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Abstract

We consider the linear span S of the functions tak (with some ak > 0)
in weighted L

2 spaces, with rather general weights. We give one necessary
and one sufficient condition for S to be dense. Some comparisons are also
made between the new results and those that can be deduced from older
ones in the literature.

1 Introduction

The first ”if and only if” solution to a problem of S. N. Bernstein [4] was given
by Ch. H. Müntz [21]:

Theorem A

Let 0 = λ0 < λ1 <, . . . be an increasing sequence of real numbers. The linear
subspace span{tλk : k = 0, 1, . . .} is dense in C([0, 1]), if and only if

∑∞
k=1

1
λk

=
∞.

This classical result was first proved in L2[0, 1] and then extended to C[0, 1],
as stated above. Also, it was stated only for increasing sequences λk. Subse-
quently, this theorem has had several different proofs and generalizations, and
there are several surveys in this topic (see for instance the papers of J. Almira
and A. Pinkus [1], [23]).

On C[0, 1] and Lp(0, 1), ”full Müntz theorems”, i.e. theorems with rather
general exponents, were later proved by eg. P. Borwein, T. Erdélyi, W. B.
Johnson and V. Operstein ([7], [13], [12], [22]). Versions of Müntz’s theorem on
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compact subsets of positive measure [8], [9], and on countable compact sets [2]
were also proved. Further results can be found for instance in the monographs
of P. Borwein, T. Erdélyi [10], and B. N. Khabibullin [16].

In this paper we are interested in Müntz-type theorems on (0,∞). Several
papers were written in the ’40s on the completeness of the set {tλke−t} in
L2(0,∞) (see eg. [14], [5], [6]). In particular, we will use some ideas of W.
Fuchs. His theorem is the following:

Theorem B

Let ak be positive numbers, such that ak+1 − ak > c > 0 (k = 1, 2, . . .),
and let log Ψ(r) = 2

∑

ak<r
1
ak
, if r > a1, and logΨ(r) = 2

a1
if r ≤ a1. Then

{e−ttak} is complete in L2(0,∞), if and only if
∫ ∞

1

Ψ(r)

r2
= ∞

A. F. Leontev [18] and G. V. Badalyan [3] proved similar theorems with
more general weights (the weight being e−t in the above theorem). In 1980,
by the Hahn-Banach theorem technique, R. A. Zalik [27] proved a Müntz type
theorem on the half-line with weights |w| ≤ c exp(−| log t|a) (a > 0). In 1996
Kroó and Szabados [17] also had a related result on (0,∞).

In Theorem 1 and Theorem 2 below we will prove Müntz-type theorems on
the half-line with more general weights, which generalize all the results men-
tioned above.

Closely related to our topic (by a log t substitution) are the results on the
whole real line for exponential systems. The basic paper in this respect was
written by P. Malliavin [20], and by this tool there are some nice generaliza-
tions of the above mentioned results, for instance by B. V. Vinnitskii, A. V.
Shapovalovskii [25], by G. T. Deng [11], and by E. Zikkos [28].

2 Definitions, Results

Let us begin with a rather general definition. Some specific examples are given
subsequently.

Definition 1 We say that a weight function w(t) = ν(t)µ(t) is admissible on
[0,∞), if ν(t) and µ(t) are positive and continuous on (0,∞), w2 has finite
moments, and there is a function γ on [0,∞), such that

γ(t) =

∞
∑

k=0

ckt
γk ,

where ck > 0 for all k, and 0 ≤ γ0 < γ1 < γ2 < . . ., and there is a C0 > 0 such
that ∀t > C0

1

w2(t)
≤ γ(t) (1)
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and there is a C > 1, such that
∫ ∞

0

γ

(

t

C

)

w2(t)dt < ∞. (2)

Furthermore we require that

lim
t→0+

µ(t) ∈ (0,∞), (3)

and there is an a > 0 such that
∫ 1

0

(

ta−1

ν(t)

)2

< ∞. (4)

Here and in the followings C,Ci and c are absolute constants, and the value
of them will not be the same at each occurrence.

