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We generalize the classic change-point problem to a “change-
set” framework: a spatial Poisson process changes its intensity on an
unobservable random set. Optimal detection of the set is defined by
maximizing the expected value of a gain function. In the case that the
unknown change-set is defined by a locally finite set of incomparable
points, we present a sufficient condition for optimal detection of the
set using multiparameter martingale techniques. Two examples are
discussed.

1. Introduction. In this paper, we consider the multiparameter version
of the classic optimal detection problem; the goal is to detect the occurrence
of a random set on which an observable Poisson process changes its intensity.
To be precise, we let N = {Nt, t ∈ R

2
+} be a nonexplosive point process

defined on the positive quadrant of the plane and let {τn} be its jump
points, numbered in some arbitrary way. Then Nt =

∑∞
n=1 I{τn≤t} (cf. [6]).

Here, “≤” denotes the usual partial order on R
2
+ : s= (s1, s2)≤ t= (t1, t2)⇔

s1 ≤ t1, s2 ≤ t2. On some random set ξ, the intensity of N changes from µ0

to µ1, where 0< µ0 < µ1: specifically, given ξ, N is a Poisson process with
intensity

µ0I{t/∈ξ} + µ1I{t∈ξ} = µ0 + (µ1 − µ0)I{t∈ξ}.

The problem is that the “change-set” ξ is unobservable and we must detect
ξ as well as possible, given our observation of the point process N . In par-
ticular, our goal is to find a random set ξ̂ that maximizes the expected value
of a specified valuation or gain function. The random set ξ̂ must be adapted
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to the underlying information structure: if the information available to us
at t ∈R

2
+ is represented by the σ-field Ft, then we must have {t ∈ ξ̂} ∈ Ft.

There are many potential areas of application. For example:

• Environment: The increased occurrence of polluted wells in a rural area
could indicate a geographic region that has been subjected to industrial
waste.

• Population health: Unusually frequent outbreaks of a disease such as
leukemia near a nuclear power plant could signal a region of possible
air or ground contamination.

• Astronomy: A cluster of black holes could be the result of an unobservable
phenomenon affecting a region in space.

• Quality control: An increased rate of breakdowns in a certain type of
equipment might follow the failure of one or more components.

• Archaeology: An increased number of archaeological items such as ancient
coins found in a particular region could indicate the location of an event
of historical interest.

• Forestry: The spread of an airborne disease through a forest would occur
at a higher rate on ξ, the set of points to the northeast of the (unobserved)
point (σ) of initial infection if the prevailing winds are from the southwest.

It is this final type of example, illustrated in Figure 1, that motivates the
model to be studied in this paper.

Fig. 1. A change-set ξ generated by a single point σ.
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As will be discussed in the conclusion, this paper represents only a first
step in the solution of what we call the “optimal set-detection problem.”
Here, we consider the case in which the change-set ξ is a random upper
layer (cf. Section 2) generated by a locally finite set of incomparable points.

In general, the optimal solution ξ̂ will be a random upper layer which is
adapted to the available information structure. This means that the solution
is exact in the sense that it is explicitly defined by the observed data points.
This problem cannot be solved by one-parameter methods. Indeed, even if
the random set is characterized by a single change-point, it will be seen that
the optimal solution does not necessarily correspond to a point.

In the one-parameter case, the optimal detection of an exponential change
time in a Poisson process was thoroughly studied in [5] using martingale
techniques combined with Bayesian arguments (see also [13] for a different
approach to the same problem). In the general set-indexed framework, we
found only a very few papers addressing the problem of a change-point or a
change-set (cf. [4], [10] and [11]). However, none of these papers deal with the
question of the existence of an optimal solution to the detection problem.
Our approach, inspired by that of [5], makes use of the general theory of
set-indexed martingales as developed in [6]. We are then able to solve the
problem with a Bayes-type formula.

The paper is structured as follows. In the next section, the model is pre-
sented and the optimal detection problem is formally defined. In Section 3,
we give the necessary background for the multiparameter martingale ap-
proach that is the key for proving the existence of an optimal solution, and
develop a semimartingale representation of the gain function. In Section 4,
sufficient conditions for the existence of an optimal solution are developed,
and then applied to two examples in Section 5. Finally, in Section 6, we
discuss possible extensions and directions for further research.

2. The model. In order to better understand the two-dimensional model,
we review the change-point problem on R+ considered in [5]. We have a
nonexplosive point process N = {Nt, t ∈R+} on R+, and a random time σ ≥
0. Given σ, N is a Poisson process with intensity µ0 on [0, σ) and intensity
µ1 on ξ = [σ,∞) (µ1 > µ0 > 0). Modifying the notation of [5] slightly, the
gain function at t is defined by

Zt = c0(t ∧ σ)− c1(t− σ)+ + k0 + k1I{t≥σ},(1)

where c0 ≥ 0, c1 > 0 and k1 ≥ 0. The parameters can be interpreted as fol-
lows: the gain function is piecewise linear, increasing at rate c0 before the
jump point and decreasing at rate c1 after. When k1 > 0, a penalty equivalent
to −k1 is incurred for stopping the process before the change has occurred.
The gain is maximized when t= σ.



