
Context-Based 2D-VLC for Video Coding

Qiang Wang1, Debin Zhao1,2, Siwei Ma2, Yan Lu1, Qingming Huang2, Wen Gao2

1Department of Computer Science, Harbin Institute of Technology, Harbin 150001, China
2Institute of Computer Technology, Chinese Academy of Science, Beijing 100080, China

{qwang, dbzhao, wgao, qmhuang, ylu, swma}@jdl.ac.cn

Abstract

It is well observed that usually the run-length of
successive zero coefficients becomes longer and the
magnitude of non-zero coefficients gets smaller while the
DCT subband frequency increases. So the probability
distributions of level/run combinations should be different at
different DCT positions. Based on this observation, an
efficient context based 2D-VLC entropy coder, especially
designed for 8x8 DCT, is proposed in this paper to exploit
this context characteristic. The key element of the proposed
coder is to design multiple 2D-VLC tables and each can be
used context-adaptively to better match different level/run
combination probability distributions. Another key element is
the usage of Exponential-Golomb codes, which keep the
multiple tables with low memory requirement. In terms of
coding efficiency, the experimental results show that the
proposed method can gain up to 0.23dB when compared to
one-table-for-one-block coding method.

1. Introduction

Block-based hybrid video coding scheme has been widely
testified in real applications as an efficient coding solution
and has been used successfully as the basic coding
framework in H.26x and MPEG families. On entropy coding
part, the basic concept is mapping from video signal after
prediction and transform to a variable length coded bitstream,
generally referring to two entropy coding methods, either
variable length coding (VLC) or arithmetic coding. For the
request of higher coding efficiency, context-based adaptive
entropy coding technique is developed and favored by
current coding standards, which led to the need of tracking
the symbol probability variation to utilize higher order
entropy.

Early in H.263 [1], an optional arithmetic entropy coder
is specified in normative part, which contains multiple
probability distribution models selected automatically in
coding process. It expresses a simple context adaptive
mechanism but certainly not a true ability of tracking
probability variation. After that, a sophisticatedly designed
arithmetic coder, named Context-Based Adaptive Binary
Arithmetic Coding (CABAC) [2] was proposed and adopted

by H.264 [3]. CABAC combines an adaptive binary
arithmetic coder with many well-designed context models to
fulfill adaptation to symbol statistical behavior and results in
significant coding efficiency improvement. But for the
increased computational complexity, although good at
context adaptation, arithmetic-based entropy coders are still
restricted for some applications [2]. As the counterpart, VLC
methods also import some adaptability. MPEG-2/4 [4][5]
uses different VLC tables for intra- and inter-predicted
blocks. H.263 adds optional advanced INTRA coding mode
and alternative INTER VLC mode [1] to gain some
adaptation. But all these methods use one single VLC table
to code a DCT block, and neglect the redundancy or context
relationship between the block coefficients. This context
information is not fully exploited for further compression.

In DCT block, it is a well observation that the magnitude
of non-zero coefficients in low frequency subbands is usually
bigger than that in high frequency subbands. Hence, when
DCT block is mapped into one-dimensional level/run
combination sequence by zig-zag scan, the sequence exhibits
decreasing tendency for level’s magnitude and increasing
tendency for run. This indicates a kind of very useful context
information for further compression. Context-based adaptive
variable length coding (CAVLC) [3] designed for 4x4 DCT
makes use of this context to reduce inter-coefficients
redundancy and gets good performance. The method codes
level and run separately using corresponding multiple VLC
tables and make table selection based on already coded
information. The aim of the proposed coding method in this
paper is also to exploit this context information, but
realization means is different with CAVLC. Our scheme
utilizes joint probability of level/run combination by two
dimensional VLC which is especially designed for AVS
(China audio-video coding standard targeting at HD
applications), and so at the same time avoid relative high
table memory requirement if CAVLC is directly realized on
8x8 block which is the transform matrix size in AVS. For
exploiting context information, we use multiple conditional-
trained 2D-VLC tables to better match different level/run
combinations’ probability distributions at different coding
phase by automatic table switch.

The remainder of the paper is organized as follows. In
Section 2, we give a detailed description of context-based
2D-VLC. Section 3 provides the experimental results and

0-7803-8603-5/04/$20.00 ©2004 IEEE.

performance comparison. Finally, section 4 concludes this
paper.

