An Explicit Solution to the Chessboard Pebbling Problem

Qiang Zhen* and Charles Knessl ${ }^{\dagger}$

September 24, 2010

Abstract

We consider the chessboard pebbling problem analyzed by Chung, Graham, Morrison and Odlyzko [3]. We study the number of reachable configurations $G(k)$ and a related double sequence $G(k, m)$. Exact expressions for these are derived, and we then consider various asymptotic limits.

Keywords: Chessboard pebbling; reachable configurations; asymptotics.

1 Introduction

The following problem has attracted some attention recently. We begin with an infinite chessboard, which consists of the lattice points $\{(i, j): i, j \geq 0\}$ in the first quadrant. We

[^0]refer to an individual lattice point as a "cell". We start with a single pebble placed at $(0,0)$. The first "step" consists of removing this pebble and placing two pebbles at the cells $(0,1)$ and (1,0). At each subsequent step we remove a pebble at cell (i, j) and place two pebbles at cells $(i+1, j)$ and $(i, j+1)$, provided that the latter two cells are unoccupied. We consider all possible choices of (i, j). After k steps, there will be a total of $k+1$ pebbles on the board, in various arrangements or configurations.

We let $G(k)$ be the total number of reachable configurations with k pebbles. We define the level sets $L(l)=\{(i, j): i+j=l\}$, so that $\cup_{l \geq 0} L(l)$ is the entire quadrant. The original problem, posed by Kontsevich [1], was to show that $L(1) \cup L(2) \cup L(3)$ is unavoidable, in that such a set must contain at least one pebble for any reachable configuration. A partial analysis of this fact was published thereafter by Khodulev [2]. The first complete proof was given by Chung, Graham, Morrison and Odlyzko [3]. It was also shown in [3] that $L(1) \cup L(2)$ is an unavoidable set, as well as certain properties relating to the number of unavoidable sets with k pebbles, including the geometric growth rate of this quantity as $k \rightarrow \infty$. In [4], Knessl obtained some further asymptotic properties relating to the enumeration of unavoidable sets. Various extensions of this problem are studied by Eriksson [5] and Warren [6].

Suppose we allow more than one pebble per cell and start with an initial configuration of one pebble in cells $(0, m+1)$ and $(m+1,0)$ and two pebbles in each of the cells $(1, m),(2, m-$ $1), \ldots,(m-1,2),(m, 1)$. Thus there are a total of $2 m+2$ pebbles in the level set $L(m+1)$, and we assume that $L(M)$ are empty for $M>m+1$. Again the pebble at (i, j) can only be moved if the cells $(i+1, j)$ and $(i, j+1)$ are empty. Let the number of reachable configurations corresponding to this starting arrangement be denoted by $G(k, m)$. In [3], a recurrence relation for $G(k, m)$ is derived, and it is shown that, for $k \geq 2, G(k, 0)=G(k)$. It is also established that as $k \rightarrow \infty, G(k) \sim c_{*} a^{k}$ where $a=2.321642199494 \cdots$ and $c_{*}=0.12268707 \cdots$. These constants are characterized in terms of a continued fraction representation of the generating
function of $G(k)$. In [7], Knessl obtained a more explicit analytic characterization of the growth rate a of the number of reachable configurations, and showed that this constant can be obtained by solving a transcendental equation that involves two series, each resembling Jacobi elliptic functions. Other asymptotic properties of $G(k, m)$ for k and/or $m \rightarrow \infty$ are also established in [7].

In this paper, we derive an exact expression for the number of reachable configurations $G(k)$ and $G(k, m)$. Using the exact expression, we recover the asymptotic results given in [7], and obtain more explicit analytic expressions for each asymptotic scale. These asymptotic scales are $k \rightarrow \infty$ with $m=O(1) ; k$ and $m \rightarrow \infty$ simultaneously with $2 k / m^{2}>1$; and $k, m \rightarrow \infty$ with $l=k-m(m+5) / 2=O(1)$.

The paper is organized as follows. In Section 2, we state the basic equations and summarize the main results for $G(k, m)$ in Theorem 2.1 and 2.2 , and for $G(k)$ in Corollary 2.1 and 2.2. In Section 3, we provide brief derivations.