4 B. G. IVANOFF AND E. MERZBACH

Let F = (Ft, t ∈R+) denote the filtration which characterizes the under-
lying information available (in [5], the process N is always F -adapted). For
various filtrations, it is shown in [5] that Zt has a smooth semimartingale
(SSM) representation with respect to F :

Zt = Z0 +

∫ t

0
Us ds+Mt,(2)

where M is an F -martingale and U is F -progressive (i.e., observable). If U
is monotone in the sense that Ut ≤ 0⇒ Ut+h ≤ 0∀h > 0, then it is straight-
forward to see that (cf. [5], Theorem 1) σ̂ := inf{t :Ut ≤ 0} is an optimal
F -stopping rule for Z in terms of expected values: we have

E[Zσ̂ ] = sup{E[Zτ ] : τ an F -stopping time}.(3)

To motivate the model on R
2
+, we will rewrite (1) in terms of the single

jump point process Lt = I{σ≤t} and the random set ξ = [σ,∞) = {t : Lt > 0}:

Zt = c0|At ∩ ξc| − c1|At ∩ ξ|+ k0 + k1Lt
(4)

= k0 +

∫

At

(−c1 + (c0 + c1)Xu)du+ k1Lt,

where At = [0, t], | · | denotes Lebesgue measure andXt = 1−I{t∈ξ} = I{Lt=0}.
We are now ready to describe the two-dimensional model. We are given a

random Borel set ξ ⊂ (0,∞)2. N is a nonexplosive point process on R
2 such

that given ξ, N is Poisson with intensity µ0 on ξc and µ1 on ξ. It is always
assumed that µ1 > µ0 > 0. (The case µ0 = 0 will be briefly discussed at the
end of Section 4.) We will assume that the set ξ is generated by a single line
point process L: that is, L is a nonexplosive point process whose jump points
are all incomparable (s, t ∈R

2
+ are incomparable if both s 6≤ t and t 6≤ s). It

is noted in [7] that in two or more dimensions, the single line process is the
natural generalization of the single jump process, and in analogy with the
change-point model on R+, we define ξ := {t :Lt > 0}. We observe that ξ is
an upper layer (ξ is an upper layer if t ∈ ξ ⇒ s ∈ ξ ∀s≥ t). When L has only
one jump point σ, we observe that ξ consists of the points to the northeast
of σ. This is illustrated in Figure 1. The more general situation in which L
is a single line process is illustrated in Figure 2. In this case, ξ consists of
all the points to the northeast of one or more jump points of L.

Using notation similar to that used for the one-dimensional problem, for
t ∈R

2
+ let At = {s ∈R

2
+ : s≤ t} and Xt = 1−I{t∈ξ} = I{Lt=0}. The definition

of the gain function at t ∈R
2
+ is exactly the same is in (4):

Zt = c0|At ∩ ξc| − c1|At ∩ ξ|+ k0 + k1Lt
(5)

= k0 +

∫

At

(−c1 + (c0 + c1)Xu)du+ k1Lt.
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Once again, we assume that c0 ≥ 0, c1 > 0 and k1 ≥ 0, and that | · | denotes
Lebesgue measure on R

2
+.

Fig. 2. A change-set ξ generated by a single line process L.

Fig. 3. A lower layer B and the change-set ξ.
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Any point process N can be indexed by the Borel sets in R
2
+. As in the

Introduction, if {τn} denotes the jump points of N numbered in some arbi-
trary way, then for any Borel set B, N(B) :=

∑∞
n=1 I(τn ∈ B). [Therefore,

we have Nt =N(At).] Consequently, we can define the gain function more
generally over the class of lower layers L: a set B ⊆R

2
+ is a lower layer if

t ∈B ⇒At ⊆B ∀t ∈R
2
+. The gain function at B ∈ L is defined as

Z(B) = c0|B ∩ ξc| − c1|B ∩ ξ|+ k0 + k1L(B)
(6)

= k0 +

∫

B
(−c1 + (c0 + c1)Xu)du+ k1L(B).

A lower layer B and the change-set ξ are illustrated in Figure 3; we observe
that L(B) = 2 in this case.

We see that the gain function defined in (6) is a natural generalization
of the one-dimensional gain function (1). The gain evaluated at B increases
in proportion to the area of B outside of the change-set ξ, and decreases in
proportion to the area inside of ξ. When k1 > 0, there is a penalty incurred
that is equivalent to −k1 times the number of points in L that lie outside of
(or “after”) B. The gain is maximized when B = ξc.

We would like to find a random lower layer that maximizes the expected
value of the gain function. The lower layer will depend on the available
information, or more precisely, the underlying filtration.

A class of σ-fields F = {Ft, t ∈R
2
+} is a filtration if:

• F is increasing: s≤ t⇒Fs ⊆Ft, and
• F is outer-continuous: Ft =

⋂

nFtn for every decreasing sequence (tn)⊂
R

2
+ with tn ↓ t.

Definition 2.1 (Cf. [6]). A closed random lower layer ρ is an F -stopping
set if

{t ∈ ρ} ∈ Ft ∀t ∈R
2
+.

The general optimal set-detection problem in two dimensions can now be
stated as follows: for a given filtration F , our goal is to maximize E[Zρ],
where ρ is an F -stopping set. If it can be shown that a stopping set ρ̂ exists
that satisfies the condition

E[Z(ρ̂)] = sup{E[Z(ρ)] :ρ an F -stopping set},(7)

then our optimal estimate of ξ is ξ̂ = ρ̂c [(·) denotes set closure]. It is trivial

that ξ̂ is an upper layer, and by outer continuity of F , it is easily seen that
ξ̂ is also an adapted random set (i.e., {t ∈ ξ̂} ∈ Ft ∀t ∈R

2
+).