Remark:

If ν(t) ≡ 1 (as in Theorem B) then we can choose a = 1. Also, it is easy to
see that we can always assume a ≥ 1.

Examples :

w(t) = tβe−Dtα , where β > − 1
2 and α > 0 is admissible, namely it has finite

moments, and γ(t) = e3Dtα serves the purpose. When β = 0 and D = α = 1,
we get back the original case of Fuchs (Theorem B). When β > − 1

2 , D = 1
2 and

α = 1, then w2 is a Laguerre weight. When β = 0, D > 0 and α > 1, then w is
a Freud weight.

Let w(t) = (4+ sin t)tβ
∏n

k=1 e
−Dkt

αk , and let us assume, that β > − 1
2 , and

0 ≤ α1 < α2 . . . < αn, andDn > 0. Then w is admissible, and eDtαn
is a suitable

choice for γ(t), if D is large enough. In particular, if w(t) = t(4 + sin t)e−t then
the second derivative of − log(w(et)) takes some negative values on (A,∞) for
any A > 0. This means that the results of [28] are not applicable in this case.

Definition 2 Let w be a positive continuous weight function with w2 having
finite moments. Then define ϕ(x) and K(x) corresponding to w(x) as

ϕ(x) =

(
∫ ∞

0

t2xw2(t)dt

)
1
2x

= (K(x))
1
2x , x > 0. (5)

Furthermore let us define another property of a weight function. The clas-
sical weight functions, and also our examples above, fulfil this ”normality” con-
dition, as we can see later.

Definition 3 Let us call a weight function w2 with finite moments ”normal”,
if the largest zero of the nth orthogonal polynomial (x1,n) with respect to w2,
can be estimated as:

x1,n ≤ ecn,

where c = c(w) is a positive constant independent of n.
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Remark:

In the cases of Laguerre and Freud weights x1,n ≤ cnλ, where λ = λ(w)
is a positive constant depending on the weight function, moreover the same
estimation is valid for a more general classes of weights on the real axis ([19] p.
313. Th. 11.1). As an application of the result of A. Markov ([24] p. 115. Th.
6.12.2), we can get a similar estimation for the examples above; for instance
w(x) = xγe−xα

, there is a β > 0 such that with W (x) = xβe−x, the quotient
W
w is increasing on (0,∞); if w(x) = x(4+ sinx)e−x, then the corresponding W

can be W (x) = x2e−
x
2 .

Definition 4 Let {ak}∞k=1 be positive numbers in increasing order. We define
(as in [14] and Theorem B above)

m(r) =

{ 1
a1
, if 0 ≤ r ≤ a1

∑

ak<r
1
ak
, if r > a1

(6)

and let
Ψ(r) = e2m(r). (7)

Let us also introduce the following notations:
Notation:

Let w be a positive continuous weight function, and let us define the weighted
L2 space as L2

w(0,∞) = {f |fw ∈ L2(0,∞)}, and ‖f‖2,w = ‖fw‖2,(0,∞).

S = span{tak : k = 1, 2, . . .} (8)

with 0 < a1 < a2 < . . ..

We are now in position to state the main results of this note (the proofs will
follow in the next Section).

Theorem 1 Let w be an admissible and normal weight function on [0,∞).
If there exists a monotone increasing function f on [0,∞), such that for all
0 < x ≤ r

x log
Ψ(r)

ϕ(x)
≤ f(r), (9)

and
∫ ∞

1

f(r)

r2
< ∞, (10)

then S is incomplete in L2
w(0,∞).

This result is then nicely complemented by the following positive result.
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Theorem 2 Let w be positive and continuous on (0,∞), such that w2 has finite
moments. Let us suppose that there is a constant d > 0 such that

ak+1 − ak > d (11)

If there exists a monotone increasing function h on [0,∞), for which

C <
h(r)

h(r1)
< D, for

1

2
≤ r

r1
≤ 2 (12)

with some 0 < C,D, and there are α,C, c > 0, such that for all 0 < x ≤ r

0 < h(r) ≤ C
1
x

cx

ϕα(x)
Ψα(r), (13)

and
∫ ∞

1

h(r)

r2
= ∞, (14)

then S is complete in L2
w(0,∞).

