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ABSTRACT 

 
Advance Video Coding (AVC) has employed a 6-tap 
interpolation FIR filter in its motion compensation (MC) 
part for high coding efficiency. But it is accompanied by 
increasing the complexity in calculation and the number 
of memory access. And this problem makes MC one of 
the   bottlenecks in the AVC system’s VLSI 
implementation, especially for SDTV/HDTV which 
aggravate the problem heavily. Unfortunately, most FIR 
filter [8][9][10] have too low of input bandwidth to deal 
with it. In this paper, an efficient architecture for MC 
interpolation is described, and experimental results show 
that this architecture satisfies AVC decoder applications 
such as SDTV or HDTV. 

 

1. INTRODUCTION 
 
AVC standard also known as MPEG-4 Part 10 and H.264, 
is jointly developed by ISO and ITU-T—Joint Video 
Team (JVT). Compared with previous video coding 
standards like MPEG-2 and H.263, AVC obtains higher 
coding efficiency [1][2] with advanced features and 
functionality like different block sizes, lagrangian coder 
control, multiple reference frames, fractional pixel 
precision, etc, at an increased implementation cost. The 
partition of the AVC’s inter-coded block can be one of 
seven types identified by lumina block sizes: 16×16, 16
×8, 8×16, 8×8, 8×4, 4×8, 4×4. MC interpolation of 
the AVC employs a 6-tap FIR filter that needs the samples 
not only inside the current block but also outside it. This 
surely requires more memory bandwidth. The amount of 
memory access for MC interpolation is about 50% in the 
AVC decoder [3] [4]. And the time consumed by 
interpolation processing is about 25% in the AVC decoder 
major subsystems [7]. So MC becomes one of the most 
data intensive parts of the AVC decoder, and a bottleneck 

of implementation. The memory access and the high 
transfer rate are the main troubles in the VLSI design of 
the MC interpolation. 
According to the limit of AVC level-4 [11] which is 
SDTV or HDTV application level, the maximum macro-
block (MB) rate is 245760 MB/s (30 frame/s and 8192 
MB in a picture). If using 150MHz clock, the time budget 
is only 610 clock cycles assigned for the processing of 
one MB which has four luma blocks and two chroma 
blocks.  And only slightly more than 100 cycles for a 
single block averagely. 
Realization of FIR filters can vary widely from one that 
uses dedicated hardware multipliers and adders [8][9] to 
one that uses code executed by a general purpose 
processor. A combination of hardware and software that 
allows sharing of hardware units like adders and 
multipliers can also be used [10]. But these FIR filters 
don’t fulfil the requirement of the interpolation in this 
paper.  Extra clock cycles are required by mentioned FIR 
filters above between the processing for adjacent row or 
column of MB to displace the MB data inside their 
architectures. Extra clock cycles lead to the loss of 
processing time significantly, and cut down the filter 
efficiency. Moreover, these FIR filters have so insufficient 
data input bandwidth that they only allow to input one 
pixel data per cycle. For a 8×8 interpolated outcome the 
algorithm or the filters require to deal with 169 input pixel 
data [11], that means at least 169 cycles should be spent 
here. Thinking about the time budget of a single block—
100 cycles, these FIR filters are so time-consuming that 
they can not meet the requirement. After analyzing their 
architecture thoroughly, we found that most of these FIR 
filters only have one-dimension data transfer way. But 
MC interpolation needs two-dimension MB data for 
calculation. So these FIR filters have low behavior on this 
interpolation. 
The data transfer scheme adopted by The AB2 type 
architecture [5][6] for motion estimation in video encoder 
is very similar to the requirement of interpolation in this 



paper. Compared with [6], Architecture of [5] reduced the 
hardware demands, and was implemented more 
economically.  
The main goal presented in this paper is to arrange the 
MB data transfer properly and exploit the large bandwidth 
and high parallel architecture for MC interpolation of 
AVC decoder applications with larger frame sizes such as 
SDTV and HDTV. In section 2 of this paper, mc 
interpolation algorithm is described. Section 3 describes 
details of the implementation for the architecture of mc 6-
tap interpolation. Experimental results are given in 
Section 4. The paper closes with a conclusion in Section5. 
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Fig.1 

 
2. MC 6-TAP INTERPOLATION ALGORITHM 

 
The aim of interpolation is to get the fractional samples 
from the integer samples according to the motion vector. 
In the AVC coding standard, the motion vector can point 
to the quarter-pel-accuracy location by the last two bits. 
Fig.1 shows the positions of integer samples (Squares 
with uppercase letters) and fractional samples (Squares 
with lowercase letters) for MC interpolation inside the 
given two-dimensional sample array. In Fig.1 Squares 
marked ‘b’, ‘h’, ‘j’, ‘m’ and ‘s’ are the same as those 
labeled with double lowercase letters such as ‘aa’ which 
are positions at half-pel-accuracy location. And those 
others left and labeled with single lowercase letter are 
quarter-pel-accuracy locations. According to different 
locations pointed by motion vectors, fractional samples 
have different interpolation processing. Here, this 
processing is classified by five cases described below. 
Case1: this is a special case, if the motion vector point to 
the integer sample of ‘G’, no processing needs to do here.  
And ‘G’ is directly output. 
Case2: this case includes ‘b’, ‘h’, ‘s’ and ‘m’. And a 6-tap 
interpolation filter (1, -5, 20, 20, -5, 1) needs as: 

321012
' 520205 xxxxxxz +−++−= −− , and 

)5)16'((1 >>+= zclipz . 