In this paper, we will be focussing on the sequential estimation problem:
that is, we will be assuming that Ft = FN

t = σ{Ns : s ≤ t}. If ρ is an FN -
stopping set, then I(t ∈ ρ) is a function of the number and locations of jump
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points of N in the set At. For technical reasons, we shall see that in general
it is necessary to restrict the detection problem to a bounded rectangle
R = [0, r]2. The goal is to find a stopping set ρ̂⊆ R that is optimal in the
following sense:

Definition 2.2. An FN -stopping set ρ̂ is called an optimal solution to
the sequential detection problem on R provided that ρ̂ satisfies the following
equation:

E[Z(ρ̂)] = sup{E[Z(ρ)] :ρ⊆R an FN -stopping set}.(8)

Restricting our attention to R ensures that ρ̂ is bounded and so E[Z(ρ̂)]

is always well defined. In this case, we have an optimal estimate ξ̂R of ξ ∩R,
defined by ξ̂R =R \ ρ̂.

3. Mathematical preliminaries. In this section we present the mathe-
matical tools needed in the sequel. In [5], Herberts and Jensen make use
of martingale techniques to provide a simple and elegant method of finding
sufficient conditions for the existence of an optimal solution to the detection
problem on R+. Martingale methods have been extended to more general
spaces in [6], and we are able to exploit this theory in a similar way. To
motivate the necessary technical details that follow, we first describe our
overall plan of attack. Recall that FN denotes the filtration representing
the data that can be observed, and below G will denote a larger filtration
containing additional information, some of which cannot be observed.

Plan of attack :

• The gain function Z can be rewritten as a (two-parameter) semimartingale
(Definition 3.7):

ZB = k0 +

∫

B
Ut dt+ k1MB ,

where M is a weak martingale (Definition 3.1) with respect to a filtration
G and U is G-adapted but not necessarily observable (cf. Lemma 3.14).

• For the observable filtration FN and ρ an FN -stopping set, we have
E[Mρ] = 0 (Lemma 3.6) and if Vt = E[Ut|F

N
t ] (observable), then

(Lemma 3.10)

E[Zρ] = k0 +E

[
∫

ρ
Ut dt

]

= k0 +E

[
∫

ρ
Vt dt

]

.

• If V satisfies a monotonicity property on R (cf. Definition 3.8 and
Lemma 3.10), then there exists an optimal solution ρ̂ to the sequential
detection problem on R, and the optimal estimate of ξ ∩R is

ξ̂R = {t ∈R :Vt ≤ 0}.
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Keeping this outline of our approach in mind, we continue with the nec-
essary mathematical details.

3.1. Martingale preliminaries. Martingales on R
2
+ can be defined in var-

ious ways (cf. [6]), but here we need only the weakest definition. In what
follows, T denotes either R2

+ or a bounded region R= [0, r]2, and (Ω,F , P )
is a complete probability space equipped with a T -indexed filtration F =
{Ft : t ∈ T} (without loss of generality, assume that Ft contains all the P -
null sets ∀t ∈ T ). A T -indexed process X = {Xt : t ∈ T} is adapted to F if Xt

is Ft-measurable, for all t ∈ T . For any T -indexed process X = {Xt : t ∈ T},
for s= (s1, s2)≤ (t1, t2) = t ∈ T , define the increment of X over the rectangle
(s, t] = (s1, t1]× (s2, t2] in the usual way:

X(s, t] =X(t1,t2) −X(s1,t2) −X(t1,s2) +X(s1,s2).

Definition 3.1. Let M = {Mt : t ∈ T} be an integrable process on T ,
adapted to a filtration F = {Ft : t ∈ T}. M is a weak F -(sub)martingale if
M is equal to 0 on the axes, and for every s≤ t ∈ T ,

E[M(s, t]|Fs] = (≥)0.

(A process X is integrable if E[|Xt|]<∞∀t ∈ T .)

Definition 3.2. Let v = {vt : t ∈ T} be a function on T . We say that v
is increasing (decreasing) if:

• v is 0 on the axes,
• v is outer continuous with inner limits: that is, v is continuous from above

and with limits from the other three quadrants at each t ∈ T , and
• for every s≤ t ∈ T , v(s, t]≥ (≤)0.

A process V = {Vt : t ∈ T} is increasing (decreasing) if for each ω ∈ Ω, the
function V

·
(ω) is increasing (decreasing).

Comment 3.3. An increasing function v can be regarded as the distri-
bution of a measure on R

2
+. Therefore, v(B) is well defined for any Borel

set B, where we use v
·
and v(·) to denote, respectively, the function and

the generated measure. Likewise, a decreasing function generates a negative
measure, and we will use similar notation.

Definition 3.4. Let L be a weak F -submartingale. An increasing pro-
cess Λ is a compensator for L if Λ is F -adapted and M = L−Λ is a weak
martingale.
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Comment 3.5. As defined above, the compensator of a submartingale
need not be unique (any increasing process is trivially a compensator for
itself). A type of predictability is required for uniqueness (cf. [6]), but this
point is not of importance here.

