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Abstract: 
Exploration is used in Q_learning because the agent will 

be caught in locally optimal policies due to blind exploitation. 
However excessive exploration will degrade the performance 
of Q_learning and it is difficult to meet the trade-off between 
exploration and exploitation. In this paper, the active backup 
is introduced into Q_learning and the corresponding 
algorithm AB_Q_learning based on Dijkstra backup in 
dynamic programming is proposed. Then, the memory 
mechanism based MEAB_Q_learning algorithm is given for 
the agent to learn in completely unknown environment. The 
experimental results show that these two algorithms not only 
converge more quickly, but also solve the problem of local 
optimization. 
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1. Introduction 

Reinforcement learning is one of the more rapidly 
developing machine learning methods in recent years 
[1,2,3,4], and Q_learning [5,6] is the most important one 
among all reinforcement learning algorithms. Also, it is 
considered as a special case of temporal difference 
algorithm [1,7]. Researches have been made on the 
application of Q_learning, such as time sequence prediction 
[8], robot soccer competition [9], and many more. 

In reinforcement learning, the agent interacts with 
environment. On each step of interaction, the agent 
perceives the current state s  of the environment, then 
selects an action a  to execute. As a result, the action 
changes the state of environment and the agent receives a 
scalar reinforcement signal. The target of Q_learning is to 
find an optimal policy, i.e. to find the map from state to 
action, which can maximize the cumulative reward or 
minimize the punishment. Although Q_learning has 
successively applied in some systems, it faces the problem 
of being caught in locally optimal policies. This paper will 
propose an improved Q_learning to overcome the obstacle. 

According to the relation between Q_learning and 

dynamic programming, backup is introduced into 
Q_learning, which can dramatically speed up the learning. 
Experimental results show that the proposed algorithms 
achieve better performance than traditional method.  

In this paper, Q_learning and dynamic planning are 
briefly introduced. Then active backup based Q_learning 
and modified algorithm with memory mechanism are 
proposed. Experimental results are presented and analyzed 
in section 4. 

2. Q_learning and dynamic programming 

2.1. Q_learning algorithm 

Q_learning [1,5,6] is one of the algorithms for solving 
reinforcement learning problem, the advantage of which is 
that it doesn’t need to know the transition relationship 
between states unlike dynamic programming. Q_learning is 
a kind of on-line and unsupervised learning, in which 
learning process and performance process proceed 
simultaneously and the agent learns the optimal policy in 
the interaction process. 

In Q_learning, the agent updates Q value function 
table through perceiving state, then performs action and 
receives reinforcement signal. The entry of the table is 
composed of state and action, referred as ),( asQ . As 
proved in [6], if all the state-action pairs are continuously 
visited, the Q value will converge to the optimal value. 
Q_learning is described as algorithm 1. 

 
 
Algorithm 1: Q_learning algorithm 
1. Initialize ),( asQ  //arbitrary 
2. Repeat 
3. Initialize an initial state s  
4. Select one action a  from )(sA according to          

policy π (ε  greedy) 
5. Perform action a , receive the instant reward r , and 

come into next state 's  



 

 

6. )],(),(max[),(),( ''
'

asQasQrasQasQ
a

−++← γα  

7. 'ss ←  
8. Until s is final state 
 
 
Where r , γ  and α  are the instant reward, the discount 
factor and the learning step respectively. γ  and α  are 
both in the range of ]1,0[ . 

2.2. Dynamic programming 

Dynamic programming (DP) is a kind of solution for 
decision process. In 1957, R. E. Bellman et al proposed the 
famous principle of optimality, when they studied multistep 
decision process [10]. This principle converts multi-step 
problem into one-step problem, then solve the problem step 
by step. The method for this kind of problem is referred as 
dynamic programming. 

 In the methods of dynamic programming, backward 
algorithm is in common use. Dijkstra backup is the key 
process in the backward algorithm, which uses the optimal 
solution of successive state to search the optimal solution 
for its prior state. As DP requires the information about 
environment, the application of DP in unknown 
environment is restricted. 

