

Q_LEARNING BASED ON ACTIVE BACKUP AND MEMORY MECHANISM

YANG LIU, MAO-ZU GUO, AND HONG-XUN YAO

School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
E-MIAL: liu_yang@hit.edu.cn, maozuguo@hit.edu.cn, yhx@vilab.hit.edu.cn

Abstract:
Exploration is used in Q_learning because the agent will

be caught in locally optimal policies due to blind exploitation.
However excessive exploration will degrade the performance
of Q_learning and it is difficult to meet the trade-off between
exploration and exploitation. In this paper, the active backup
is introduced into Q_learning and the corresponding
algorithm AB_Q_learning based on Dijkstra backup in
dynamic programming is proposed. Then, the memory
mechanism based MEAB_Q_learning algorithm is given for
the agent to learn in completely unknown environment. The
experimental results show that these two algorithms not only
converge more quickly, but also solve the problem of local
optimization.

Keywords:
Reinforcement learning, Q_learning, Dijkstra backup

1. Introduction

Reinforcement learning is one of the more rapidly
developing machine learning methods in recent years
[1,2,3,4], and Q_learning [5,6] is the most important one
among all reinforcement learning algorithms. Also, it is
considered as a special case of temporal difference
algorithm [1,7]. Researches have been made on the
application of Q_learning, such as time sequence prediction
[8], robot soccer competition [9], and many more.

In reinforcement learning, the agent interacts with
environment. On each step of interaction, the agent
perceives the current state s of the environment, then
selects an action a to execute. As a result, the action
changes the state of environment and the agent receives a
scalar reinforcement signal. The target of Q_learning is to
find an optimal policy, i.e. to find the map from state to
action, which can maximize the cumulative reward or
minimize the punishment. Although Q_learning has
successively applied in some systems, it faces the problem
of being caught in locally optimal policies. This paper will
propose an improved Q_learning to overcome the obstacle.

According to the relation between Q_learning and

dynamic programming, backup is introduced into
Q_learning, which can dramatically speed up the learning.
Experimental results show that the proposed algorithms
achieve better performance than traditional method.

In this paper, Q_learning and dynamic planning are
briefly introduced. Then active backup based Q_learning
and modified algorithm with memory mechanism are
proposed. Experimental results are presented and analyzed
in section 4.

2. Q_learning and dynamic programming

2.1. Q_learning algorithm

Q_learning [1,5,6] is one of the algorithms for solving
reinforcement learning problem, the advantage of which is
that it doesn’t need to know the transition relationship
between states unlike dynamic programming. Q_learning is
a kind of on-line and unsupervised learning, in which
learning process and performance process proceed
simultaneously and the agent learns the optimal policy in
the interaction process.

In Q_learning, the agent updates Q value function
table through perceiving state, then performs action and
receives reinforcement signal. The entry of the table is
composed of state and action, referred as),(asQ . As
proved in [6], if all the state-action pairs are continuously
visited, the Q value will converge to the optimal value.
Q_learning is described as algorithm 1.

Algorithm 1: Q_learning algorithm
1. Initialize),(asQ //arbitrary
2. Repeat
3. Initialize an initial state s
4. Select one action a from)(sA according to

policy π (ε greedy)
5. Perform action a , receive the instant reward r , and

come into next state 's

6.)],(),(max[),(),(''
'

asQasQrasQasQ
a

−++← γα

7. 'ss ←
8. Until s is final state

Where r , γ and α are the instant reward, the discount
factor and the learning step respectively. γ and α are
both in the range of]1,0[.

2.2. Dynamic programming

Dynamic programming (DP) is a kind of solution for
decision process. In 1957, R. E. Bellman et al proposed the
famous principle of optimality, when they studied multistep
decision process [10]. This principle converts multi-step
problem into one-step problem, then solve the problem step
by step. The method for this kind of problem is referred as
dynamic programming.