Comparing the conditions of the above theorems we conclude the following:

Corollary:

If w is admissible and normal on (0,∞), and there is a d such that ak+1 − ak >

d > 0, and f(r) = ch(r), where h has the same properties as in Theorem 2, then

S is dense in L2
w(0,∞) if and only if

∫∞
1

h(r)
r2 = ∞.

Remark:

(1) Let

Bα(r) = inf
x∈(0,r)

C
1
x

x

ϕα(x)
.

Then assuming (11) and (12), if there exists a 0 ≤ h(r) ≤ cBα(r)Ψ
α(r), for

which (14) is valid, then S is dense in L2
w(0,∞).

(2) Theorem 2 can be stated also in Lp
w(0,∞), with 1 ≤ p < ∞, and in Cw,(0,∞)

with the same proof. That is, let us define

ϕp(x) =

(
∫ ∞

0

tpxwp(t)dt

)
1
px

, x > 0, 1 ≤ p < ∞

and

ϕc(x) =

(

sup
t>0

txw(t)dt

)
1
x

, x > 0.

Using the standard the notations Lp
w(0,∞) = {f : ‖fw‖p,(0,∞) < ∞}, and

Cw,(0,∞) = {f ∈ C(0,∞) : lim t→0+
t→∞

f(t)w(t) = 0}, we can formulate the follow-

ing theorem:
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Theorem 3 Let w be positive and continuous on (0,∞), and let us assume that
txw(t) ∈ L

p
(0,∞) in the Lp

w-case, and that for all a > 0 lim t→0+
t→∞

taw(t) = 0 in

the Cw-case. Furthermore let {ak} be a sequence of positive numbers for which
(11) is satisfied. If there is a monotone increasing function h on (0,∞) with
the properties (12) and (14), and for which there are α,C, c > 0, such that for
all 0 < x ≤ r

0 < h(r) ≤ C
1
x

cx

ϕα
p/c(x)

Ψα(r),

then S is complete in Lp
w(0,∞)/in Cw,(0,∞).

(3) If Bα(r) > B > 0 (∀r ≥ 1), then h(r) = BΨα(r). This is the situation when
w(t) = e−Dtα . Furthermore with suitable D and α infx∈(0,r)

x
ϕα(x) > B > 0. In

this case

K(x) =

∫ ∞

0

t2xe−2Dtαdt =
1

α(2D)
2x+1

α

Γ

(

2x+ 1

α

)

By Stirling’s formula (see eg. [15])

x

ϕα(x)
=

x
(√

2π( 2x+1
α )

2x+1
α

− 1
2 e−

2x+1
α e

J( 2x+1
α )

α(2D)
2x+1

α

)
α
2x

= (∗),

where J is the Binet function. For x > 0 we have 0 < J(x) < 1
12x . That is,

(∗) ≥ 2Deαx

2x+ 1

(

2Deα

2x+ 1

(

α(2x+ 1)

2π

)
α
2 1

e
α2

12(2x+1)

)
1
2x

= b(D,α, x)

and b(D,α, x) tends to Deα when x tends to infinity, and if

C(α,D) =
√
2Deα

e
α2
12 ( 2π

α )
α
4

> 1 then limx→0+
x

ϕα(x) = ∞. (In the case of Fuchs,

α = D = 1, C(α,D) > 1.)