2 Summary of results

It is shown in [3] that $G(k, m)$ satisfies the following recurrence equations:

$$
\begin{align*}
G(k, 0) & =2 G(k-1,0)+G(k, 1)+\delta(k, 2) \tag{2.1}\\
G(k, 1) & =G(k-3,0)+2 G(k-2,1)+G(k-1,2)+G(k-4,1) \tag{2.2}\\
G(k, m) & =G(k-m-2, m-1)+2 G(k-m-1, m)+G(k-m, m+1), m \geq 2 \tag{2.3}
\end{align*}
$$

Here $\delta(i, j)$ is the Kronecker delta symbol. As shown in [7], the boundary condition (2.1) can be replaced by

$$
\begin{equation*}
G(k, 0)=2^{k-2}+\sum_{l=1}^{k} 2^{k-l} G(l, 1), k \geq 2 . \tag{2.4}
\end{equation*}
$$

Using (2.4) in (2.2), $G(k, 0)$ can be eliminated, which leads to

$$
\begin{equation*}
G(k, 1)=2 G(k-2,1)+G(k-1,2)+G(k-4,1)+2^{k-5}+\sum_{l=1}^{k-3} 2^{k-l-3} G(l, 1), k \geq 5 \tag{2.5}
\end{equation*}
$$

We introduce a generation function of $G(k, m)$, with

$$
\begin{equation*}
V_{m}(z)=(-1)^{m} z^{-m} \sum_{k=0}^{\infty} G(k, m) z^{k} \tag{2.6}
\end{equation*}
$$

By explicitly solving for $V_{m}(z)$, we obtain the following integral representation for $G(k, m)$.

Theorem 2.1 The number of reachable configurations $G(k, m)$ has the following exact expression

$$
\begin{equation*}
G(k, m)=\frac{1}{2 \pi i} \oint_{\mathcal{C}}(-1)^{m} z^{m-k-1} V_{m}(z) d z \tag{2.7}
\end{equation*}
$$

Here \mathcal{C} is a closed counterclockwise contour around the origin in the z-plane, with $|z|<1 / 2$ on \mathcal{C},

$$
\begin{equation*}
V_{m}(z)=\frac{z^{1+m(m+1) / 2}}{S(z)} \sum_{n=1}^{\infty}(-1)^{n+m} z^{n(n+1) / 2+n m} \prod_{L=0}^{m} \frac{1}{1-z^{L+n}} \prod_{L=1}^{n-1} \frac{1}{\left(1-z^{L}\right)^{2}} \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
S(z)=\left(2 z^{2}-3 z+2\right) S_{1}(z)-\left(4 z^{2}-4 z+1\right) S_{2}(z)+2 z^{2}-z-1, \tag{2.9}
\end{equation*}
$$

where

$$
\begin{equation*}
S_{k}(z)=\sum_{i=1}^{\infty}(-1)^{i+1} z^{i^{2} / 2+(2 k-1) i / 2} \prod_{j=1}^{i} \frac{1}{\left(1-z^{j}\right)^{2}} \tag{2.10}
\end{equation*}
$$

Since the total number of reachable configurations for the original problem is $G(k)=$ $G(k, 0)$, using (2.7) in (2.4) with $m=1$ we get the exact expression of $G(k)$:

Corollary 2.1 An exact expression for the total number of reachable configurations $G(k)$ is

$$
G(k)=2^{k-2}+\frac{1}{2 \pi i} \oint_{\mathcal{C}} \frac{2^{k}-z^{-k}}{1-2 z} V_{1}(z) d z
$$

where $V_{1}(z)$ is given by (2.8) with $m=1$.

Using (2.7), we obtain the following asymptotic expressions for $G(k, m)$. These asymptotic results were first obtained in [7], but there some parameters could only be determined numerically.