 In the methods of dynamic programming, backward
algorithm is in common use. Dijkstra backup is the key
process in the backward algorithm, which uses the optimal
solution of successive state to search the optimal solution
for its prior state. As DP requires the information about
environment, the application of DP in unknown
environment is restricted.

3. Active backup based Q_learning

From dynamic programming, it can be found that after
the value function of a state is updated, it may affect its
prior state in all probability. In Q_learning, if the value
function of some state-action pair is updated, the value
function of the prior state-action pair will be likely affected.
So, we propose a new Q_learning integrated with Dijkstra
backup used in dynamic programming, which is referred as
active backup Q_learning (AB_Q_learning). To further
adapt the new algorithm to completely unknown
environment, a modified AB_Q_learning is put forward,
which has the capacity of remembering the relationship of
the visited state-action pairs.

3.1. Active backup based Q_learning

Algorithm 2: AB_Q_learning
1. Initialize),(asQ //arbitrary
2. Repeat
3. Initialize an initial state s

4. Select one action a from)(sA according to
policy π (ε greedy)

5. Perform action a , receive the instant reward r , and

come into the next state 's
6.)],(),(max[),(),(''

'
asQasQrasQasQ

a
−++← γα

7. If),(max),('
'

asQasQ
a

=

8. For (every action a)
9.)(1 saP −←
10. For (every state Ps ∈'')
11.)],(),([),(),('''''' asQasQrasQasQ −++← γα

12. 'ss ←
13. Until s is final state

Algorithm 2 describes the active backup based
Q_learning, where { }ssassa ==−)(|)(''''1 , which is the set
of states due to applying a results in state s . In
Q_learning, when the value function of a state-action pair is
updated, the max value of all state-action pairs of the next
state must be used. So, the line 7 of algorithm 2 tests
whether the updated value function of the current
state-action pair is the maximum. If it is true, the backup
process will be performed and corresponding value function
of the prior pairs will be updated. Otherwise, it is
unnecessary to apply backup.

In some cases, the agent can not know what is the
effect of performing inverse action in a state, so it is
infeasible to acquire the prior states of current state for a
given action a . Thus the process of backup in
AB_Q_learning is infeasible. To overcome the obstacle, a
modified AB_Q_learning based on memory mechanism is
put forward as follows.

3.2. AB_Q_learning with memory mechanism.

Since AB_Q_learning depends upon the degree the
environment is known, we expect that the agent can store
the relationship of states when it interactives with the
environment. Thus, in the case of inverse action
computation is infeasible, the upper proposed algorithm,
AB_Q_learning, can still work. The AB_Q_learning with
memory mechanism (MEAB_Q_learning) is described in
algorithm 3.

Algorithm 3: MEAB_Q_learning
1. Initialize),(asQ //arbitrary

2. Repeat
3. Initialize an initial state s
4. Select one action a from)(sA according to

policy π (ε greedy)
5. Perform action a , receive the instant reward r , and

come into next state 's
6. Put state-action pair),(as into the set PSA of prior

state-action pairs of state 's
7.)],(),(max[),(),(''

'
asQasQrasQasQ

a
−++← γα

8. If (),(max),('
'

asQasQ
a

=)

9. For (every),('''' as in PSA)
10.)],(),([),(),('''''''''''' asQasQrasQasQ −++← γα

11. 'ss ←
12. Until s is final state

In MEAB_Q_learning, a new data structure PSA is
introduced, which is a chain for storing the state-action
pairs. The agent stores the relationship of the states. So that,
the modified algorithm gets rid of the shortcoming of
AB_Q_learning. Thus the agent can perform backup
process in completely unknown environment.

3.3. Analysis in theory

Lines 7-11 in AB_Q_learning and lines 8-10 in
MEAB_Q_learning are the essential portions, which
differentiate the two proposed algorithms from Q_learning.
The backup is named as Dijkstra backup in [11]. If the
value function of the current state-action pair is updated and
the updated value is the maximum of the state, the process
of backup is performed. This strategy will speed up the
learning process. Assuming that the current state s has
n prior states respect to the inverse of action a , when the
backup process is performed, n values of these
state-action pairs will be updated; Otherwise, it will need at
least n steps to update these values. In fact, the backup
process is much faster than performing an action [4],
therefore the backup is valuable.