3. Active backup based Q_learning 

From dynamic programming, it can be found that after 
the value function of a state is updated, it may affect its 
prior state in all probability. In Q_learning, if the value 
function of some state-action pair is updated, the value 
function of the prior state-action pair will be likely affected. 
So, we propose a new Q_learning integrated with Dijkstra 
backup used in dynamic programming, which is referred as 
active backup Q_learning (AB_Q_learning). To further 
adapt the new algorithm to completely unknown 
environment, a modified AB_Q_learning is put forward, 
which has the capacity of remembering the relationship of 
the visited state-action pairs. 

3.1. Active backup based Q_learning 

 
Algorithm 2: AB_Q_learning 
1. Initialize ),( asQ  //arbitrary 
2. Repeat 
3. Initialize an initial state s  

4. Select one action a  from )(sA according to          
policy π (ε  greedy) 

5. Perform action a , receive the instant reward r , and 

come into the next state 's  
6. )],(),(max[),(),( ''

'
asQasQrasQasQ

a
−++← γα  

7. If ),(max),( '
'

asQasQ
a

=  

8.    For (every action a ) 
9.       )(1 saP −←  
10.        For (every state Ps ∈'' ) 
11.          )],(),([),(),( '''''' asQasQrasQasQ −++← γα  

12. 'ss ←  
13. Until s is final state 
 
 

Algorithm 2 describes the active backup based 
Q_learning, where { }ssassa ==− )(|)( ''''1 , which is the set 
of states due to applying a  results in state s . In 
Q_learning, when the value function of a state-action pair is 
updated, the max value of all state-action pairs of the next 
state must be used. So, the line 7 of algorithm 2 tests 
whether the updated value function of the current 
state-action pair is the maximum. If it is true, the backup 
process will be performed and corresponding value function 
of the prior pairs will be updated. Otherwise, it is 
unnecessary to apply backup. 

In some cases, the agent can not know what is the 
effect of performing inverse action in a state, so it is 
infeasible to acquire the prior states of current state for a 
given action a . Thus the process of backup in 
AB_Q_learning is infeasible. To overcome the obstacle, a 
modified AB_Q_learning based on memory mechanism is 
put forward as follows. 

3.2. AB_Q_learning with memory mechanism. 

Since AB_Q_learning depends upon the degree the 
environment is known, we expect that the agent can store 
the relationship of states when it interactives with the 
environment. Thus, in the case of inverse action 
computation is infeasible, the upper proposed algorithm, 
AB_Q_learning, can still work. The AB_Q_learning with 
memory mechanism (MEAB_Q_learning) is described in 
algorithm 3. 
 
 
Algorithm 3: MEAB_Q_learning 
1. Initialize ),( asQ  //arbitrary 



 

 

2. Repeat 
3. Initialize an initial state s  
4. Select one action a  from )(sA  according to             

policy π (ε  greedy) 
5. Perform action a , receive the instant reward r , and 

come into next state 's  
6. Put state-action pair ),( as  into the set PSA of prior 

state-action pairs of state 's  
7. )],(),(max[),(),( ''

'
asQasQrasQasQ

a
−++← γα  

8. If ( ),(max),( '
'

asQasQ
a

= ) 

9.     For (every ),( '''' as  in PSA ) 
10.         )],(),([),(),( '''''''''''' asQasQrasQasQ −++← γα  

11. 'ss ←  
12. Until s is final state 
 

In MEAB_Q_learning, a new data structure PSA  is 
introduced, which is a chain for storing the state-action 
pairs. The agent stores the relationship of the states. So that, 
the modified algorithm gets rid of the shortcoming of 
AB_Q_learning. Thus the agent can perform backup 
process in completely unknown environment. 

3.3. Analysis in theory 

Lines 7-11 in AB_Q_learning and lines 8-10 in 
MEAB_Q_learning are the essential portions, which 
differentiate the two proposed algorithms from Q_learning. 
The backup is named as Dijkstra backup in [11]. If the 
value function of the current state-action pair is updated and 
the updated value is the maximum of the state, the process 
of backup is performed. This strategy will speed up the 
learning process. Assuming that the current state s  has 
n  prior states respect to the inverse of action a , when the 
backup process is performed, n  values of these 
state-action pairs will be updated; Otherwise, it will need at 
least n  steps to update these values. In fact, the backup 
process is much faster than performing an action [4], 
therefore the backup is valuable. 