Theorem 2.2 The number of reachable configurations $G(k, m)$ has the following asymptotic expressions:

1. When $k \rightarrow \infty$ and $m=O(1)$,

$$
\begin{equation*}
G(k, m) \sim \frac{z_{*}^{m(m+3) / 2-k}}{S^{\prime}\left(z_{*}\right)} \sum_{n=1}^{\infty}(-1)^{n+1} z_{*}^{n(n+1) / 2+n m} \prod_{L=0}^{m} \frac{1}{1-z_{*}^{L+n}} \prod_{L=1}^{n-1} \frac{1}{\left(1-z_{*}^{L}\right)^{2}}, \tag{2.11}
\end{equation*}
$$

where $z_{*}>0$ is the unique root of $S(z)=0$ for $|z|<1 / 2$ and $S^{\prime}\left(z_{*}\right)$ is the first derivative of $S(z)$ evaluated at $z=z_{*}$. The numerical approximation of z_{*} to 15 decimal places is given below

$$
z_{*}=0.430729593137930 \cdots
$$

2. When $k, m \rightarrow \infty$ with $2 k / m^{2}>1$,

$$
\begin{equation*}
G(k, m) \sim \frac{z_{*}^{m(m+5) / 2-k+1}}{S^{\prime}\left(z_{*}\right)} \prod_{L=0}^{\infty} \frac{1}{1-z_{*}^{L+1}} . \tag{2.12}
\end{equation*}
$$

3. When $l=k-m(m+5) / 2$ and $2 \leq l \leq m+3$,

$$
\begin{equation*}
G(k, m)=-\frac{1}{(l-2)!} \lim _{z \rightarrow 0} \frac{d^{l-2}}{d z^{l-2}}\left[\frac{1}{S(z)} \prod_{L=0}^{\infty} \frac{1}{1-z^{L+1}}\right] . \tag{2.13}
\end{equation*}
$$

When k and $m \rightarrow \infty$ with $l>m+3$, (2.13) holds asymptotically, and then reduces to (2.12).

Now we consider the asymptotic expression for $G(k)$ when $k \rightarrow \infty$. Since $z_{*}<1 / 2$, we can neglect the term 2^{k-2} in the right of (2.4) and use (2.11) in (2.4) with $m=1$. Since $z_{*}<1 / 2$, we have

$$
\sum_{l=1}^{k} 2^{k-l} z_{*}^{-l} \sim \frac{z_{*}^{-k}}{1-2 z_{*}}, k \rightarrow \infty
$$

and hence the following corollary.

Corollary 2.2 The total number of reachable configurations $G(k)$ has the following asymptotic expression, when $k \rightarrow \infty$:

$$
G(k) \sim \frac{z_{*}^{2}}{\left(1-2 z_{*}\right) S^{\prime}\left(z_{*}\right)}\left[\sum_{n=1}^{\infty} \frac{(-1)^{n+1} z_{*}^{n(n+3) / 2}}{\left(1-z_{*}^{n}\right)\left(1-z_{*}^{n+1}\right)} \prod_{L=1}^{n-1} \frac{1}{\left(1-z_{*}^{L}\right)^{2}}\right]\left(\frac{1}{z_{*}}\right)^{k}
$$

Here $S(z)$ is as in (2.9) and (2.10).

3 Brief derivations

Using the generating function (2.6) in (2.3), we obtain the following recurrence equation for $V_{m}(z)$

$$
V_{m+1}(z)+V_{m-1}(z)=\left(2-z^{-m-1}\right) V_{m}(z) .
$$

We notice that this equation is of the same form as (3.12) given in [7], with $z=1 / a$. Two linearly independent solutions are given by (3.29) and (3.30) in [7]. We reject the growing solution given by (3.30) in [7] since we expect that $V_{m}(z)$ will be bounded as $m \rightarrow \infty$. Hence,
we have

$$
\begin{align*}
V_{m}(z)= & C(z) \frac{2 \pi}{\log z} \exp \left(\frac{\pi^{2}}{2 \log z}\right) \sum_{J=m+1}^{\infty}(-1)^{m+J+1} z^{-(m-J)^{2} / 2-(m-J) / 2} \\
& \times \prod_{L=0}^{m} \frac{1}{1-z^{L-J}} \prod_{L=m+1, L \neq J}^{\infty} \frac{1}{\left(1-z^{L-J}\right)^{2}} \\
= & C(z) \frac{2 \pi}{\log z} \exp \left(\frac{\pi^{2}}{2 \log z}\right) \sum_{n=1}^{\infty}(-1)^{n+1} z^{-n^{2} / 2+n / 2} \prod_{L=0}^{m} \frac{1}{1-z^{-L-n}} \\
& \times \prod_{L=1, L \neq n}^{\infty} \frac{1}{\left(1-z^{L-n}\right)^{2}}, \tag{3.1}
\end{align*}
$$