2. Context-based 2D-VLC

This section gives a detailed description of context-based
2D-VLC, and also provides information on the underlying
idea. The outline of the proposed coder is given first, and
then the key elements are discussed separately.

2.1. Coder discription

Transformed coefficients are classified into three
categories, inter_luma, intra_luma and chroma (both inter
and intra), according to macroblock prediction type and
video data component type. For each upper three categories,
we trained multiple 2D-VLC tables on typical HD sequences
and common video quality range. Figure 1 shows the block
diagram of context-based 2D-VLC when coding a DCT
block. First, table category to be used is determined. Second,
an (level, run) instance is coded in a reverse zig-zag scan
order using current table denoted by the variable tablenum,
except that the (level, run) is out of table’s range and escape
coding method is used. Third, dependent on the last coded
level’s magnitude, the table for coding the next (level, run) is
selected. Then upper last two procedures are carried on
iteratively until EOB (End of Block) occurs. Specially, the
reason for coding in the reverse zig-zag scan order is that
generally the magnitude of the last non-zero coefficient is
equal to 1 which presents a constant context characteristic.

Sequentially store (level,run) into buffer[]
when zig-zag scan

 Initialization
 1. decide table catetgory: intra_luma, inter_luma, chroma
 2. tablenum = 0;
 3. set pointer to the position of last entry in buffer[];

(level,run) is out of
current table's range?yes no

End

(level,run) = buffer[pointer]

Switch table based on
level, update tablenum

pointer = pointer - 1

pointer < 0
 ?

Table look-up,
encode EOB

yes no

Begin

Encode level and run by
escape coding method

Table look-up, encode
(level,run)

Figure 1. Flow diagram of context-based 2D-VLC

In summary, our proposed coder contains following main
technical points:

− 2D-VLC for level/run combinations;

− three groups of multiple tables for inter_luma,
intra_luma and chroma coefficients, respectively;

− coding in a reverse zig-zag scan order;
− table switch based on last coded level;
− escape coding;
− Exponential-Golomb codes for all elements.

2.2. Exponential-Golomb codes

For every 2D-VLC table, codewords are constructed
based on Exponential-Golomb codes [6]. Specifically, kth
order Exp-Golomb codes for k equal to 0, 1, 2 and 3 are used.
Table 1 lists part of the codewords (Exp-Golomb codes)
when k values 0 and 1 as a sample. We can see that a
codeword has regular code structure, which is a
concatenation of a prefix and a suffix code. Given a
codenumber N and specific order k, the prefix part consists
of l zeros followed by one 1 and the suffix part is the
binarization representation of value N-2k(2l-1). l is given by

1
2min{0, log ((1) / 2 1/ 2) }kl N += + +⎡ ⎤⎢ ⎥ (1).

Table 1. 0th and 1st order Exp-Golomb codes

Codeword
k=0 k=1 Codenumber

(N)
prefix suffix prefix suffix

0 1 - 1 0
1 01 0 1 1
2 01 1 01 00
3 001 00 01 01
4 001 01 01 10
5 001 10 01 11
6 001 11 001 000
… … … … …

Owe to the regular codeword structure, Exp-Golomb
codes can be real-time constructed in coding process without
involving high computation complexity. So the entries stored
in VLC tables could be mapping relationships (codenumbers)
from level/run combinations to codewords instead of real
codes like Huffman codes in MPEG-2. It is a valuable
feature that resolves the problem of high memory
requirement for multiple 2D-VLC tables. Therefore,
although multiple tables are used, memory requirement is
still kept low.

2.3. 2D-VLC tables

2.3.1. Table design. It has been stated previously that
when zig-zag scan translates a DCT block into one sequence
of level/run combination the sequence always demonstrates a
phenomenon that, tracked in reverse order, the magnitude of
level increases while that of run decreases. Looking into this
further, we can find if select a (level, run) in middle of the
sequence as a partition point, then the (level, run)s following
it usually has bigger size of level and smaller size of run than
that of preceding (level, run)s. So the probability
distributions of (level, run) before and after that point are
basically different. This forms a kind of context information,

which will be very helpful for further compression. Based on
upper analysis, a simple and straightforward idea is to find
out these typical probability distributions and design
corresponding different VLC tables to better match them,
which will result in further efficiency. Intuitively an
occurrence of increase of the magnitude of level, here
increase defined as bigger than ever (the meaning of
‘increase’ in following paragraphs is the same as this
definition), can serve as an indicator of probability
distribution’s significant change. So depending on level
increase, we track the probability distributions and find the
typical ones.

