
A PLATFORM-BASED ARCHITECTURE OF LOOP FILTER FOR AVS 
 

Bin Sheng1  Wen Gao1, 2, 3  Di Wu1 
 

1(Department of Computer Science and Technology, Harbin Institute of Technology, China) 
2(Institute of Computing Technology, Chinese Academy of Sciences, China) 

3(Graduate School of Chinese Academy of Sciences, China) 
E-mail: {bsheng, wgao, dwu}@jdl.ac.cn 

 
 
 

ABSTRACT 

 
AVS is Chinese new audio and video coding standard, in which a 
loop filter has been applied to remove blocking artifacts. A 
platform-based architecture for the loop filter of AVS standard is 
proposed in this paper. The advantages of column-separated 
SRAM organization and two configurable matrix transposers have 
been adopted to accelerate loop filtering in this architecture. The 
architecture has been described in Verilog HDL, simulated with 
VCS and synthesized using 0.18µm CMOS cells library by 
Synopsys Design Compiler. The circuit totally costs about 38k 
logic gates when the working frequency is set to 150MHz. 
Simulation results show that the architecture can support real-time 
loop filter of HDTV (1280x720, 60fps) AVS video. This 
architecture is valuable for the hardware design of AVS CODEC. 
 
 
 

1. INTRODUCTION 
 
Audio Video Coding Standard Working Group of China is 
finalizing a national standard for the coding of video and audio. 
The new standard is known as AVS [1]. Comparing with similar 
international standards such as MPEG-2 [2], MPEG-4 [3] and 
H.264 [4], the advantages of AVS include higher performance, 
lower complexity, lower implementation cost and sample licensing. 
The functional blocks of AVS encoder and decoder are shown in 
Fig. 1 and Fig. 2 respectively. 

The transformation algorithm adopted by AVS is 8x8 integer 
DCT (Discrete Cosine Transform). In DCT-based standards, such 
as H.263 [5], MPEG-2 and MPEG-4, annoying blocking artifacts 
rise when compression ratio is high. This effect is caused by the 
non-overlapping nature of the block-based DCT coding and the 
quantization of DCT coefficients. Nowadays, there are two kinds 
of techniques to deal with the blocking artifacts, one of which is to 
reduce their occurrence and the other is to remove them. 

H.263 and MPEG-4 adopt OBMC (Overlapped Block 
Motion Compensation) [6] to reduce the blocking artifacts. 
Although OBMC works well with the blocking artifacts, its 
computation requirement of encoder motion estimation is much 
higher. Therefore, AVS adopts loop filter to remove blocking 
artifacts and to achieve much better subjective visual effects. The 
filter processing is applied after the inverse transformation and 
before reconstruction of the macroblock in both decoder and 
encoder, as shown in Fig. 1 and Fig. 2. 
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Fig. 1 Functional Blocks of AVS Encoder 
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Fig. 2 Functional Blocks of AVS Decoder 
 

The main application of AVS is HDTV playback. Going 
alone with a higher compression ratio, the algorithms of AVS are 
more complex. Its computation requirement is so high that pure 
software CODEC running on an ordinary processor cannot provide 
real-time encoding/decoding for HDTV 720p (1280x720, 60fps) 
video. So hardware accelerators are needed. Since AVS is a very 
new standard, neither hardware CODEC has been developed, nor 
hardware accelerator for loop filter has been described in detail. In 
this paper, we propose a platform-based loop filter accelerator, 
which is valuable for the hardware design of AVS real-time 
CODEC. Furthermore, the accelerator can be easily embedded into 
AVS CODEC SoC (System on Chip). 

The remainder of the paper is organized as follows. In 
Section 2, algorithm of the loop filter applied by AVS will be 
explained. We will describe the implemented architecture of loop 
filter accelerator in Section 3. Simulation results and VLSI 
implementation will be shown in Section 4. Finally, we will draw 
a conclusion in Section 5. 
 

2. ALGORITHM 
 
In AVS, the transformation is 8x8 integer DCT, and the smallest 
block size of motion estimation is 8x8 too. Therefore, loop filter 
should be applied to all 8x8-block boundaries of a picture, except 



boundaries at the edge of the picture or any boundary for which 
the loop filter is disabled by a special coding flag. 

In AVS standard, the processing order of loop filter is 
described as follows. The loop filter is applied to the luminance 
and chrominance components separately. For each macroblock, 
vertical boundaries are filtered first, from left to right, and then 
horizontal boundaries are filtered from top to bottom, as described 
in Fig. 3. Pixels in macroblock above or left to the current one, 
which may be modified by loop filter on previous macroblocks, 
shall be used as input and may be further modified during the 
filtering of current macroblock. Pixels, modified during filtering of 
vertical boundaries, are used as input and may be further modified 
during the filtering of horizontal boundaries for the same 
macroblock. 
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Fig. 3 AVS Filtering Order of Block Boundaries (4:2:0) 
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Fig. 4 Assignment of Boundary Strength (Bs) 
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Fig. 5 Pixels across Vertical or Horizontal Boundaries 
 

The loop filter of AVS is conditional. Its output depends on 
the boundary strength and the gradient of image samples across 
the boundary. The boundary strength parameter "Bs" is assigned 
as described in Fig. 4. If either of the neighboring blocks across 
the boundary is intra coded, the strongest filter processing is 
applied (Bs=2). Otherwise, if the two blocks have different 

reference frames or different motion vector values, a medium 
strength is assigned (Bs=1). When none of the previous conditions 
is satisfied, the filter processing is not evoked (Bs=0). The 
boundary strength of any chrominance component is same with 
that of luminance component on the same boundary, as shown in 
Fig.3. 