where $C(z)$ is independent of m. We note that we can rewrite the two products in (3.1) as follows:

$$
\begin{equation*}
\prod_{L=0}^{m} \frac{1}{1-z^{-L-n}}=(-1)^{m+1} z^{(n+m / 2)(m+1)} \prod_{L=0}^{m} \frac{1}{1-z^{L+n}} \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\prod_{L=1, L \neq n}^{\infty} \frac{1}{\left(1-z^{L-n}\right)^{2}}=z^{n(n-1)} \prod_{L=1}^{n-1} \frac{1}{\left(1-z^{L}\right)^{2}} \prod_{L=1}^{\infty} \frac{1}{\left(1-z^{L}\right)^{2}} \tag{3.3}
\end{equation*}
$$

Using (3.2) and (3.3) in (3.1) leads to

$$
\begin{align*}
V_{m}(z)= & C(z) \frac{2 \pi}{\log z} \exp \left(\frac{\pi^{2}}{2 \log z}\right) \prod_{L=1}^{\infty} \frac{1}{\left(1-z^{L}\right)^{2}}\left\{\sum_{n=1}^{\infty}(-1)^{n+m} z^{n^{2} / 2-n / 2+(n+m / 2)(m+1)}\right. \\
& \left.\times\left[\prod_{L=0}^{m} \frac{1}{1-z^{L+n}}\right]\left[\prod_{L=1}^{n-1} \frac{1}{\left(1-z^{L}\right)^{2}}\right]\right\} . \tag{3.4}
\end{align*}
$$

To determine $C(z)$, we use (2.6) in the boundary condition (2.5), which yields

$$
\begin{equation*}
\left(z^{4}+2 z^{2}-1+\frac{z^{3}}{1-2 z}\right) V_{1}(z)-z^{2} V_{2}(z)=\frac{z^{4}}{1-2 z} . \tag{3.5}
\end{equation*}
$$

We note that (3.5) holds for $|z|<1 / 2$. We introduce the function $U_{m}(z)$

$$
U_{m}(z)=\sum_{n=1}^{\infty}(-1)^{n+m} z^{n^{2} / 2-n / 2+(n+m / 2)(m+1)} \prod_{L=0}^{m} \frac{1}{1-z^{L+n}} \prod_{L=1}^{n-1} \frac{1}{\left(1-z^{L}\right)^{2}},
$$

and then $V_{m}(z)$ in (3.4) is

$$
\begin{equation*}
V_{m}(z)=C(z) \frac{2 \pi}{\log z} \exp \left(\frac{\pi^{2}}{2 \log z}\right)\left[\prod_{L=1}^{\infty} \frac{1}{\left(1-z^{L}\right)^{2}}\right] U_{m}(z) \tag{3.6}
\end{equation*}
$$

Using (3.6) with $m=1$ and $m=2$ in (3.5), we obtain $C(z)$ as

$$
\begin{align*}
C(z)= & {\left[\left(-2 z^{5}+z^{4}-3 z^{3}+2 z^{2}+2 z-1\right) U_{1}(z)-z^{2}(1-2 z) U_{2}(z)\right]^{-1} } \\
& \times \frac{\log z}{2 \pi} \exp \left(-\frac{\pi^{2}}{2 \log z}\right) z^{4} \prod_{L=1}^{\infty}\left(1-z^{L}\right)^{2} . \tag{3.7}
\end{align*}
$$

Instead of using (3.7) in (3.6), we introduce the functions $S_{k}(z)$ defined in (2.10) and rewrite $C(z)$ in terms of the $S_{k}(z)$. (The reason for making this change is that it allows us to verify the equivalence of $S(z)=0$ with equation (3.39) in [7], which we will discuss later.) Using (2.10), $U_{1}(z)$ and $U_{2}(z)$ in (3.7) can be expressed as

$$
\begin{equation*}
U_{1}(z)=-S_{1}(z)+\left(1+\frac{1}{z}\right) S_{2}(z)-\frac{1}{z} S_{3}(z) \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
U_{2}(z)=-S_{1}(z)+\left(1+\frac{1}{z}+\frac{1}{z^{2}}\right) S_{2}(z)-\left(\frac{1}{z}+\frac{1}{z^{2}}+\frac{1}{z^{3}}\right) S_{3}(z)+\frac{1}{z^{3}} S_{4}(z) \tag{3.9}
\end{equation*}
$$