In light of Comment 3.3, the following lemma is a special case of of
Lemma 3.3.5 of [6].

Lemma 3.6. If M is a weak martingale which can be expressed as the
difference of two increasing integrable processes, and ρ is a stopping set such
that ρ⊆R= [0, r]2, then M(ρ) is well defined and E[M(ρ)] = 0.

Definition 3.7. Let Z = {Zt : t ∈ T} be a process on T , adapted to a
filtration F = {Ft : t ∈ T}. Z is a smooth semimartingale with respect to F
(F -SSM) if it satisfies a decomposition of the form

Zt = Z(0,0) +

∫ t1

0

∫ t2

0
U(s1,s2) ds2 ds1 +Mt(9)

for each t= (t1, t2) ∈ T , where U is an outer continuous process with inner
limits adapted to F and M is a weak F -martingale. We denote the F -SSM
as Z = (U,M).

In order to show that an optimal solution exists to the sequential detection
problem, we will require a monotonicity property.

Definition 3.8. A function v = {vt : t ∈ T} is monotone on T if vs ≤
0⇒ vt ≤ 0∀t≥ s ∈ T . A process V is monotone if V

·
(ω) is monotone for each

ω ∈Ω.

Comment 3.9.

1. Note that any decreasing function is monotone, but the converse is not
true.

2. If a process V is decreasing in each parameter separately on T , then V
is monotone on T but not necessarily decreasing in the sense of Defini-
tion 3.2.

3. Note that if V is monotone, then Vt > 0⇒ Vs > 0∀s≤ t.
4. If V is monotone and adapted to a filtration F , the set

ρ̂= {t ∈ T :Vs > 0∀s≪ t}(10)

is an F -stopping set (cf. Definition 2.1). [s= (s1, s2)≪ (t1, t2) = t⇔ si <
ti if ti > 0, and si = 0 if ti = 0, i = 1,2.] Clearly, ρ̂ is a random closed
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lower layer, and the fact that V is adapted ensures that {t ∈ ρ̂} ∈ Ft:
taking any sequence (tn) ↑ t with tn ≪ t, by monotonicity it follows that

{t ∈ ρ̂}=
⋂

n

{Vtn > 0} ∈
⋃

n

Ftn ⊆Ft.

In [5], the solution to the optimal stopping problem is based on a SSM
representation of the form (2), which in turn is based on a projection theo-
rem. The question of the existence of optional and predictable projections in
higher dimensions is a delicate one, usually requiring a strong assumption of
conditional independence on the underlying filtration [denoted (F4) in the
two-dimensional literature]. For details, see [12], for example. In practice,
one can generally show directly that a suitable projection exists without
relying on a general existence theorem, and for our purposes the following
lemma will be adequate.

Lemma 3.10. Let U be a bounded T -indexed process adapted to a filtra-
tion G such that U is outer-continuous with inner limits. If F is a subfil-
tration of G (i.e., Ft ⊆ Gt ∀t), and if a version of Vt = E[Ut|Ft] exists that
is outer-continuous with inner limits, then for any F-stopping set ρ⊆R=
[0, r]2,

E

[
∫

ρ
Ut dt

]

=E

[
∫

ρ
Vt dt

]

.(11)

In addition, if V is monotone on R, then the F-stopping set ρ̂⊆R defined
by

ρ̂= {t ∈R :Vs > 0∀s≪ t}(12)

is optimal in the sense that

E

[
∫

ρ̂
Ut dt

]

= sup

{

E

[
∫

ρ
Ut dt

]

:ρ⊆R,ρ an F-stopping set

}

.

Proof. First, the assumption that U and V have sample paths that are
regular (outer-continuous with inner limits) and that U (and hence V ) is
bounded ensures that the integrals and expectations in (11) are well defined.

Next, let Tn := {( i
2n r,

j
2n r) : 0≤ i, j ≤ 2n} denote the “dyadics” of order n

in R. The class of rectangles Cn partitions R, where C ∈ Cn if C is of the
form C = At \ (

⋃

s∈Tn,s 6≥tAs) for some t ∈ Tn. Let tC− = inf{t ∈ C} denote

the lower left corner of C. We now define the “discrete” approximation ρn
of ρ by

ρn =
⋃

C∈Cn:tC−∈ρ

C.
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It is straightforward that ρn ⊆R is an F -stopping set, that (ρn) is decreasing
in n and ρ =

⋂

n ρn. Boundedness and uniform integrability ensure that
E[

∫

ρUt dt] = limnE[
∫

ρn
Ut dt] and E[

∫

ρ Vt dt] = limnE[
∫

ρn
Vt dt]. To complete

the proof of the first statement in the theorem, observe that by boundedness
of U ,

E

[
∫

ρn

Ut dt

]

= E

[

∑

C∈Cn

I{tC−∈ρ}

∫

C
Ut dt

]

= E

[

∑

C∈Cn

I{tC−∈ρ}E

[
∫

C
Ut dt

∣

∣

∣
FtC−

]]

= E

[

∑

C∈Cn

I{tC−∈ρ}E

[
∫

C
E[Ut|Ft]dt

∣

∣

∣
FtC−

]]

= E

[

∑

C∈Cn

I{tC−∈ρ}E

[
∫

C
Vt dt

∣

∣

∣
FtC−

]]

= E

[

∑

C∈Cn

I{tC−∈ρ}

∫

C
Vt dt

]

=E

[
∫

ρn

Vt dt

]

.