As to how many backups will be performed and what 
factor affects it, it can be found that, the backup ratio B  
(i.e. how often the Dijkstra backup will be performed) will 
relate to ε , which is probability of randomly selecting an 
action not according to the ε -greedy policy. For a given 
ε , the ratio B  of backup will converge to a fixed value 
with the proceeding of learning. When the exploration ratio 
ε increases, the backup ratio will decrease. The following 

proposition depicts the relation between the backup ratio 
and ε . 

Proposition 1: Supposing that the probability of every 
state appears in environment is nisp i ,,2,1),( L= , the 
backup ratio ∑

=

+−⋅=
n

i i
i sA

spB
1

)
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)1(()( εε , where ε  is 

exploration ratio. 
Proof: When the algorithm comes into converge state, 

the probability of selecting optimal action is 

|)(|
)1(

isA
εε +− , where |)(| isA  is the number of action in 

state is , so the backup ratio in state is  is 

)
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4. Experiments and analysis 

4.1. Simulation environment 

In this paper, we adopt the maze model in [11] as our 
simulation environment. The model is drawn in Figure 1, 
and the actions are depicted as follows: 

One-step action: North, South, West, East. The four 
actions cause the agent to move one grid along the 
corresponding direction. If the wall is met, the agent will 
remain the original position. 

To-wall action: North_to_Wall, South_to_Wall, 
West_to_Wall, East_to_Wall. These four actions make the 
agent walk forward until the wall is met along the 
corresponding direction. 

These actions have two kinds of cost. The first kind of 
action has the cost 1, and the second kind of action has the 
cost 3 (the instant reward can be regarded as the negative of 
the costs). When the agent comes into the goal grid, marked 
with G, it will receive the instant reward 100. 

The target of the agent is to find an optimal path from 
every grid to one of the goal grids, which maximize the 
accumulated reward along corresponding path. 

4.2. Experimental results 

Figure 2 and Figure 3 illustrate the converge speeds of 
the two proposed algorithm compared with the standard 
Q_learning. The vertical axis is the percent of the states 
with the optimal actions, and the horizontal axis is the 
number of episodes. As Figure 2 shows, the convergence 
speed of AB_Q_learning is much faster than the standard 
Q_learning. In addition, the new algorithm does not plunge 
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Figure 1. Maze game model 
 
into local optimization like Q_learning. Along with the 
proceeding of learning, more and more states converge to 
the optimal action. Figure 3 depicts the convergence speed 
of MEAB_Q_learning. Similar to AB_Q_learning, the 
algorithm with memory mechanism also has faster speed of 
convergence than standard Q_learning. 
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Figure 2. The convergence speed of active backup based 
Q_learning. 
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Figure 3. The convergence speed of AB_Q_learning with 
memory mechanism. 

 
Figure 4 compares the speeds of the two proposed 

algorithm: AB_Q_learning and MEAB_Q_learning. From 

the figure, it can be seen that the converge speed of the 
former is faster than that of the latter. It results from that at 
the starting point of learning process, the agent in the latter 
algorithm knows nothing about the environment. As the 
learning process proceeds, the difference between them 
becomes trivial. This is because PSA  has stored more 
knowledge about the environment. 
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Figure 4. The convergence speed comparison between 
the two proposed algorithms 

 
Figure 5 and Figure 6 illustrate the backup ratios of the 

two proposed algorithms with different ε  values. 
According to proposition 1, the backup ratio in maze game 
is 
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For example, when 1.0=ε , the backup ratio is 0.9125, and 
when 3.0=ε , the backup ratio is 0.7375. These are 
consistent with Figure 5 and Figure 6. 
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Figure 5. The backup ratio of AB_Q_learning with different 

ε  values. 
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Figure 6. The backup ratio of MEAB_Q_learning with 
different ε  values. 

5. Conclusion 

An active backup based Q_learning, AB_Q_learning is 
proposed in this paper, in which backup process is 
introduced. Since partial environment knowledge is needed, 
a modified algorithm with memory capacity is designed. 
Experimental results show that the proposed algorithms 
have faster convergence speed, mean while the problem of 
plunging local optimization is well solved. 
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