We rewrite $S_{k}(z)$ in (2.10) as

$$
S_{k}(z)=\sum_{i=1}^{\infty}(-1)^{i+1} z^{i^{2} / 2+(2 k-1) i / 2} \prod_{j=1}^{i+1} \frac{1}{\left(1-z^{j}\right)^{2}}\left(1-2 z^{i}+z^{2 i}\right),
$$

and then, after some calculation, we obtain the following recurrence equation

$$
\begin{equation*}
z^{1-k} S_{k-1}(z)+\left(1-2 z^{1-k}\right) S_{k}(z)+z^{1-k} S_{k+1}(z)=1 \tag{3.10}
\end{equation*}
$$

Hence, we can use (3.10) with $k=2$ and $k=3$ to eliminate $S_{3}(z)$ and $S_{4}(z)$ from (3.8) and (3.9). Thus, after some simplification, we obtain $C(z)$ as

$$
\begin{equation*}
C(z)=\frac{z}{S(z)} \frac{\log z}{2 \pi} \exp \left(-\frac{\pi^{2}}{2 \log z}\right) \prod_{L=1}^{\infty}\left(1-z^{L}\right)^{2} \tag{3.11}
\end{equation*}
$$

where $S(z)$ is defined in (2.9). Using (3.11) in (3.6), we obtain (2.8) in Theorem 2.1. Then we have the integral expression of $G(k, m)$ in (2.7).

In the remainder of this section, we discuss the asymptotic approximations to $G(k, m)$. We first consider $k \rightarrow \infty$ and $m=O(1)$. By using Rouché's theorem, or by plotting $S(z)$ given in (2.9) numerically, we notice that there is a single real root for $|z|<1 / 2$. We denote this single root as z_{*}, which satisfies $S\left(z_{*}\right)=0$. Then in the z-plane with $|z|<1 / 2$, the integrand in (2.7) has a simple pole at $z=z_{*}$, which is the dominant singularity. We use the residue theorem to evaluate the integral in (2.7) asymptotically, which yields (2.11). We note that it's not hard to verify that $S(z)=0$ is equivalent to (3.39) in [7], after we substitute $1 / z$ for a in (3.39). Thus $z_{*}^{-1}=a$, whose numerical approximation to 100 decimal places is given in [7]. By comparing (2.11) in this paper with formula (3.37) in [7], we obtain an analytic expression for the constant c_{1} in (3.38) in [7] as follows:

$$
\begin{equation*}
c_{1}=-\frac{\log z_{*}}{2 \pi} \exp \left(-\frac{\pi^{2}}{2 \log z_{*}}\right) \frac{1}{S^{\prime}\left(z_{*}\right)} \prod_{j=1}^{\infty}\left(1-z_{*}^{j}\right)^{2} . \tag{3.12}
\end{equation*}
$$

By evaluating (3.12) numerically, we find that the numerical values of c_{1} and $c_{1} K_{*}$ provided in (3.42) and (3.43) in [7] are only correct to about 5 decimal places, though they are given
to 15 places. The correct values to 15 decimal places are

$$
c_{1}=2.027402047468498 \cdots
$$

and

$$
c_{1} K_{*}=0.287777704935052 \cdots .
$$

In the limit when $k, m \rightarrow \infty$ simultaneously, the $n=1$ term in (2.11) dominates, which yields (2.12). This recovers the result given in (4.18) in [7], but now with c_{1} computed explicitly.