The third equality above follows by Fubini and the assumption that V has
regular sample paths, and since t ∈ C ⇒ t ≥ tC−. [The assumption that V
has a version with regular sample paths ensures that V is jointly F×B(R2

+)-
measurable, where B(R2

+) denotes the Borel sets in R.]
Next, assume that V is monotone. To prove optimality of ρ̂, let ρ⊆R be

any other stopping set in R. We have

E

[
∫

ρ̂
Ut dt−

∫

ρ
Ut dt

]

=E

[
∫

ρ̂\ρ
Vt dt−

∫

ρ\ρ̂
Vt dt

]

≥ 0,

since V > 0 on ρ̂o (the interior of ρ̂) and V ≤ 0 on ρ̂c. �

3.2. Smooth semimartingale representation of the gain function. We be-
gin this section with an analysis of the single line process Lt: L is a non-
explosive point process whose jump points are all incomparable. Single line
processes and their compensators were discussed in [7], to which the reader
may refer for more detail. Heuristically, if FL

s = σ(Lu :u≤ s), then a process
Λ will be an FL-compensator of L if

Λ((s1, s2), (s1 + ds1, s2 + ds2)])

≈ I{Ls=0}E[L((s1, s2), (s1 + ds1, s2 + ds2)])|Ls = 0],

since L cannot have any jump points in ((s1, s2), (s1 + ds1, s2 + ds2)]) if
Ls > 0 and {Ls = 0} is an atom of FL

s . Define the (deterministic) increasing
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function Λ
(s)
t :=E[L(s, t]|Ls = 0], for t≥ s, and when it exists, let

λs = lim
t1↓s1,t2↓s2

Λ
(s)
t

(t1 − s1)(t2 − s2)
.

In particular, if λs exists for every s ∈ T and is Lebesgue measurable, then

Λt =

∫

At

λuI{Lu=0} du.(13)

In what follows (and as will be seen to be the case in our examples), we
will assume that a representation of the form (13) exists for the compensator
Λ of L, and we will refer to the deterministic function λ as the weak hazard
function of L. It will always be assumed that λ is continuous.

To better understand the weak hazard, we observe that if E[L] of L is ab-

solutely continuous with respect to Lebesgue measure with Radon–Nikodym
derivative λ̃, then for every u ∈ T with P (Lu = 0)> 0, λu = λ̃u/P (Lu = 0).
To see this, simply observe that for each t ∈ T ,

∫

At

λ̃u du=E[Lt] =E[Λt] =

∫

At

λuP (Lu = 0)du.(14)

Returning to the gain function (6), let M denote the weak martingale
L−Λ and recall that Xu = I{Lu=0}. For any lower layer B ⊆ T ,

Z(B) = k0 +

∫

B
(−c1 + (c0 + c1)Xu)du+ k1L(B)

(15)

= k0 +

∫

B
(−c1 + (c0 + c1 + k1λu)Xu)du+ k1M(B).

We note that X is outer-continuous with inner limits by definition and that λ
is assumed to be continuous, and so we now have an FL-SSM representation
of the gain function: Z = (U,M), where Ut :=−c1 + (c0 + c1 + k1λt)Xt.

Comment 3.11. As a simple illustration, if the point process L and the
set ξ = {t :Lt > 0} are unobservable and no other information is available
(i.e., N is not observed and Ft = {∅,Ω}∀t ∈ T ), then for R= [0, r]2, we are

looking for a deterministic set B̂ ⊆R that maximizes

E[Z(B)] =E

[

k0 +

∫

B
(−c1 + (c0 + c1 + k1λu)Xu)du+ k1M(B)

]

(16)

= k0 +

∫

B
(−c1 + (c0 + c1 + k1λu)P (Lu = 0))du.

Letting Vu = [−c1 + (c0 + c1 + k1λu)P (Lu = 0)], it is easily seen that V is
deterministic and an optimal solution for the detection problem exists if V
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is monotone, in which case

B̂ = {t ∈R :Vu > 0∀u≪ t}
(17)

=

{

t ∈R :P (Lu = 0)>
c1

(c0 + c1 + k1λu)
∀u≪ t

}

.

The optimal estimate of ξ ∩R is

ξ̂R =

{

t ∈R :P (Lt = 0)≤
c1

(c0 + c1 + k1λt)

}

.

Example 3.12 (The single jump process). Suppose Lt = I{Y ∈At}, where
Y is a T -valued random variable with distribution F and continuous density
f . Then we have λu =

fu
1−Fu

. To verify that the representation (13) is satisfied

with this definition, observe first that E[L(s, t]|FL
s ] =

F (s,t]
1−Fs

I{Ls=0}. Next,

E

[
∫

(s,t]

fu
1−Fu

I{Lu=0} du
∣

∣

∣
Fs

]

=

∫

(s,t]

fu
1−Fu

P (Lu = 0|Fs)du

=

∫

(s,t]

fu
1−Fu

·
1−Fu

1− Fs
I{Ls=0} du

=
F (s, t]

1−Fs
I{Ls=0}.