(4) For α = D = 1, h(r) = f(r) = Ψ(r), r ≥ 0. By the substitution t = Duα

(without any further restrictions on the exponents ak for α ≥ 1, and with the
restriction ak 6= 1

2 (
1
α − 1) for 0 < α < 1), after some obvious estimations one

can deduce from the result of Fuchs (Theorem B), that {take−Dtα} is dense if

and only if
∫∞
1

Ψα(r)
r2 = ∞. We get the same from Theorems 1 and 2. After the

third remark we need to check the assumptions of Theorem 1. Now ϕx(x) =
√

K(x) ≤ (cx)
x
α , and so

(

ϕ(x)

Ψ(r)

)x

≤
(

cx

Ψα(r)

)
x
α

.
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Theorem 4 With the notations of Theorem 1

f(r) = C + rmax

{

1

2

K
′

K
(r), 2m(r)

}

− 1

2
logK(r) (15)

is a good choice for f(r) with a suitable C. That is, if w is admissible on [0,∞),
and

∫ ∞

1

rmax
{

1
2
K

′

K (r), 2m(r)
}

− 1
2 logK(r)

r2
< ∞ (16)

then S is incomplete in L2
w(0,∞).

Remark:

If w(t) = e−Dtα , and 1
2
K

′

K (r) > 2m(r) on a set H , then on H

f(r) = r
1

2

K
′

K
(r) − 1

2
logK(r)

=
r

α

(

Γ
′

Γ

(

2r + 1

α

)

− log(2D)

)

− 1

2
log

(

1

α(2D)
2x+1

α

Γ

(

2x+ 1

α

)

)

=
r

α
log

2r + 1

α
− r

2(2r + 1)
− r

α
I

(

2r + 1

α

)

− r

α
log(2D)

−1

2
log

√
2π
(

2x+1
α

)
2x+1

α
− 1

2 e−
2x+1

α eJ(
2x+1

α )

α(2D)
2x+1

α

=
r

α
− 2− α

4α
log

2r + 1

α
+O(1)

(In the last step we used that Γ
′

Γ (z) = log z − 1
2z − I(z) where I(z) =

2
∫∞
0

t
(t2+z2)(e2πt−1)dt (see eg [26]).) That is, if H is large then the integral in

(10) is divergent.

3 Proofs

For the proof of the first theorem, at first we need a lemma:

Lemma 1 Let a = m be a positive integer. If w2 is a continuous, positive,
normal weight function on (0,∞) with finite moments, then there is a function
b(z) such that 1

b(z) is regular on ℜz ≥ −a, and it fulfils the inequality on ℜz ≥
− 1

2 :
√

K(x+ a)

K(x)
≤ |b(z)|,

where z = x+ iy.
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Proof:

At first let x = n be also a positive integer. Then, using the Gaussian
quadrature formula on the zeros of the N th orthogonal polynomials (x1,N >

. . . > xk,N > . . . > xN,N) with respect to w2, where N = n + m + 1, we get,
that

K(n+m)

K(n)
=

∫∞
0

t2(n+m)w2

∫∞
0 t2nw2

=

∑N
k=1 λk,Nx

2(n+m)
k,N

∑N
k=1 λk,Nx2n

k,N

≤ x2m
1,N ,

that is, by the condition of ”normality”
√

K(n+m)

K(n)
≤ ecNm.

Now we can consider, that K(x+a)
K(x) is increasing on ℜz > − 1

2 , namely

(

K(x+ a)

K(x)

)
′

=
K(x+ a)

K(x)

(

K
′

K
(x + a)− K

′

K
(x)

)

,

which is nonnegative, because K
′

K is increasing. The last statement can be seen

by the Cauchy-Schwarz inequality, that is the derivative of K
′

K is nonnegative:

(

2

∫ ∞

0

t2x| log t|w2(t)dt

)2

≤
∫ ∞

0

t2xw2(t)dt

∫ ∞

0

t2x4 log2 tw2(t)dt.

So with a = m and x > 0,
√

K(x+ a)

K(x)
≤ eca(a+1+⌈x⌉) ≤ eca(a+2+x) = C(a) |ecaz| .