Next, we consider k and m large with $l=k-m(m+5) / 2=O(1)$. Note that $l=2$ corresponds to the smallest number of possible configurations, as $G(k, m)=0$ for $l \leq 1$. Following [7] we denote $G(k, m)$ as $W(l, m)$ and rewrite (2.7) as

$$
\begin{align*}
G(k, m) \equiv W(l, m)= & \frac{1}{2 \pi i} \oint_{\mathcal{C}} \frac{1}{z^{l-1}} \frac{1}{S(z)} \sum_{n=1}^{\infty}(-1)^{n} z^{(n-1)(n / 2+m+1)} \\
& \times \prod_{L=0}^{m} \frac{1}{1-z^{L+n}} \prod_{L=1}^{n-1} \frac{1}{\left(1-z^{L}\right)^{2}} d z . \tag{3.13}
\end{align*}
$$

For a sufficiently small closed contour \mathcal{C} around the origin in the z-plane and $l \geq 2, z=0$ is the only pole inside of \mathcal{C}, and it is of order $l-1$. Thus, using the residue theorem in (3.13) leads to

$$
\begin{align*}
W(l, m)= & \frac{1}{(l-2)!} \lim _{z \rightarrow 0} \frac{d^{l-2}}{d z^{l-2}}\left\{\frac{1}{S(z)} \sum_{n=1}^{\infty}(-1)^{n} z^{(n-1)(n / 2+m+1)}\right. \\
& \left.\times \prod_{L=0}^{m} \frac{1}{1-z^{L+n}} \prod_{L=1}^{n-1} \frac{1}{\left(1-z^{L}\right)^{2}}\right\} . \tag{3.14}
\end{align*}
$$

The first two terms from the infinite sum in the right-hand side of (3.14) are

$$
\begin{equation*}
-\prod_{L=0}^{m} \frac{1}{1-z^{L+1}}+\frac{z^{m+2}}{(1-z)^{2}} \prod_{L=0}^{m} \frac{1}{1-z^{L+2}}, \tag{3.15}
\end{equation*}
$$

and the remaining terms are of order $O\left(z^{2 m+5}\right)$ as $z \rightarrow 0$. We notice that after taking $l-2$ derivatives, the second term in (3.15) is of order $O\left(z^{m-l+4}\right)$ as $z \rightarrow 0$. This implies that as long as $m-l+4 \geq 1$, i.e., $l \leq m+3$, only the $n=1$ term in the infinite sum in (3.14) contributes to the derivative at $z=0$, which yields

$$
\begin{equation*}
W(l, m)=-\frac{1}{(l-2)!} \lim _{z \rightarrow 0} \frac{d^{l-2}}{d z^{l-2}}\left[\frac{1}{S(z)} \prod_{L=0}^{m} \frac{1}{1-z^{L+1}}\right], 2 \leq l \leq m+3 . \tag{3.16}
\end{equation*}
$$

Rewriting the expression in the brackets in (3.16) as

$$
\frac{1}{S(z)} \prod_{L=0}^{m} \frac{1}{1-z^{L+1}}=\frac{1}{S(z)} \prod_{L=0}^{\infty} \frac{1}{1-z^{L+1}} \prod_{L=m+1}^{\infty}\left(1-z^{L+1}\right)
$$

we see that (3.16) is independent of m. This leads to (2.13), and gives an analytic expression for $W_{0}(l)$, which appears in [7] but there no explicit expression is given. This concludes our derivation.

References

[1] M. Kontsevich, Problem M715, Kvant., November 1981, p. 21. (In Russian.)
[2] A. Khodulev, Pebble spreading, Kvant., July 1982, p. 28-31 and 55. (In Russian.)
[3] F. Chung, R. Graham, J. Morrison, A. Odlyzko, Pebbling a chessboard, Amer. Math. Monthly 102 (1995) 113-123.
[4] C. Knessl, Geometrical optics and chessboard pebbling, Appl. Math. Lett. 14 (2001) 365373.
[5] H. Eriksson, Pebblings, Electron. J. Combin. 2 (1995), Research Paper 7, 18 pp.
[6] R. H. Warren, Disks on a chessboard, Amer. Math. Monthly 103 (1996), 305-307.
[7] C. Knessl, On the number of reachable configurations for the chessboard pebbling problem, Math. Comput. Modelling 47 (2008), 127-139.

[^0]: * Corresponding author. Department of Mathematics and Statistics, University of North Florida, 1 UNF Dr, Bldg 14/2731, Jacksonville, FL 32224-7699, USA. Email: q.zhen@unf.edu. Tel: (904) 620-2042. Fax: (904) 620-2818.
 ${ }^{\dagger}$ Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, 851 South Morgan Street (M/C 249), Chicago, IL 60607-7045, USA. Email: knessl@uic.edu. This author's work was partly supported by NSA grant H 98230-08-1-0102.