Fig. 5 shows three pixels on either side of a vertical or 
horizontal boundary in adjacent blocks p (p0, p1, p2) and q (q0, q1, 
q2). Each filtering operation affects up to two pixels on either side 
of the boundary, which is dependent on the values of Bs and two 
thresholds, α  and β . Here α  and β  are derived from two 
quantization parameters (QPs) of the neighboring blocks and two 
control parameters "alpha_c_offset" and "beta_offset". Only if the 
following conditions are all satisfied, a group of samples from the 
set {p1, p0, q0, q1} will be filtered to produce filtered output {P1, 
P0, Q0, Q1}. 
 

ββα <−<−<−≠ 01,01,00,0 qqppqpBs  
 

(a) If 2=Bs , P0 is produced by a 3-tap linear filtering of p1, 
p0 and q0, Q0 is produced by 3-tap linear filtering of q1, q0 and 
p0. For luminance component, if β<− 02 pp , P1 is produced 
by a 3-tap linear filtering of p1, p0 and q0. Similarly, 
if β<− 02 qq , Q1 is produced by a 3-tap linear filtering of q1, q0 
and p0. 

(b) If 1=Bs , a 4-tap filter is used to produce filtered output 
P0 and Q0. For luminance component, if β<− 02 pp , a 5-tap 
filtering is used to produce filtered output P1. Similarly, 
if β<− 02 qq , a 5-tap linear filtering is used to produce filtered 
output Q1. 

For more information about the loop filter algorithm, please 
refer to [1]. 
 

3. IMPLEMENTED ARCHITECTURE 
 
The  implemented architecture of loop filter is designed as a 
platform-based accelerator, which can be easily embedded into an 
AVS CODEC SoC, as shown in Fig. 6.  
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Fig. 6 Proposed Loop Filter Architecture 
 

Because the main application of AVS is HDTV playback, 
the throughput of system bus is much higher than that of any other 



application. Therefore, a 64-bit or even wider system data bus is 
necessary. Here, we assume the system data bus is 64-bit width. 
RAM_0 and RAM_1 in Fig. 6 are two on-chip SRAMs. In order to 
simplify our design, RAM_0 and RAM_1 are assigned to two-port 
SRAM (one read port and one write port). Before the beginning of 
loop filtering for a macroblock, pixels of the macroblock and some 
necessary pixels in its upper or left macroblock should be loaded 
from external RAM to the on-chip SRAMs. The two on-chip 
SRAMs are carefully organized, as shown in Fig. 7, to support the 
parallel loop filtering on a high processing speed. The Filter 
module is a configurable linear filter. The MTs module consists of 
two configurable matrix transposers, which are buffers during 
horizontal loop filter and transposers during vertical loop filter. 
The Controller module can configure Filter by coding information 
received from system control bus. It can also configure MTs and 
arrange cooperation of the sub-modules. 
 
3.1 Organization of SRAMs 
 
Fig. 7 shows the organization of on-chip SRAM modules. The bit 
width of SRAM modules is 64 bits for eight pixels, which is the 
same with that of system data bus. Being consistent with the 
common organization, we store eight pixels in a row of an 
8x8-block as a 64-bit word. In order to accelerate horizontal loop 
filtering across vertical boundaries, we store the data of adjacent 
8x8-blocks in different SRAM modules, as shown in Fig. 7. 
Depending on this kind of organization, we can access pixels of 
neighbor 8x8-blocks needed for any horizontal loop filtering at the 
same time. AVS loop filtering algorithm shows that the maximum 
number of pixels needed at each side of filtering boundaries are 
three. Therefore, we store only three rows of pixels for the upper 
8x8-blocks, labeled as U2, U3, U4 and U5 in Fig. 7. 
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Fig. 7 Organization of on-chip SRAMs 
 
3.2 Loop Filtering Order 
 
According to AVS requirements of loop filtering order, which are 
presented in Section 2, we adopt the filtering order of boundaries 
described in Fig. 8. 
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Fig. 8 Adopted Filtering Order of 8x8-Block Boundaries 
 