(9,0), (5,0), (3,0), (1,1), (3,0), (1,2), (1,1), (1,5), (1,3)
S0S1S3S5

track direction
Figure 2. A sample of tracking to build sets ST

Refer to a (level, run) sequence as (ln, rn), …, (l0, r0),
which is indexed in reverse zig-zag scan order, and define
sets ST as follows,

S0 = {(li,ri) | i=0 } (2),
ST = {(li,ri) | k≤i≤k+m, m≥0;

(lk+m,rk+m), …, (lk+1,r k+1), (lk,rk), abs(lk-1)=T,
abs(lk+m)>T, abs(lp)≤T, k≤p≤k+m-1 }, T>0 (3).

At the same time, we suppose sets ST have functionality to
count the occurrence of level/run instance in it. So, when
tracking the sequence from the end to the head, we can place
any (level, run) into one and only one of upper sets. By the
definition we can see the sets ST contain the (level, run)s
locating between two successive increase of the level
including the (level, run) bringing the second increase.
Figure 2 demonstrates how a (level, run) sequence is placed
into sets ST.

To obtain typical probability distributions robustly, it is
on a set of test sequences representing typical material of HD
application and at a range of acceptable visual quality of
about 30 to 40dB that we involve a two-step process.
Step1. Do statistic to get valuable distributions.

Tracking all (level, run) sequences produced in coding
process in reverse zig-zag scan order to build sets ST, we
obtain sets S0, S1, …, S19, Supper. Supper is equal to S20∪S21

∪…. Then twenty-one probability distributions of (level,
run), referred to as pmfi, i=0~20, can be computed
corresponding to these sets since these sets can memorize the
(level, run) occurrence count. We think these pmfs are
valuable distributions based on the hypothesis that an
increase of level indicates a significant distribution change.
For the use of step 2, the optimal kth order Exp-Golomb
codes are selected for each upper pmf.
Step2. Merge to get typical distributions.

It is not economical and necessary to design twenty-one
VLC tables corresponding to each upper pmf, because many
of them are similar. So a merging process is used to combine
similar sets or pmfs into a typical one. The rule for the
merging is: the pmfs or sets to be merged a) have the same kth
order Exp-Golomb codes, b) have similar sorting result in
terms of (level, run)’s probability, and c) are adjacent to each
other.

Through step 1 and 2, we get the typical probability
distributions, which depict the occurring behavior of (level,
run) symbol at different conditions (“condition” is based on
the maximal magnitude of previous levels or level increase)
when reverse tracked. For each of these typical distributions,
we design its VLC table by selecting an optimal kth order
Exp-Golomb codes as the table codewords, and then we
eventually finish building multiple 2D-VLC tables, which
tell how a 2D (level, run) symbol is mapped to an Exp-
Golomb code. Figure 3 shows the different covering range of
(level, run) symbols by different multiple 2D-VLC tables,
which brings improved coding performance. Specifically, in
our design of chroma tables, we get five merged sets as
follows, S0, S1, S2, S3∪S4 and S5∪…∪Supper. Corresponding
to these merged sets, we accordingly have five 2D-VLC
tables for chroma coefficients coding.

abs(level)26

run

22

14

9

6

4
2

0 3 6 9 12 17

VLC_0

VLC_1
VLC_2

VLC_3

VLC_4
VLC_5

Figure 3. (level, run) ranges covered by different VLC

tables

2.3.2. Table switch. We know that if a VLC table can
better match current coding symbol’s probability then further
efficiency will be achieved. So the table switch method is
consistent with how the table is obtained in statistical process.
Therefore, table switch is based on the magnitude of last
coded level information just as specific set ST is selected to
adopt current (level, run) symbol by observing whether there
is a level increase in statistical process. For instance of
chroma coefficients coding, table switch or table selection
method is as follows.

int T[] = {0, 1, 2, 4, 0xffff};
tablenum = 0; //initialize
for(totalcoeff; totalcoeff>0; totalcoeff--){ //code DCT block

 Encode_symbol(tablenum, totalcoeff, level, run);
 //code a level/run
 if(abs(level) > T[tablenum]) { //table switch
 if(abs(level)<=2)
 tablenum = abs(level);
 else if(abs(level)<=4)
 tablenum = 3;
 else
 tablenum = 4;
 }
}

We can see the specific VLC table for coding next (level,
run) is selected when a coded level’s magnitude exceeds the
thresholds 0, 1, 2, 4 in array T[]. These values correspond to
the bounds of the merged sets presented previously.

