received from system control bus. It can also configure MTs and
arrange cooperation of the sub-modules.

3.1 Organization of SRAMs

Fig. 7 shows the organization of on-chip SRAM modules. The bit
width of SRAM modules is 64 bits for eight pixels, which is the
same with that of system data bus. Being consistent with the
common organization, we store eight pixels in a row of an
8x8-block as a 64-bit word. In order to accelerate horizontal loop
filtering across vertical boundaries, we store the data of adjacent
8x8-blocks in different SRAM modules, as shown in Fig. 7.
Depending on this kind of organization, we can access pixels of
neighbor 8x8-blocks needed for any horizontal loop filtering at the
same time. AVS loop filtering algorithm shows that the maximum
number of pixels needed at each side of filtering boundaries are
three. Therefore, we store only three rows of pixels for the upper
8x8-blocks, labeled as U2, U3, U4 and U5 in Fig. 7.

U3U2

L1 10

L3 32

U4

4L4

U5

5L5
RAM_0

64bits x 41words
RAM_1

64bits x 51words

1

U3

0

2

U2
U4

4

5

U5

3

L1

L3

L4

L5

Y

Cb Cr

Fig. 7 Organization of on-chip SRAMs

3.2 Loop Filtering Order

According to AVS requirements of loop filtering order, which are
presented in Section 2, we adopt the filtering order of boundaries
described in Fig. 8.

luminance chrominance

7 8
51

11 12
2 6

9
3

10
4

Fig. 8 Adopted Filtering Order of 8x8-Block Boundaries

3.3 Loop Filtering Procedure

Fig. 9 shows the implemented architecture of loop filter. The Filter
is a conditional linear filter, with six pixels input and six pixels
output (8 bits/pixel), which has been described in Section 2. MT0
and MT1 are two configurable matrix transposers, as shown in Fig.
10. One matrix transposer is a 3x8-cell array, where each cell is an
8-bit register. Each matrix transposer has two input ports (A and C)
and two output ports (B and D). Port A and B are 64-bit width.
Port C and D are 24-bit width. The input "sw" is a switcher, taking
charge of selection for data path.

(a)

(b)

Filter

MT0 MT1

'0'

Filter

MT0

MT1

'0'

'0'

'0'

MT0

MT1

'1'

'1'

from RAM_0 and RAM_1

output to RAM_0 and RAM_1

from RAM_0 or RAM_1

output to RAM_0 or RAM_1

A

B

A

B

A

B

A

B

C D

C D

SW SW

SW

SW

SW

SW

3 pixels 3 pixels

3 pixels 3 pixels

5 pixels 5 pixels

3 pixels3 pixels

3 pixels 3 pixels

8 pixels 8 pixels

8 pixels

8 pixels 8 pixels

8 pixels

8 pixels

 (a) Architecture for Horizontal Loop Filter
(b) Architecture for Vertical Loop Filter

Fig. 9 Configurable Architecture

Fig. 9 (a) is the architecture for horizontal loop filter. Firstly,
pixels are read out from RAM_0 and RAM_1, and sent to Filter
directly. Then, the filtered pixels are written to MT0 and MT1,
which are two buffers functionally. When the buffers are full,
Controller will stop reading and filtering the unfiltered pixels from
RAM_0 and RAM_1, and write back the filtered pixels in MT0
and MT1 to RAM_0 and RAM_1 respectively. MT0 and MT1 can
buffer at most three rows of 8-pixel data respectively. Therefore,
to filter a vertical boundary of an 8x8-block, the procedure of
reading (filtering) and writing should be repeated three times. For
each procedure, it takes 3 cycles to read and filter pixels, and
another 3 cycles to write them back. If the depth of the two buffers
is four rather than three, the procedure should be repeated only
twice. However, the matrix transposer must be a 4x8-cell array,
which will cost extra 128-bit register and enhance the difficulty of
place and route. Therefore, in the implemented design, we finally

used two 3x8-cell arrays as the buffer.
Fig. 9 (b) shows the architecture for vertical loop filter.

Firstly, six rows of 8-pixel data, that is three rows on each side of
a horizontal boundary, are loaded into MT0 and MT1 from
RAM_0 or RAM_1 row by row. Then, the switchers of MT0 and
MT1 are toggled and six pixels in a column (across a horizontal
boundary) are sent to Filter at a time. Filtered pixels are stored
back to MT0 and MT1 respectively. After all pixels in MT0 and
MT1 are filtered, the switchers are toggled again and the filtered
pixels are stored back to RAM_0 or RAM_1. To filter a horizontal
boundary of an 8x8-block, it takes 6 cycles to load pixels, 8 cycles
to filter, and 6 cycles to store them.