Thus, the increasing process Λt =
∫

At
λsI(Ls = 0)ds is a FL-compensator

for L, verifying (13).
It should be noted that in the literature on bivariate survival analysis,

the definition of the hazard function is fu
Su

where Su = P (Y ≥ u). For this

reason, we refer to our hazard λ= f
1−F as the “weak” hazard.

Returning to Comment 3.11, when no information is available, V is de-
creasing and (17) defines an optimal deterministic solution if f is decreasing
in each parameter.

Example 3.13 (First line of a Poisson process). Consider a homoge-
neous Poisson process J on T with rate γ. If ∆J denotes the set of jump
points of J , then the first line of J is the single line point process L with
(incomparable) jump points

∆L =min(∆J) = {τ ∈∆J : τ
′ 6≤ τ ∀τ ′ ∈∆J such that τ ′ 6= τ}.

In this case, ξ = {t :Lt > 0}= {t :Jt > 0}. As is shown in [7], the weak hazard
of L is γ.

Considering the situation in Comment 3.11 when no information is avail-
able, we have Vu =−c1 +(c0 + c1 + k1γ)e

−γu1u2 , which is clearly monotone.
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In this case, the optimal solution given in (17) becomes

B̂ =

{

t ∈R : e−γt1t2 ≥
c1

(c0 + c1 + k1γ)

}

=

{

t ∈R : t1t2 ≤
ln(c0 + c1 + k1γ)− ln(c1)

γ

}

and

ξ̂R =

{

t ∈R : t1t2 ≥
ln(c0 + c1 + k1γ)− ln(c1)

γ

}

.

We are now ready to return to the sequential detection problem, and
consider the case in which the process N is observed (recall that N is
a Poisson process with rate µ0 on ξc and µ1 on ξ). We denote the full

filtration FL,N = {FL,N
t : t ∈ T}, where FL,N

t = σ{Ls,Ns, s ≤ t}, and (as
before) the subfiltrations FL = {FL

t : t ∈ T} and FN = {FN
t : t ∈ T} where

FL
t = σ{Ls : s ≤ t} and FN

t = σ{Ns : s ≤ t}. Although we defined the weak
hazard of L with respect to FL, it is easy to see that given the full filtra-
tion FL,N , L− Λ is still a weak FL,N -martingale. This follows because on
{Ls = 0}= {s ∈ ξc}, N is a Poisson process with rate µ0 on As and so N |As

(N restricted to As) adds no additional information about the behavior of
Lt for t > s. Formally, we have

E[L(s, t]|FL,N
s ] = I{Ls=0}Λ

(s)
t =E[L(s, t]|FL

s ].

Therefore, from this discussion we have the following lemma and we are
ready to proceed with finding an optimal solution to the sequential detection
problem.

Lemma 3.14. Equation (15) defines an FL,N -SSM representation of the
gain function Z: Z = (U,M) where Ut :=−c1 + (c0 + c1 + k1λt)Xt.

4. Optimal solution to the sequential detection problem. We consider
the FL,N -SSM representation of the gain function (15):

Z(B) = k0 +

∫

B
(−c1 + (c0 + c1 + k1λu)Xu)du+ k1M(B).

In order to find sufficient conditions for the existence of an optimal solution
in the sequential case, we will be appealing to Lemma 3.10, with G =FL,N ,
F =FN and Ut =−c1 + (c0 + c1 + k1λt)Xt. In order to find Vt =E[Ut|F

N
t ],

it is enough to determine

E[Xt|F
N
t ] = P (Lt = 0|FN

t ).
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As in [5], we use a Bayesian argument. The first step is to determine the
conditional likelihood ℓN |L(t) of N |At given L and use this to find the like-
lihood ℓN (t) of N |At . Next we find the conditional likelihood ℓN |Lt=0(t) of
N |At on the set {Lt = 0}. Finally, we have

E[Xt|F
N
t ] = P (Lt = 0|FN

t )
(18)

=
ℓN |Lt=0(t)×P (Lt = 0)

ℓN (t)
.

When computing the likelihood ℓN |L, in fact it is equivalent to condition
on the random upper layer ξ = {u :Lu > 0}. To see this, let (U , dH) denote
the collection of closed upper layers in T endowed with the Hausdorff metric.
It is shown in [8] that (U , dH) is a complete separable metric space and that
ξ can be regarded as the unique jump point in a single jump process L̃ on
U ; in addition, L determines and is determined by L̃. In particular, Lt >
0⇔ t ∈ ξ ⇔ Et ⊆ ξ, where Et = {s ∈ T : s ≥ t}. Let µξ denote the measure
induced by ξ on U .

Given L, or equivalently ξ, N is a Poisson process with rate µ0 on ξc and
µ1 on ξ. Using the well-known likelihood for the Poisson process (cf. [3],
page 22), we have

ℓN |L(t) = ℓN |ξ(t)

= e−µ0|At\ξ|µ
N(At\ξ)
0 e−µ1|At∩ξ|µ

N(At∩ξ)
1(19)

= e−µ0|At|µNt
0 e−(µ1−µ0)|At∩ξ|

(

µ1

µ0

)N(At∩ξ)

.

