
AN EFFICIENT VLSI ARCHITECTURE FOR MC INTERPOLATION IN AVC VIDEO
CODING

 Deng Lei1, Gao Wen2 Hu MingZeng1, Ji Zhen Zhou1

1Department of Computer Science and Engineering

Harbin Institute of Technology, Harbin 150001, china
2Institute of Computing Technology, Chinese Academy of Science,

Beijing, 100080, China
E-Mail: ldeng@jdl.ac.cn

ABSTRACT

Advance Video Coding (AVC) has employed a 6-tap
interpolation FIR filter in its motion compensation (MC)
part for high coding efficiency. But it is accompanied by
increasing the complexity in calculation and the number
of memory access. And this problem makes MC one of
the bottlenecks in the AVC system’s VLSI
implementation, especially for SDTV/HDTV which
aggravate the problem heavily. Unfortunately, most FIR
filter [8][9][10] have too low of input bandwidth to deal
with it. In this paper, an efficient architecture for MC
interpolation is described, and experimental results show
that this architecture satisfies AVC decoder applications
such as SDTV or HDTV.

1. INTRODUCTION

AVC standard also known as MPEG-4 Part 10 and H.264,
is jointly developed by ISO and ITU-T—Joint Video
Team (JVT). Compared with previous video coding
standards like MPEG-2 and H.263, AVC obtains higher
coding efficiency [1][2] with advanced features and
functionality like different block sizes, lagrangian coder
control, multiple reference frames, fractional pixel
precision, etc, at an increased implementation cost. The
partition of the AVC’s inter-coded block can be one of
seven types identified by lumina block sizes: 16×16, 16
×8, 8×16, 8×8, 8×4, 4×8, 4×4. MC interpolation of
the AVC employs a 6-tap FIR filter that needs the samples
not only inside the current block but also outside it. This
surely requires more memory bandwidth. The amount of
memory access for MC interpolation is about 50% in the
AVC decoder [3] [4]. And the time consumed by
interpolation processing is about 25% in the AVC decoder
major subsystems [7]. So MC becomes one of the most
data intensive parts of the AVC decoder, and a bottleneck

of implementation. The memory access and the high
transfer rate are the main troubles in the VLSI design of
the MC interpolation.
According to the limit of AVC level-4 [11] which is
SDTV or HDTV application level, the maximum macro-
block (MB) rate is 245760 MB/s (30 frame/s and 8192
MB in a picture). If using 150MHz clock, the time budget
is only 610 clock cycles assigned for the processing of
one MB which has four luma blocks and two chroma
blocks. And only slightly more than 100 cycles for a
single block averagely.
Realization of FIR filters can vary widely from one that
uses dedicated hardware multipliers and adders [8][9] to
one that uses code executed by a general purpose
processor. A combination of hardware and software that
allows sharing of hardware units like adders and
multipliers can also be used [10]. But these FIR filters
don’t fulfil the requirement of the interpolation in this
paper. Extra clock cycles are required by mentioned FIR
filters above between the processing for adjacent row or
column of MB to displace the MB data inside their
architectures. Extra clock cycles lead to the loss of
processing time significantly, and cut down the filter
efficiency. Moreover, these FIR filters have so insufficient
data input bandwidth that they only allow to input one
pixel data per cycle. For a 8×8 interpolated outcome the
algorithm or the filters require to deal with 169 input pixel
data [11], that means at least 169 cycles should be spent
here. Thinking about the time budget of a single block—
100 cycles, these FIR filters are so time-consuming that
they can not meet the requirement. After analyzing their
architecture thoroughly, we found that most of these FIR
filters only have one-dimension data transfer way. But
MC interpolation needs two-dimension MB data for
calculation. So these FIR filters have low behavior on this
interpolation.
The data transfer scheme adopted by The AB2 type
architecture [5][6] for motion estimation in video encoder
is very similar to the requirement of interpolation in this

paper. Compared with [6], Architecture of [5] reduced the
hardware demands, and was implemented more
economically.
The main goal presented in this paper is to arrange the
MB data transfer properly and exploit the large bandwidth
and high parallel architecture for MC interpolation of
AVC decoder applications with larger frame sizes such as
SDTV and HDTV. In section 2 of this paper, mc
interpolation algorithm is described. Section 3 describes
details of the implementation for the architecture of mc 6-
tap interpolation. Experimental results are given in
Section 4. The paper closes with a conclusion in Section5.