A finite state machine in Controller can arrange the order of
loop filter according to Fig. 8.

TC
00

TC
01

TC
02

TC
03

TC
10

TC
11

TC
12

TC
13

TC
20

TC
21

TC
22

TC
23

sw

TC
04

TC
05

TC
06

TC
14

TC
15

TC
16

TC
24

TC
25

TC
26

TC
07

TC
17

TC
27

A

B

C D

Fig. 10 Architecture of the Matrix Transposer

Before Loop Filtering After Loop Filtering
(QP=41, PSNR=33.241) (QP=41, PSNR=33.472)

Fig. 11 Loop Filter’s Effects

In conclusion, it takes 92 cycles to load unfiltered pixels

from external RAM to on-chip SRAM RAM_0 and RAM_1, (3+3)
x3x6=108 cycles to filter in horizontal direction, (6+8+6) x6=120
cycles to filter in vertical direction, and 92 cycles to store filtered
pixels to external RAM via system data bus. In addition, about 48
cycles are needed to load coding information. To sum up, the
number of total cycles for loop filtering each macroblock is 460.

4. SIMULATION RESULTS

We described the design mentioned above in Verilog HDL at RTL
level, which is synthesizable. According to AVS1.0 verification
model [7], a C-program model of loop filter was also developed to
generate input simulation vectors for VCS digital simulator. By
testing with eight HDTV (1280x720, 60fps) bitstreams (100
frames per bitstream), VCS simulation results show that our
Verilog code is functionally identical with the loop filter of
AVS1.0 verification model. Fig. 11 shows effects of our loop filter

on the first frame (Intra) of "Foreman" sequence. Subjective views
and PSNR values are all improved obviously.

The validated Verilog code was synthesized using 0.18µm
CMOS cells library by Synopsys Design Compiler. The circuit
totally costs about 38k logic gates when the working frequency is
set to 150MHz. Table 1 is our synthesized results. The
implemented architecture costs 460 cycles to perform loop filter
for each macroblock, which is sufficient to realize the real-time
loop filter for HDTV (1280x720, 60fps) AVS bitstreams.

Table 1 Synthesized Results

Technology 0.18µm

Working Frequency 150MHz

Gate Count
(Without SRAM) 25K

SRAM 13K

Cycles/MB 460

Capacity 1280x720 90.58fps

Data Bus Bandwidth (Mbytes/s)
1280x720 30Hz
1280x720 60Hz

158.976
317.952

5. CONCLUSIONS

In this paper, we implemented a platform-based accelerator for the
loop filter of AVS standard. Firstly, we described the algorithm of
AVS loop filter. Then the architecture was proposed. Our main
idea is to use column-separated SRAM organization and two
configurable matrix transposers to accelerate loop filtering. Finally,
we gave out simulation results. The architecture was synthesized
using 0.18µm CMOS cells library by Synopsys Design Compiler.
The synthesized results show that our design can support real-time
loop filter of HDTV (1280x720, 60fps) AVS video. The
architecture is valuable for the hardware design of AVS CODEC.

6. ACKNOWLEDGEMENT

This work has been supported by National Hi-Tech Development
Programs of China under grant No. 2003AA1Z1290.

7. REFERENCES

[1] Audio Video Coding Standard FCD Part 2: Video, Dec. 2003.
[2] ISO/IEC IS 13818, “General Coding of Moving Picture and
Associated Audio Information,” 1994.
[3] ISO/IEC FCD 14496, “Information technology – Coding of
audio-visual objects – Part 2: Visual,” July 2001.
[4] Draft ITU-T Recommendation and Final Draft International
Standard of Joint Video Specification (ITU-T Rec. H.264 |
ISO/IEC 14496-10 AVC), May 2003
[5] ITU-T, Draft ITU-T Recommendation H.263, “Video Coding
for Low Bit Rate Communication,” 1997.
[6] M.T. Orchard and G. J. Sullivan, “Overlapped Block Motion
Compensation: An Estimation-Theoretic Approach,” IEEE Trans.
Image Processing, pp. 693-699, September 1994.
[7] AVS1.0 RM5, December 2003.