Where z` represents intermedia variables of  ’b`’, ‘h`’, ’s`’ 
or ’m`’, and z represents ’b’, ‘h’, ’s’ or ’m’. The 
subscripts of x index horizontal or vertical neighbouring 
integer-pixel locations. “clip1” stands for clipping 
between[0, 255]. They shall be available after one 6-tap 
filter execution time. 
Case3: this case includes ‘a’, ‘c’, ‘d’, ‘n’, ‘e’, ‘g’, ‘p’, ‘r’, 
which at least use one filtered half sample such as ‘b’ in 
case2 (see table 1). And also shall be derived after one 6-
tap filter execution time. 
Case4: only ‘j’ belongs to this case. ‘j’ shall be obtained 
as follow: 

hhggsbbbaaj +−++−= 520205 ''' , and  

)10)512((1 ` >>+= jclipj  
Where, variables of ‘aa’, ‘bb’, ‘b`’, ‘s`’, ‘gg’ and ‘hh’ are 
available in the same manner of the intermedia variable 
‘z`’ in case2. Because both ‘b`’ and ‘j`’ are derived by 6-
tap filter, ‘j’ shall be obtained after two serial 6-tap filter 
execution times. So if ‘j’ is the final result of the 
interpolation, the latency of hardware shall be twice as 
much as ‘b’ in case2. 
 

Case3 Case5 
a ( G + b + 1 ) >> 1 
c ( H + b + 1 ) >> 1 

f (b + j + 1)>>1 

d ( G + h + 1 ) >> 1 
n ( M + h + 1 ) >> 1 

i (h + j + 1)>>1 

e ( b + h + 1 ) >> 1 
g ( b + m + 1 ) >> 1 

k (m + j +1)>>1 

p ( h + s + 1 ) >> 1 
r ( m + s + 1 ) >> 1 

q (s + j + 1)>>1 

Table 1 
 

Case5: this case includes ‘f’, ‘i’, ‘k’, and ‘q’, which use 
the half sample ‘j’ in case4. And so they shall be derived 
after ‘j’ is done (table1). 
Moreover, from the description above, it is clear to see the 
relations among the five cases. Firstly, fraction samples in 
case3 and case4 depend on those in case2, and also case5 
depend on case4. Secondly, fraction samples in case5 and 
case4 have near the same interpolating complexity as 
twice much as those in case2 and case3.these relations are 
very useful to optimize the design of the interpolation 
architecture. 
                                        

3. THE ARCHITECTURE OF 6-TAP 
INTERPOLATION FOR MC  

 
The data transfer scheme of the AB2 type architecture 
[5][6] is very suitable for the two-dimension data transfer 
process such as the MC interpolation. Base on it, the new 
architecture is devised and showed as Fig.2. In the 
architecture the ‘N’ and ‘M’ is decided by the partition of 
the MB. Two parts are included in this architecture. One  
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Fig.2 interpolation architecture of  N×M block  

 
is the part of the pixel data transfer, and the other is the 
part of ALU.  
 
3.1 Pixel Data Transfer Scheme 
 
The scheme has a register array which has N+5 row and   
6 column registers used to reserve the data for the current 
or later processing. There are two type registers in the 
array, one is the active pixel register (Aij register) which 
serves the current processing. And the other is the passive 
pixel register (P register) which stores the data for the 
later processing. Active rectangle signed by the shadow 
area in Fig.2 has 6×6 active pixel registers used to hold 
the MB samples for the current calculation of 1/2 or 1/4 
interpolation. Passive rectangle composed of (N-1)×6 
passive pixel registers is used to buffer the pixel data for 
later calculation. The data transfer in three ways: upwards, 
downwards and to the left.  
To the left :one column with N+5 pixels is shifted into the 
most right side of the array through the set of input 
registers, at the same time each pixel in the array is shifted 
one position to the left.  
Downwards: pixels are shifted downward (in Fig.2) one 
position per cycle. 
Upwards: pixels are shifted upward (in Fig.2) one 
position per cycle. 
For a N×M block partition, the pixels transfer scheme is 
presented as below: 
Initial data in the buffer: 6 operations of “to the left” 
For (I= 0; I <=M/2; I++){ 

N-1 operations of “downwards”;(for achieving results 
of an even line interpolation)  
1 operations of “to the left”; 
N-1 operations of “upwards”; (for achieving results of 
an odd line interpolation)  
1 operations of “to the left”; 