By considering separately the events {Lt = 0}= {t /∈ ξ}= {Et 6⊆ ξ}= {At ∩
ξ =∅} and {Lt > 0}= {t ∈ ξ}= {Et ⊆ ξ}, we use (19) obtain

ℓN (t) = P (Lt = 0)e−µ0|At|µNt
0

+e−µ0|At|µNt

0

∫

{D∈U :Et⊆D}
e−(µ1−µ0)|At∩D|

(

µ1

µ0

)N(At∩D)

dµξ(D)(20)

= e−µ0|At|µNt
0 [P (Lt = 0) + e−(µ1−µ0)|At|Qt],

where

Qt =

∫

{D∈U :Et⊆D}
e(µ1−µ0)|At\D|

(

µ1

µ0

)N(At∩D)

dµξ(D).(21)

Before continuing, we observe that since µ1 > µ0, Q is increasing in each
parameter separately because each term in the integrand is increasing in
each component for D fixed, and the range of integration is increasing since
the set Et decreases with each component.
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Next, if Lt = 0, then N |At is Poisson with rate µ0, and so

ℓN |Lt=0 = e−µ0|At|µNt
0 .(22)

Substituting (20) and (22) in (18), we obtain

E[Xt|F
N
t ] =

e−µ0|At|µNt
0 P (Lt = 0)

e−µ0|At|µNt

0 [P (Lt = 0) + e−(µ1−µ0)|At|Qt]
(23)

=
1

1 + qtQt
,

where qt =
e−(µ1−µ0)|At|

P (Lt=0) . [If P (Lt = 0) = 0, (23) remains formally valid since

E[Xt|F
N
t ] = 0 and qt =∞.] We are now ready to state our main result:

Theorem 4.1. Let L be a single line process with continuous weak haz-
ard λ, and define the function q by

qt =
e−(µ1−µ0)t1t2

P (Lt = 0)
for t= (t1, t2) ∈R

2
+.

An optimal solution to the sequential detection problem on R= [0, r]2 exists
if λ and q are decreasing and increasing, respectively, in each component on
R. In this case V is monotone on R, and the optimal solution is given by
(12):

ρ̂= {t ∈R :Vs > 0∀s≪ t},

where

Vt =−c1 + (c0 + c1 + k1λt)
1

1 + qtQt
.

Proof. We review our results so far. We have the FL,N -SSM rep-
resentation of the gain function Z(B) = k0 +

∫

B Ut dt + k1M(B), where
Ut = −c1 + (c0 + c1 + k1λt)Xt. U is bounded since λ is decreasing in each
component and X is an indicator function. By the argument immediately
preceding the theorem, we have that

Vt =E[Ut|F
N
t ] =−c1 + (c0 + c1 + k1λt)

1

1 + qtQt
.(24)

To see that V has a version which is outer-continuous with inner limits
(o.c.i.l.), recall that λ is assumed to be continuous and observe that q is
o.c.i.l. by definition. Turning next to Q, we see that the integrand in (21) is
o.c.i.l. and increasing in each component in t, as is

µξ({D ∈ U :Et ⊆D}) = P (Lt > 0).
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Therefore, it follows that Q, and hence V are o.c.i.l. Therefore, Lemmas 3.6
and 3.10 imply that for any FN -stopping set ρ⊆R,

E[Z(ρ)] = k0 +E

[
∫

ρ
Ut dt

]

= k0 +E

[
∫

ρ
Vt dt

]

.(25)

To show that an optimal solution ρ̂ exists [as in (12)], it is sufficient to show
that V is monotone (again, by Lemma 3.10). Since we have already seen
that Q is increasing in each component on R, the assumption that λ and
q are decreasing and increasing, respectively, in each component imply that
V is monotone on R. This completes the proof. �

Comment 4.2. It has been pointed out by an anonymous referee that
the case µ0 = 0 relates to a so-called support estimation problem. In this
case, the random set ξ denotes the support of a Poisson process with rate µ1.
The gain function can be defined exactly as before, and the analysis proceeds
in very much the same way. Now we know that Nt > 0⇒ t ∈ ξ ⇒ Lt > 0, and
equation (18) becomes

E[Xt|F
N
t ] = P (Lt = 0|FN

t )

= P (Lt = 0|Nt = 0)I(Nt = 0)(26)

=
P (Lt = 0)

P (Nt = 0)
I(Nt = 0).

Continuing with the same sort of arguments used previously, if µ0 = 0, equa-
tion (23) becomes

E[Xt|F
N
t ] =

1

1 + qtQ̇t

I(Nt = 0),(27)

where qt is defined as before with µ0 = 0, and

Q̇t =

∫

{D∈U :Et⊆D}
eµ1|At\D| dµξ(D).(28)

It is easy now to see that the statement of Theorem 4.1 is still valid in this
case, with V replaced by V̇ , where

V̇t =−c1 + (c0 + c1 + k1λt)
1

1 + qtQ̇t

I(Nt = 0).

5. Examples. In this section, we apply Theorem 4.1 to our two examples.
We will see that in some sense they are are both analogous to the univariate
model of [5], in which the change-point is exponentially distributed. There
are two natural generalizations in R

2
+: first, L is the single jump process in

which the components of the jump are independent univariate exponential
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random variables, and second, L is the first line of a Poisson process, noting
that an exponential random variable can be regarded as the “first line” of
a Poisson process on R+. Although at first glance the single jump process
looks more straightforward, we shall see that in fact the analysis is far more
complex than in the case of the first line of a Poisson process.