3.3 Loop Filtering Procedure 
 
Fig. 9 shows the implemented architecture of loop filter. The Filter 
is a conditional linear filter, with six pixels input and six pixels 
output (8 bits/pixel), which has been described in Section 2. MT0 
and MT1 are two configurable matrix transposers, as shown in Fig. 
10. One matrix transposer is a 3x8-cell array, where each cell is an 
8-bit register. Each matrix transposer has two input ports (A and C) 
and two output ports (B and D). Port A and B are 64-bit width. 
Port C and D are 24-bit width. The input "sw" is a switcher, taking 
charge of selection for data path. 
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 (a) Architecture for Horizontal Loop Filter 
(b) Architecture for Vertical Loop Filter 

Fig. 9 Configurable Architecture 
 

Fig. 9 (a) is the architecture for horizontal loop filter. Firstly, 
pixels are read out from RAM_0 and RAM_1, and sent to Filter 
directly. Then, the filtered pixels are written to MT0 and MT1, 
which are two buffers functionally. When the buffers are full, 
Controller will stop reading and filtering the unfiltered pixels from 
RAM_0 and RAM_1, and write back the filtered pixels in MT0 
and MT1 to RAM_0 and RAM_1 respectively. MT0 and MT1 can 
buffer at most three rows of 8-pixel data respectively. Therefore, 
to filter a vertical boundary of an 8x8-block, the procedure of 
reading (filtering) and writing should be repeated three times. For 
each procedure, it takes 3 cycles to read and filter pixels, and 
another 3 cycles to write them back. If the depth of the two buffers 
is four rather than three, the procedure should be repeated only 
twice. However, the matrix transposer must be a 4x8-cell array, 
which will cost extra 128-bit register and enhance the difficulty of 
place and route. Therefore, in the implemented design, we finally 



used two 3x8-cell arrays as the buffer. 
Fig. 9 (b) shows the architecture for vertical loop filter. 

Firstly, six rows of 8-pixel data, that is three rows on each side of 
a horizontal boundary, are loaded into MT0 and MT1 from 
RAM_0 or RAM_1 row by row. Then, the switchers of MT0 and 
MT1 are toggled and six pixels in a column (across a horizontal 
boundary) are sent to Filter at a time. Filtered pixels are stored 
back to MT0 and MT1 respectively. After all pixels in MT0 and 
MT1 are filtered, the switchers are toggled again and the filtered 
pixels are stored back to RAM_0 or RAM_1. To filter a horizontal 
boundary of an 8x8-block, it takes 6 cycles to load pixels, 8 cycles 
to filter, and 6 cycles to store them. 

A finite state machine in Controller can arrange the order of 
loop filter according to Fig. 8. 
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Fig. 10 Architecture of the Matrix Transposer 
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Fig. 11 Loop Filter’s Effects 

 
In conclusion, it takes 92 cycles to load unfiltered pixels 

from external RAM to on-chip SRAM RAM_0 and RAM_1, (3+3) 
x3x6=108 cycles to filter in horizontal direction, (6+8+6) x6=120 
cycles to filter in vertical direction, and 92 cycles to store filtered 
pixels to external RAM via system data bus. In addition, about 48 
cycles are needed to load coding information. To sum up, the 
number of total cycles for loop filtering each macroblock is 460. 
 

4. SIMULATION RESULTS 
 
We described the design mentioned above in Verilog HDL at RTL 
level, which is synthesizable. According to AVS1.0 verification 
model [7], a C-program model of loop filter was also developed to 
generate input simulation vectors for VCS digital simulator. By 
testing with eight HDTV (1280x720, 60fps) bitstreams (100 
frames per bitstream), VCS simulation results show that our 
Verilog code is functionally identical with the loop filter of 
AVS1.0 verification model. Fig. 11 shows effects of our loop filter 

on the first frame (Intra) of "Foreman" sequence. Subjective views 
and PSNR values are all improved obviously. 

The validated Verilog code was synthesized using 0.18µm 
CMOS cells library by Synopsys Design Compiler. The circuit 
totally costs about 38k logic gates when the working frequency is 
set to 150MHz. Table 1 is our synthesized results. The 
implemented architecture costs 460 cycles to perform loop filter 
for each macroblock, which is sufficient to realize the real-time 
loop filter for HDTV (1280x720, 60fps) AVS bitstreams. 
 

Table 1 Synthesized Results 

Technology 0.18µm 

Working Frequency 150MHz 

Gate Count 
(Without SRAM) 25K 

SRAM 13K 

Cycles/MB 460 

Capacity 1280x720 90.58fps 

Data Bus Bandwidth (Mbytes/s) 
1280x720 30Hz 
1280x720 60Hz 

 
158.976 
317.952 

 
5. CONCLUSIONS 

 
In this paper, we implemented a platform-based accelerator for the 
loop filter of AVS standard. Firstly, we described the algorithm of 
AVS loop filter. Then the architecture was proposed. Our main 
idea is to use column-separated SRAM organization and two 
configurable matrix transposers to accelerate loop filtering. Finally, 
we gave out simulation results. The architecture was synthesized 
using 0.18µm CMOS cells library by Synopsys Design Compiler. 
The synthesized results show that our design can support real-time 
loop filter of HDTV (1280x720, 60fps) AVS video. The 
architecture is valuable for the hardware design of AVS CODEC. 
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