Remark:

(1) If
(

ϕ(2x)
ϕ(x)

)x

does not grow too quickly, then one can choose b(z) = c(a)b1(z),

where b1(z) is independent of a, because
√

K(x+a)
K(x) ≤ K

1
4 (2a)K

1
4 (2x)

K
1
2 (x)

= c(a)
(

ϕ(2x)
ϕ(x)

)x

(2) Usually we can give b(z) in polynomial form, for instance if w(t) = e−Dtα

then
√

K(x+a)
K(x) = 1

(2D)
a
α

√

Γ( 2x+1
α

+ 2a
α )

Γ( 2x+1
α )

≤ c(2x + 1 + 2a)
a
α , and so b(z) = c(z +

2a)n, where n > a
α is an integer.

Proof: of Theorem 1.

Let us extend f(r) to R as f(−r) = f(r). Let a ≥ 1 be as in (4). Furthermore

let a be an integer. Because
∫∞
1

f(r)
r2 < ∞, the function

p(z) = p(x+ iy) = p(reiϑ) =
2

π
(x+ a)

∫ ∞

−∞

f(t)

(x+ a)2 + (t− y)2
dt (17)
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is harmonic on ℜz > −a. Since f(t) is increasing, and x2 + y2 = r2

p(z) ≥ 2

π
f(r)

∫

|t|>r

x+ a

(x+ a)2 + (t− y)2
dt

= f(r)
2

π

(

π −
(

arctan
r − y

x+ a
+ arctan

r + y

x+ a

))

> f(r).

(In the last inequality we applied the height theorem of a triangle.) Let us
choose q so that −p + iq, and hence g(z) = ga(z) = e−p+iq, be regular on
ℜz > −a. According to the assumptions of Theorem 1, for this g(z) 6≡ 0 on
ℜz ≥ −a we have that

|g(z)| ≤ e−f(r) ≤
(

ϕ(x)

Ψ(r)

)x

ℜz ≥ 0. (18)

We will show that in this case S is not dense. For this let us define a regular
function on the half plane ℜz ≥ 0 by

H(z) =

∞
∏

k=1

ak − z

ak + z
e

2z
ak (19)

According to a Lemma of Fuchs ([14] L.5)

|H(z)| ≤ (CΨ(r))x on ℜz ≥ 0. (20)

Let us replace the ak-s in the definition of H(z) by ak + a, and let us denote
the new function by H∗(z). Now, with the help of g and H∗ we can define a
function G(z) = Ga(z) which is regular on ℜz ≥ −a:

G(z) =
g(z + a)H∗(z + a)

b(z)Cz+a
1

, (21)

where, according to Lemma 1, 1
b(z) is regular on ℜz ≥ −a, and on ℜz ≥ − 1

2 we

have
√

K(x+ a)

K(x)
≤ |b(z)| (22)

Because for an a > 0 K(x+a)
K(x) is positive, and it tends to zero, when x tends to− 1

2 ,

according to Lemma 1, we can suppose that |b(z)| > δ > 0 on ℜz ∈
[

−a,− 1
2

]

.
Now, because |H∗(z + a)| ≤ (CΨ(r))x+a (x ≥ −a) (see (20)), we have that

if C1 is large enough, than according to (22)

|G(z)| ≤ (ϕ(x))x on ℜz > −1

2
, (23)

and because a > 1
2 , on ℜz ∈

[

−a,− 1
2

]

:

|G(z)| ≤ (ϕ(x+ a))x+a

|b(z)| ≤ 1

δ
max

x∈[−a,− 1
2 ]

√

K(x+ a) = M (24)
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In the followings we will show that if there exists a function G which is not
identically zero, and is regular on ℜz ≥ −a, and fulfils the equations G(ak) =
0 (k = 1, 2, . . .), and the inequalities (23) and (24) are valid, then S is not
complete.