Example 5.1 (The single jump process). Referring to Example 3.12,

we have λt =
ft

1−Ft
and qt =

e−(µ1−µ0)t1t2

1−Ft
. Here we will consider the case in

which the components (Y1, Y2) of the jump Y are independent identically
distributed exponential random variables with parameter γ. In this case,

λt =
ft

1− Ft
=

γe−γt1γe−γt2

1− (1− e−γt1)(1− e−γt2)
=

γ2

eγt1 + eγt2 − 1
,

and is decreasing in each component. Next, we consider qt:

qt =
e−(µ1−µ0)t1t2

1− (1− e−γt1)(1− e−γt2)
=

e−(µ1−µ0)t1t2

e−γt1 + e−γt2 − e−γ(t1+t2)
.

To find sufficient conditions to ensure that q is increasing in t1 and t2 on
some set R= [0, r]2, we will assume that γ > µ1−µ0 and to simplify the dis-
cussion (without loss of generality, by suitably rescaling the time parameters
if necessary) that µ1 − µ0 = 1. Now rewrite qt = 1/gt where

gt = g(t1,t2) = e−t1(γ−t2)(1− e−γt2) + et1t2e−γt2 .

We will show that if r ≤ lnγ
γ , then d

dt1
g(t1,t2) ≤ 0 for (t1, t2) ∈R= [0, r]2. By

symmetry, the same is true for d
dt2

g(t1,t2) for t ∈R. Therefore, g is decreasing

and q = 1/g is increasing in each component on R, and an optimal solution
exists for the sequential detection model.

To complete the example, we observe that

d

dt1
g(t1,t2) = e−t1(γ−t2)(−(γ − t2)(1− e−γt2) + t2e

γ(t1−t2))≤ 0

if and only if

(γ − t2)(1− e−γt2)≥ t2e
γ(t1−t2)

or equivalently,

eγt1 ≤
γ − t2
t2

(eγt2 − 1).(29)

The left-hand side of (29) is bounded above by γ since t1 ≤ r ≤ lnγ
γ . The

right-hand side of (29) is bounded below by γ since t2 ≤ r ≤ lnγ
γ ≤ γ−1 when

γ ≥ 1, and so γ−t2
t2

(eγt2 − 1) = eγt2−1
t2

(γ− t2)≥ γ(γ− t2)≥ γ. Therefore, it is

sufficient that t1, t2 ≤ r≤ lnγ
γ .
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Example 5.2 (First line of a Poisson process). From the discussion
in Example 3.13, if L is the first line of a Poisson process with rate γ,
then λ≡ γ, and so trivially is decreasing in each component. We have qt =
e−(µ1−µ0)t1t2

e−γt1t2
= e(γ−(µ1−µ0))t1t2 , which is increasing in each component if γ ≥

µ1 −µ0. Therefore, an optimal solution to the sequential detection problem
exists on any bounded set R= [0, r]2 if γ ≥ µ1 − µ0, and is defined by (12).
In fact, this is exactly the same as the sufficient condition for the univariate
detection problem proven in [5] and [9].

6. Conclusion. As indicated in the Introduction, the sequential detection
model considered here is only one of many scenarios that should be analyzed
in the general context of the “optimal set-detection problem.” Indeed, the
model can be extended in many possible ways.

• The information structure: In addition to the sequential information model,
Herberts and Jensen [5] consider what they call the “ex-post” analysis.
This would correspond to observing N on all of R, and then trying to
optimize the expectation of the valuation function. (Formally, this cor-
responds to Ft = F(r,r) ∀t ∈ R.) Several variants or combinations of the
ex-post and sequential schemes can be studied.

• The underlying space: We worked here on a bounded subset of R2
+.

It would be of interest to consider change-point problems on higher-
dimensional Euclidean spaces or more general partially ordered sets as
in [8].

• The change mechanism: Here the change occurs at either a single random
point or at the first line of a more general point process. The example
involving the first line of a Poisson process turned out to be (perhaps
surprisingly) the more natural analog of the one-dimensional exponen-
tial change-point problem. Consideration should be given to more general
single jump and first line processes, as well as to more general random
sets (not necessarily upper layers). For example, the case in which L is
the first line of an inhomogeneous Poisson process with intensity γ(·) is
considered in [2] where it is proven that an optimal solution exists if
infu∈R γ(u)≥ µ1 − µ0.

• The observed process: On R+, the process subject to the change can be
a more general process, such as the Brownian motion process (cf. [1]).
Here too, we can consider more general processes such as the set-indexed
Brownian motion (cf. [6]).

• The parameters: In our analysis, it is implicitly assumed that the param-
eters of the various processes are all known. How does one approach the
problem when one or more parameters must be estimated?

• The gain function: Different valuation functions can be chosen, thereby
changing the notion of optimality. For example, with a change generated



20 B. G. IVANOFF AND E. MERZBACH

by a single jump at Y , instead of two cost parameters c0 and c1 associated
respectively with Ec

Y and EY , we could have different costs in each of
the four quadrants defined by Y . Another variation considered in [2] is
to replace Lt in (5) with I(Lt > 0). Although this does not change the
valuation when the change is generated by a single jump, the analysis
becomes more complex when L is the first line of a Poisson process.

• Number of changes: Here we deal with only one change-set. However, we
can imagine that several changes occur on a decreasing sequence of ran-
dom upper layers, for example. This would correspond to multiple change
points on R+.
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