} 
So total cycles needed by interpolating a partition of N×
M is:  
cycleN×M=6×cycleleft + (N-1+cycleleft)×M + cycledelay(1) 
Where cycleleft represents the cycles of the operation “to 
the left”, and cycledelay represents the cycles delayed by 
ALU showed in Fig.3.  
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Fig.3 the ALU 

 
3.2 the ALU 
 
The ALU (in Fig.3) is responsible for the calculation of 
the fractional samples. According section 2, these samples 
are classified by five cases. The ALU has Night filters in 
order to have the parallelization in all conditions of 



motion vector. Block named “Fir_x” is the special used 
filter for processing the fractional sample ‘x’. And the 
architecture of “Fir_x” is shown in Fig.4 in which an 
adder tree is adopted instead of the multiplication. The 
data for calculating a certain fractional sample are derived 
directly from the active rectangle in Fig.2 simultaneously 
and inputted into the ALU at the same time also. In Fig.3, 
Some full samples or half samples must be delayed for 
matching the latency of filters, such as ’G’ for calculating 
‘a’ and ‘h’ for ‘i’. The function of MUX UNIT is to select 
the output pixels for later processing according to motion 
vector when result belongs to case2, case3 or case5. The 
operation of “clip1” is in the MUX UNIT, and applied 
before pixels are exported. 
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Fig.4 the architecture of filter 

 
4. EXPERIMENTAL RESULTS  

 
Since the whole AVC decoder pipeline is based on 8×8 
blocks, the 8× 8 block partition is adopted in the 
implementation of the architecture in Fig.2. However, by 
control, the implementation can fit all the partitions.  
The implementation was described using Verilog-HDL, 
and synthesized with synopsys tools using 0.25um 
Standard Cell Library. The total area is about 287475.875 

um
2. The cycledelay of the formula (1) in the ALU is eight 

cycles at most and the cycleleft is one cycle in the 
implementation. So the maximum number of the cycles in 
8× 8 partition is 78. And the critical path of the 
architecture is 4.84ns which may satisfy the decoder 
applications such as SDTV or HDTV.  
 

5. CONCLUSION 
 
An efficient architecture for MC interpolation of AVC is 
proposed in this paper. The data transfer scheme of this 
architecture solves the problem of memory access in MC 
perfectly. The experimental results show that the proposed 
architecture can meet the need for the real-time 
implementation of AVC decoder for SDTV or HDTV. 
 

6. REFERENCE 
 

[1] A. Joch, F. Kossentini, H. Schwarz, T. Wiegand, G. Sullivan, 
“Performance comparison of video coding standards using 
Lagrangian coder control” in Proc. International Conference on 
Image Processing, Vol. 2, pp: 501–504, 2002.  
[2] T. Wiegand, H. Schwarz, A. Joch, F. Kossentini, G.J. 
Sullivan, “Rate-constrained coder control and comparison of 
video coding standards” IEEE Trans. Circuits and Systems for 
Video Technology, Vol. 13, pp: 688–703, July 2003.  
[3] K. Denolf, C. Blanch, G. Lafruit, J. Bormans, “initial 
memory complexity analysis of the avc codec” IEEE Workshop 
on Signal Processing Systems (SIPS), pp: 222–227, 2002. 
[4] K. Sato, Y. ragasaki, “Adaptive mc interpolation for memory 
access reduction in JVT video coding” in Proc. Seventh 
International Symposium on Signal Processing and Its 
Applications, Vol. 1, pp: 77 –80, July 1-4, 2003.  
[5] Nuno Roma, Leonel Sousa: “A New Efficient VLSI 
Architecture for Full Search Block Matching Motion 
Estimation” VLSI-SOC, pp:253-264, 2001: Montpellier, France. 
[6] L. vos and M. Stegherr, “Parameterizable VLSI 
Architectures for the full-search Block-Matching Algorithm”, 
IEEE Transactions on Circuits and Systems, 36(10):1309-1316, 
October 1989. 
[7] M. Horowitz, A. Joch, F. Kossentini, A. Hallapuro, 
“H.264/AVC baseline profile decoder complexity analysis” 
IEEE Transactions on Circuits and Systems for Video 
Technology, Vol.13 Issue: 7, pp: 704 –716, July 2003.  
[8] J. Park, K. Muhammad and K. Roy, “High Performance FIR 
Filter Design Based on Sharing Multiplication,” IEEE 
Transactions on VLSI Systems (TVLSI), Vol.11, Issue: 2, pp: 
244-253,  April 2003. 
[9] H. Samueli, “On the design of optimal equiripple FIR digital 
filters for data transmission applications” IEEE Trans. Circuits 
Syst., vol. 35, pp. 1542-1546, Dec 1988. 
[10] N. Sankarayya, K. Roy, and D. Bhattacharya, “Algorithms 
for low power and high speed FIR filter realization using 
differential coefficients” IEEE Trans. Circuits Syst., vol. 44, pp. 
488-497, June 1997. 
[11]JVT:ISO/IEC and ITU-T, “Draft ITU-T Recommendation 
and Final Draft international Standard of Joint Video 
Specification”, Doc.JVT-G050r1, Geneva, Switzerland, May, 
2003. 