As to how many backups will be performed and what
factor affects it, it can be found that, the backup ratio B
(i.e. how often the Dijkstra backup will be performed) will
relate to ε , which is probability of randomly selecting an
action not according to the ε -greedy policy. For a given
ε , the ratio B of backup will converge to a fixed value
with the proceeding of learning. When the exploration ratio
ε increases, the backup ratio will decrease. The following

proposition depicts the relation between the backup ratio
and ε .

Proposition 1: Supposing that the probability of every
state appears in environment is nisp i ,,2,1),(L= , the
backup ratio ∑

=

+−⋅=
n

i i
i sA

spB
1

)
|)(|

)1(()(εε , where ε is

exploration ratio.
Proof: When the algorithm comes into converge state,

the probability of selecting optimal action is

|)(|
)1(

isA
εε +− , where |)(| isA is the number of action in

state is , so the backup ratio in state is is

)
|)(|

)1(()(
i

i sA
sp εε +−⋅ . Therefore, the total ratio of backup

ratio is ∑
=

+−⋅=
n

i i
i sA

spB
1

)
|)(|

)1(()(εε .

4. Experiments and analysis

4.1. Simulation environment

In this paper, we adopt the maze model in [11] as our
simulation environment. The model is drawn in Figure 1,
and the actions are depicted as follows:

One-step action: North, South, West, East. The four
actions cause the agent to move one grid along the
corresponding direction. If the wall is met, the agent will
remain the original position.

To-wall action: North_to_Wall, South_to_Wall,
West_to_Wall, East_to_Wall. These four actions make the
agent walk forward until the wall is met along the
corresponding direction.

These actions have two kinds of cost. The first kind of
action has the cost 1, and the second kind of action has the
cost 3 (the instant reward can be regarded as the negative of
the costs). When the agent comes into the goal grid, marked
with G, it will receive the instant reward 100.

The target of the agent is to find an optimal path from
every grid to one of the goal grids, which maximize the
accumulated reward along corresponding path.

4.2. Experimental results

Figure 2 and Figure 3 illustrate the converge speeds of
the two proposed algorithm compared with the standard
Q_learning. The vertical axis is the percent of the states
with the optimal actions, and the horizontal axis is the
number of episodes. As Figure 2 shows, the convergence
speed of AB_Q_learning is much faster than the standard
Q_learning. In addition, the new algorithm does not plunge

GGGGGG

Figure 1. Maze game model

into local optimization like Q_learning. Along with the
proceeding of learning, more and more states converge to
the optimal action. Figure 3 depicts the convergence speed
of MEAB_Q_learning. Similar to AB_Q_learning, the
algorithm with memory mechanism also has faster speed of
convergence than standard Q_learning.

0 5 1 0 1 5 2 0

2 0

4 0

6 0

8 0

1 0 0

A B _ Q _ le a r in g (e = 0 .1)

A B _ Q _ le a r in g (e = 0 .2)

Q _ le a r in g (e = 0 .1)

%
 o

pt
im

al
 s

ta
te

X 1 0 0 0 e p is o d e s

Figure 2. The convergence speed of active backup based
Q_learning.

0 5 1 0 1 5 2 0 2 5
0

2 0

4 0

6 0

8 0

1 0 0

M E A B _ Q _ le a r n in g (e = 0 . 1)

M E A B _ Q _ le a r n in g (e = 0 . 2)

Q _ le a r n in g (e = 0 . 1)

%
 o

pt
im

al
 s

ta
te

X 1 0 0 0 e p is o d e s

Figure 3. The convergence speed of AB_Q_learning with
memory mechanism.