bb

a cE F I JG

h
d

n

H

m

A

C

B

D

R

T

S

U

M s NK L P Q

fe g
ji k
qp r

aa

b

cc dd ee ff

hh

gg

Fig.1

2. MC 6-TAP INTERPOLATION ALGORITHM

The aim of interpolation is to get the fractional samples
from the integer samples according to the motion vector.
In the AVC coding standard, the motion vector can point
to the quarter-pel-accuracy location by the last two bits.
Fig.1 shows the positions of integer samples (Squares
with uppercase letters) and fractional samples (Squares
with lowercase letters) for MC interpolation inside the
given two-dimensional sample array. In Fig.1 Squares
marked ‘b’, ‘h’, ‘j’, ‘m’ and ‘s’ are the same as those
labeled with double lowercase letters such as ‘aa’ which
are positions at half-pel-accuracy location. And those
others left and labeled with single lowercase letter are
quarter-pel-accuracy locations. According to different
locations pointed by motion vectors, fractional samples
have different interpolation processing. Here, this
processing is classified by five cases described below.
Case1: this is a special case, if the motion vector point to
the integer sample of ‘G’, no processing needs to do here.
And ‘G’ is directly output.
Case2: this case includes ‘b’, ‘h’, ‘s’ and ‘m’. And a 6-tap
interpolation filter (1, -5, 20, 20, -5, 1) needs as:

321012
' 520205 xxxxxxz +−++−= −− , and

)5)16'((1 >>+= zclipz .

Where z` represents intermedia variables of ’b`’, ‘h`’, ’s`’
or ’m`’, and z represents ’b’, ‘h’, ’s’ or ’m’. The
subscripts of x index horizontal or vertical neighbouring
integer-pixel locations. “clip1” stands for clipping
between[0, 255]. They shall be available after one 6-tap
filter execution time.
Case3: this case includes ‘a’, ‘c’, ‘d’, ‘n’, ‘e’, ‘g’, ‘p’, ‘r’,
which at least use one filtered half sample such as ‘b’ in
case2 (see table 1). And also shall be derived after one 6-
tap filter execution time.
Case4: only ‘j’ belongs to this case. ‘j’ shall be obtained
as follow:

hhggsbbbaaj +−++−= 520205 ''' , and

)10)512((1 ` >>+= jclipj
Where, variables of ‘aa’, ‘bb’, ‘b`’, ‘s`’, ‘gg’ and ‘hh’ are
available in the same manner of the intermedia variable
‘z`’ in case2. Because both ‘b`’ and ‘j`’ are derived by 6-
tap filter, ‘j’ shall be obtained after two serial 6-tap filter
execution times. So if ‘j’ is the final result of the
interpolation, the latency of hardware shall be twice as
much as ‘b’ in case2.

Case3 Case5
a (G + b + 1) >> 1
c (H + b + 1) >> 1

f (b + j + 1)>>1

d (G + h + 1) >> 1
n (M + h + 1) >> 1

i (h + j + 1)>>1

e (b + h + 1) >> 1
g (b + m + 1) >> 1

k (m + j +1)>>1

p (h + s + 1) >> 1
r (m + s + 1) >> 1

q (s + j + 1)>>1

Table 1

Case5: this case includes ‘f’, ‘i’, ‘k’, and ‘q’, which use
the half sample ‘j’ in case4. And so they shall be derived
after ‘j’ is done (table1).
Moreover, from the description above, it is clear to see the
relations among the five cases. Firstly, fraction samples in
case3 and case4 depend on those in case2, and also case5
depend on case4. Secondly, fraction samples in case5 and
case4 have near the same interpolating complexity as
twice much as those in case2 and case3.these relations are
very useful to optimize the design of the interpolation
architecture.