For the purpose of showing this, we need to construct a function 0 6≡ k(t) ∈
L2
w(0,∞) such that

∫∞
0

takk(t)w2(t) = 0 for k = 1, 2, . . .. We give k(t) by the

inversion formula for the Mellin transform of G(z)
(1+a+z)2 : on ℜz ≥ −a let us define

the function u(t) by an integral along a line parallel with the imaginary axis

tν(t)u(t) =
1

2π

∫ ∞

−∞

G(z)

(1 + a+ z)2
t−zdy (25)

It can be easily seen (by taking the integral round a rectangle xk ± iL k = 1, 2,
where L → ∞) that the integral is independent of x. Let us choose

k(t) =
ν(Ct)u(Ct)

w2(t)
, (26)

where C is the same as in (2). Using that

G(z)

(1 + a+ z)2
=

∫ ∞

0

ν(t)u(t)tzdt,

we have that
∫ ∞

0

takk(t)w2(t)dt =
1

Cak+a
1

∫ ∞

0

vak−1vu(v)ν(v)dv

=
1

Cak+a
1

G(ak)

(1 + a+ ak)2
= 0 (27)

We have to show, that k(t) ∈ L2
w(0,∞).

‖k‖22,w =

∫ ∞

0

u2(Ct)ν2(Ct)

w2(t)
dt =

∫ A
C

0

(·) +
∫ ∞

A
C

(·) = I + II, (28)

where A = max{1, CC0}.
According to (1), and by the positivity of the coefficients in γ,

II ≤
∫ ∞

A
C

ν2(Ct)u2(Ct)
∞
∑

k=0

ckt
γkdt ≤

∞
∑

k=0

ck

Cγk+1

∫ ∞

A

tγkν2(t)u2(t)dt

=
∑

k

γk< 1
3

(·) +
∑

k

γk≥ 1
3

(·) = S1 + S2 (29)

Using Parseval’s formula for the Mellin transform (see e.g. [15])

∫ ∞

0

t2x+1ν2(t)u2(t) =
1

2π

∫ ∞

−∞

∣

∣

∣

∣

G(z)

(1 + a+ z)2

∣

∣

∣

∣

2

dy
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≤ c (ϕ(x))2x ≤ c

(

ϕ(x+
1

2
)

)2x+1

, (30)

where the equality is valid on ℜz ≥ −a, the first inequality is on ℜz > − 1
2 ,

and the last inequality is on ℜz ≥ − 1
3 say, where we used again that K(x+a)

K(x) is

increasing, that is

0 < c ≤ K(16 )

K(− 1
3 )

≤ K(x+ 1
2 )

K(x)

Therefore, by (30)

S2 ≤ c
∑

γk

k≥ 1
3

ck

Cγk+1

∫ ∞

0

tγkν2(t)u2(t)dt ≤ c

∞
∑

k=0

ck

Cγk+1

(

ϕ
(γk

2

))γk

≤ c

∞
∑

k=0

ck

Cγk+1

∫ ∞

0

tγkw2(t) ≤ c

∞
∑

k=0

ck

∫ ∞

0

(

t

C

)γk

w2(t)

= c

∫ ∞

0

γ

(

t

C

)

w2(t) < ∞ (31)

To estimate S1 and I, we will use that by (25), with x = − 1
3

ν2(t)u2(t) ≤ ct−
4
3ϕ

(

−1

3

)− 2
3
∫ ∞

−∞

1
∣

∣

∣

(

2
3 + a+ iy

)2
∣

∣

∣

2 dy = ct−
4
3 (32)

That is
tγkν2(t)u2(t) ≤ ctβk , where βk < −1,

and therefore S1 is bounded. Similarly, if instead of x = − 1
3 we use x = −a in

(32), we obtain by (25) that ν2(t)u2(t) ≤ cM2t2a−2, and so by (4)

I =

∫ A
C

0

u2(Ct)ν2(Ct)

ν2(t)µ2(t)
dt ≤ c

∫ A
C

0

t2(a−1)

ν2(t)
< ∞ (33)

This proves Theorem 1.