2.4. Escape coding method

The most commonly occurring level/run combinations are
coded by the 2D-VLC tables. For other (level, run)s, an
escape coding method like MPEG-2 is used. But the
difference is an Escape VLC is followed by two variable
length codes representing level and run respectively, not two
fixed length codes in MPEG-2.

3. Experimental results

To evaluate the coding efficiency, our experiments
compare the performance of the proposed coder with that of
so-called one-table-for-one-block method, which means only
one table is used for coding one DCT block. Specifically, the
2D-VLC tables for 8x8 block depicted in [3] for ABT [7]
serve as our method’s counterpart. These two methods are
both integrated into RM4.0 platform, which is developed by
AVS as reference software. The coding condition is two
GOPs per second, and in one GOP the first frame is I-frame
coded and the other frames are coded in the order of two B-
frames and one P-frame. The two test sequences, city and
spin&calendar, are all 720p format progressive sequences
with 60Hz.

city

33
33.5
34

34.5
35

35.5
36

36.5
37

37.5
38

38.5
39

39.5
40

0 2000 4000 6000 8000 10000
Bitrate [kbit/s]

P
S
N
R
Y

[
d
B
]

C2D-VLC

ABT_VLC

spin&calendar

32.5
33

33.5
34

34.5
35

35.5
36

36.5
37

37.5
38

38.5

0 5000 10000 15000
Bitrate [kbit/s]

P
S
N
R
Y

[
d
B
]

C2D-VLC

ABT_VLC

Figure 4. Rate-distortion performance curves for city and

spincalendar

Figure 4 shows the proposed method outperforms
ABT 8x8 tables and for city sequence we can gain up
to 0.23dB. Since ABT also adopts Exp-Golomb codes,
so all of the performance gain comes from context-
based adaptive multiple tables coding.

4. Conclusion

This paper has presented an efficient context-based 2D-
VLC entropy coder for transformed coefficients coding. The
experimental results have shown that better coding efficiency
can be achieved comparing to one-table-for-one-block
coding method. The performance improvement comes from
two aspects, one of which is multiple tables better match the
different probability distributions of level/run combination at
different DCT subbands, and another is automatic context-
based table selection avoiding transmitting side-information.
Exp-Golomb codes also serve as a key element in the
proposed coder to keep low memory requirement when
multiple tables are used.

5. Acknowledgements

 This work has been partially supported by National
Science Foundation of China under contract No.60333020,
and National Hi-Tech Development Program of China under
contract No.2002AA119010.

6. References

[1] “Video Coding for Low Bit Rate Communications”, ITU-
T, ITU-T Recommendation H.263 version 1, 1995.

[2] D. Marpe, H. Schwarz, and T. Wiegand, “Context-Based
Adaptive Binary Arithmetic Coding in the H.264/AVC
Video Compression Standard”, IEEE Trans. Circuits Syst.
Video Technol., vol. 13, pp. 620-636, July 2003.

[3] T. Wiegand, “Joint Final Committee Draft (JFCD) of
Joint Video Specification”, in Joint Video Team Doc. JVT-
D157, Klagenfurt, Austria, July 2002.

[4] “Generic Coding of Moving Pictures and Associated
Audio Information – Part 2: Video”, Tech. Rep., ISO/IEC
13818-2 (MPEG-2), 1994.

[5] “Coding of audio-visual objects – Part 2: Visual”,
ISO/IEC 14496-2 (MPEG-4), 1999.

[6] J. Teuhola, “A Compression Method for Clustered Bit-
Vectors”, Information Processing Letters, Vol. 7, pp. 308-
311, Oct. 1978.

[7] M. Wien, “Variable Block-Size Transforms for
H.264/AVC”, IEEE Trans. Circuits Syst. Video Technol., vol.
13, pp. 604-613, July 2003.

	1. Introduction
	2. Context-based 2D-VLC
	2.1. Coder discription
	2.2. Exponential-Golomb codes
	2.3. 2D-VLC tables
	2.4. Escape coding method

	3. Experimental results
	4. Conclusion
	5. Acknowledgements
	6. References