3. THE ARCHITECTURE OF 6-TAP
INTERPOLATION FOR MC

The data transfer scheme of the AB2 type architecture
[5][6] is very suitable for the two-dimension data transfer
process such as the MC interpolation. Base on it, the new
architecture is devised and showed as Fig.2. In the
architecture the ‘N’ and ‘M’ is decided by the partition of
the MB. Two parts are included in this architecture. One

B

A

P

P

D

C

P

P

J

I

H

G

F

E

P

P

Q

P

N

M

L

K

P

P

S

R

P

P

U

T

P

P

I
n
p
u
t

r
e
g
i
s
t
e
r

F
i
r
_
a
a

F
i
r
_
b
b

F
i
r
_
b

F
i
r
_
s

F
i
r
_
g
g

F
i
r
_
h
h

Fir_m

Fir_h

ALU

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

Fig.2 interpolation architecture of N×M block

is the part of the pixel data transfer, and the other is the
part of ALU.

3.1 Pixel Data Transfer Scheme

The scheme has a register array which has N+5 row and
6 column registers used to reserve the data for the current
or later processing. There are two type registers in the
array, one is the active pixel register (Aij register) which
serves the current processing. And the other is the passive
pixel register (P register) which stores the data for the
later processing. Active rectangle signed by the shadow
area in Fig.2 has 6×6 active pixel registers used to hold
the MB samples for the current calculation of 1/2 or 1/4
interpolation. Passive rectangle composed of (N-1)×6
passive pixel registers is used to buffer the pixel data for
later calculation. The data transfer in three ways: upwards,
downwards and to the left.
To the left :one column with N+5 pixels is shifted into the
most right side of the array through the set of input
registers, at the same time each pixel in the array is shifted
one position to the left.
Downwards: pixels are shifted downward (in Fig.2) one
position per cycle.
Upwards: pixels are shifted upward (in Fig.2) one
position per cycle.
For a N×M block partition, the pixels transfer scheme is
presented as below:
Initial data in the buffer: 6 operations of “to the left”
For (I= 0; I <=M/2; I++){

N-1 operations of “downwards”;(for achieving results
of an even line interpolation)
1 operations of “to the left”;
N-1 operations of “upwards”; (for achieving results of
an odd line interpolation)
1 operations of “to the left”;

}
So total cycles needed by interpolating a partition of N×
M is:
cycleN×M=6×cycleleft + (N-1+cycleleft)×M + cycledelay(1)
Where cycleleft represents the cycles of the operation “to
the left”, and cycledelay represents the cycles delayed by
ALU showed in Fig.3.

G,H or M pixel

Mux
unit

L
L
L
L

Fir_j

+

latch
latch
latch
latch

MUX

+

case3 case5 case4case2 case1

F
i
r
_
m
`

F
i
r
_
h
`

F
i
r
_
a
a

F
i
r
_
b
b

F
i
r
_
b
`

F
i
r
_
s
`

F
i
r
_
g
g

F
i
r
_
h
h

b,h,m or s

j

h
h

g
g

b
b

a
a

s
`

b
`

h
`m
`

G

8 bits 8 bits

8 bits

14 bits

Fig.3 the ALU

3.2 the ALU

The ALU (in Fig.3) is responsible for the calculation of
the fractional samples. According section 2, these samples
are classified by five cases. The ALU has Night filters in
order to have the parallelization in all conditions of

motion vector. Block named “Fir_x” is the special used
filter for processing the fractional sample ‘x’. And the
architecture of “Fir_x” is shown in Fig.4 in which an
adder tree is adopted instead of the multiplication. The
data for calculating a certain fractional sample are derived
directly from the active rectangle in Fig.2 simultaneously
and inputted into the ALU at the same time also. In Fig.3,
Some full samples or half samples must be delayed for
matching the latency of filters, such as ’G’ for calculating
‘a’ and ‘h’ for ‘i’. The function of MUX UNIT is to select
the output pixels for later processing according to motion
vector when result belongs to case2, case3 or case5. The
operation of “clip1” is in the MUX UNIT, and applied
before pixels are exported.