Figure 4 compares the speeds of the two proposed

algorithm: AB_Q_learning and MEAB_Q_learning. From

the figure, it can be seen that the converge speed of the
former is faster than that of the latter. It results from that at
the starting point of learning process, the agent in the latter
algorithm knows nothing about the environment. As the
learning process proceeds, the difference between them
becomes trivial. This is because PSA has stored more
knowledge about the environment.

0 5 1 0 15 20

20

40

60

80

1 00

M E A B _Q _ lea ring

A B _Q _ lea rn in g

%
 o

pt
im

al
 s

ta
te

X 10 0 0 e p iso de s

Figure 4. The convergence speed comparison between
the two proposed algorithms

Figure 5 and Figure 6 illustrate the backup ratios of the

two proposed algorithms with different ε values.
According to proposition 1, the backup ratio in maze game
is

8
1

)
8

)1(())((

)
8

)1(()(

)
|)(|

)1(()(

1

1

1

*

εε

εε

εε

εε

+−=

+−⋅=

+−⋅=

+−⋅=

∑

∑

∑

=

=

=

n

i
i

n

i
i

n

i i
i

sp

sp

sA
spB

.

For example, when 1.0=ε , the backup ratio is 0.9125, and
when 3.0=ε , the backup ratio is 0.7375. These are
consistent with Figure 5 and Figure 6.

0 5 1 0 1 5 2 0
0

2 0

4 0

6 0

8 0

1 0 0

A B _ Q _ le a r n in g

e = 0 . 5

e = 0 . 3

e = 0 . 1

di
jk

st
ra

 b
ac

ku
p

%

X 1 0 0 0 e p i s o d e s

Figure 5. The backup ratio of AB_Q_learning with different

ε values.

0 5 1 0 1 5 2 0
0

2 0

4 0

6 0

8 0

1 0 0
M E A B _ Q _ le a r n in g

e = 0 . 5

e = 0 . 3

e = 0 . 1

di
jk

st
ra

 b
ac

ku
p

%

X 1 0 0 0 e p is o d e s

Figure 6. The backup ratio of MEAB_Q_learning with
different ε values.

5. Conclusion

An active backup based Q_learning, AB_Q_learning is
proposed in this paper, in which backup process is
introduced. Since partial environment knowledge is needed,
a modified algorithm with memory capacity is designed.
Experimental results show that the proposed algorithms
have faster convergence speed, mean while the problem of
plunging local optimization is well solved.

References

[1] Richard S. Sutton, Andrew G. Barto. Reinforcement
Learning An Introduction. The MIT Press. 1998

[2] L. P. Kaelbling, M. L. Littman, A. W. Moore.
Reinforcement Learning. A Survey. Journal of AI
Research, 4 (1996), pp. 237-285.

[3] M.Z. Guo, B. Chen, X.L. Wang, J.R. Hong. A
summary on reinforcement learning. Computer
Science, 25 (3) (1998), pp. 13-15 (in Chinese).

[4] T. Mitchell. Machine Learning. McGraw-Hill, 1997.
[5] Watkins C.J.C.H. Learning from delayed rewards [Ph

D dissertation]. Psychology Department, Cambridge
University, 1989

[6] Watkins C.J.C.H. Dayan P. Q-learning, Machine
Learing,1992,8:279-292

[7] Richard S. Sutton. Learning to predit by the method of
temporal differences. Machine Learning, 1988,3,9-44

[8] L. Yang, J.R. Hong, T.Y. Huang. Combining the
methods of temporal di_erences with neural network
for real-time modeling and prediction of time series.
Chinese Journal of Computers, 19 (9) (1996), pp.
695-700 (in Chinese).

[9] M. Asada, E. Uchibe, K. Hosoda. Cooperative
behavior acquisition for mobile robots in dynamically
changing real worlds via vision-based reinforcement

learning and development. Artificial Intelligence, 110
(1999), pp. 275-292.

[10] Bellman R E.Dynamic Programming.Princeton
University Press.1957.

[11] T.G. Dietterich, N.S. Flann. Explanation-based
learning and reinforcement learning: a unied view.
Machine Learning, 28 (1997), pp. 169-210.