+

+

+

E

J

F

I

G

H

+

+

+
×4

+

×16

L
at
c
h

La
tc
h

La
t
ch

L
at
c
h

La
tc
h

La
t
ch

La
t
ch

La
t
ch

L
at
c
h

-

-

Fig.4 the architecture of filter

4. EXPERIMENTAL RESULTS

Since the whole AVC decoder pipeline is based on 8×8
blocks, the 8× 8 block partition is adopted in the
implementation of the architecture in Fig.2. However, by
control, the implementation can fit all the partitions.
The implementation was described using Verilog-HDL,
and synthesized with synopsys tools using 0.25um
Standard Cell Library. The total area is about 287475.875

um
2. The cycledelay of the formula (1) in the ALU is eight

cycles at most and the cycleleft is one cycle in the
implementation. So the maximum number of the cycles in
8× 8 partition is 78. And the critical path of the
architecture is 4.84ns which may satisfy the decoder
applications such as SDTV or HDTV.

5. CONCLUSION

An efficient architecture for MC interpolation of AVC is
proposed in this paper. The data transfer scheme of this
architecture solves the problem of memory access in MC
perfectly. The experimental results show that the proposed
architecture can meet the need for the real-time
implementation of AVC decoder for SDTV or HDTV.

6. REFERENCE

[1] A. Joch, F. Kossentini, H. Schwarz, T. Wiegand, G. Sullivan,
“Performance comparison of video coding standards using
Lagrangian coder control” in Proc. International Conference on
Image Processing, Vol. 2, pp: 501–504, 2002.
[2] T. Wiegand, H. Schwarz, A. Joch, F. Kossentini, G.J.
Sullivan, “Rate-constrained coder control and comparison of
video coding standards” IEEE Trans. Circuits and Systems for
Video Technology, Vol. 13, pp: 688–703, July 2003.
[3] K. Denolf, C. Blanch, G. Lafruit, J. Bormans, “initial
memory complexity analysis of the avc codec” IEEE Workshop
on Signal Processing Systems (SIPS), pp: 222–227, 2002.
[4] K. Sato, Y. ragasaki, “Adaptive mc interpolation for memory
access reduction in JVT video coding” in Proc. Seventh
International Symposium on Signal Processing and Its
Applications, Vol. 1, pp: 77 –80, July 1-4, 2003.
[5] Nuno Roma, Leonel Sousa: “A New Efficient VLSI
Architecture for Full Search Block Matching Motion
Estimation” VLSI-SOC, pp:253-264, 2001: Montpellier, France.
[6] L. vos and M. Stegherr, “Parameterizable VLSI
Architectures for the full-search Block-Matching Algorithm”,
IEEE Transactions on Circuits and Systems, 36(10):1309-1316,
October 1989.
[7] M. Horowitz, A. Joch, F. Kossentini, A. Hallapuro,
“H.264/AVC baseline profile decoder complexity analysis”
IEEE Transactions on Circuits and Systems for Video
Technology, Vol.13 Issue: 7, pp: 704 –716, July 2003.
[8] J. Park, K. Muhammad and K. Roy, “High Performance FIR
Filter Design Based on Sharing Multiplication,” IEEE
Transactions on VLSI Systems (TVLSI), Vol.11, Issue: 2, pp:
244-253, April 2003.
[9] H. Samueli, “On the design of optimal equiripple FIR digital
filters for data transmission applications” IEEE Trans. Circuits
Syst., vol. 35, pp. 1542-1546, Dec 1988.
[10] N. Sankarayya, K. Roy, and D. Bhattacharya, “Algorithms
for low power and high speed FIR filter realization using
differential coefficients” IEEE Trans. Circuits Syst., vol. 44, pp.
488-497, June 1997.
[11]JVT:ISO/IEC and ITU-T, “Draft ITU-T Recommendation
and Final Draft international Standard of Joint Video
Specification”, Doc.JVT-G050r1, Geneva, Switzerland, May,
2003.