We now turn to the proof of Theorem 2. We will need a technical lemma.
Following carefully the proof of Lemma 7 – Lemma 11 in [14], actually W. Fuchs
proved the following:

Lemma 2 [14] If there is a nonnegative, monotone increasing function h on
(0,∞), which fulfils (12), and

∫ ∞

1

h(r)

r2
= ∞, (34)

11



and if there is a function g regular on ℜz ≥ 0 such that there are C, c > 0,
α > 0

|g(z)| ≤ C

(

cx

h(r)

)
x
α

, (35)

then
g ≡ 0 on ℜz ≥ 0 (36)

Remark:

In Lemma 2 C and c means that instead of a regular function g another
regular function: bAzg(z) can be considered (A, b are positive constants). It
means that Ψ(r) can be replaced by a function Ψ1(r) such that Ψ

Ψ1
lies between

finite positive bounds, and Ψ1(r) has a continuous derivative. Therefore in the
followings we will assume that Ψ(r), that is m(r), is continuously differentiable,
if it is necessary. Furthermore since m(r) is increasing, we will assume that the
derivative of m is nonnegative. If it is necessary, we can assume the same on h.

Proof: of Theorem 2.
From (13), and the previous lemma it follows that if a function g(z) is regular

on ℜz ≥ 0, and it satisfies the inequality

|g(z)| ≤
(

c
ϕ(x)

Ψ(r)

)x

, (37)

then g ≡ 0. Namely, if r ≥ x > 0, then (13) and (37) together gives (35), and

by the definition of ϕ and Ψ, limx→0+

(

c
ϕ(x)
Ψ(r)

)x

= ‖w‖2,(0,∞), so we can choose

a constant C, such that
(

ϕ(x)
Ψ(r)

)x

≤ C
(

cx
h(r)

)
x
α

on ℜz ≥ 0.

Now let us assume, by contradiction, that S is not dense in L2
w. In this case

there is a function f 6≡ 0 in L2
w, such that the function

G(z) =

∫ ∞

0

tzf(t)w2(t)dt (38)

defined on ℜz ≥ 0, satisfies the equalities

G(ak) = 0 k = 1, 2, . . . (39)

and we can estimate its modulus by

|G(z)| ≤ ‖f‖2,w (ϕ(x))
x

(40)

Let us define now on ℜz ≥ 0

g(z) =
G(z)

H(z)Cz+1
1

, (41)

where H is as in (19). By Lemma 4 [14]

|H(z)| ≥ (C2Ψ(r))
x

(42)

12



on C\∪∞
k=1B

(

ak,
d
3

)

, where B
(

ak,
d
3

)

are balls around ak with radius depending
on d (see (11)), and on the imaginary axis without exception. This implies that

|g(z)| ≤
(

c
ϕ(x)

Ψ(r)

)x

on ℜz ≥ 0 \ ∪∞
k=1B

(

ak,
d
3

)

(and on the imaginary axis). But g is regular on
ℜz ≥ 0, so this inequality holds on the whole half-plane, and thus by Lemma 2
g ≡ 0, and hence G ≡ 0, a contradiction.

Proof: of Theorem 4.
Let us introduce the following notation on 0 ≤ x ≤ r, where r ≥ 0 is fixed:

vr(x) = 2xm(r) − 1

2
logK(x) (43)

Because K
′

K is increasing (see the first remark after the proof of Theorem 1),
vr(x) is concave on [0, r]. That is, we need to distinguish three cases: (a) vr(x)
is strictly decreasing on (0, r], (b) vr(x) has a maximum on (0, r], (c) vr(x) is
strictly increasing on [0, r].

In case (a) the first derivative of vr(x) is negative on [0, r], that is

2m(r) <
K

′

2K
(x) 0 ≤ x ≤ r. (44)

Furthermore K
′

K is increasing, and it means that

2m(r) ≤ K
′

2K
(0) (45)

Since the right-hand side is constant, and the left-hand side is increasing, there
is an r0, such that for all r > r0 (45) must be wrong.

In case (b) there is an 0 < x0 = x0(r) ≤ r, where v′r(x0) = 0. That is, for
all 0 ≤ x ≤ r

vr(x) ≤ vr(x0) =
x0

2

(

K
′

K
(x0)−

logK(x0)

x0

)

≤ r

2

(

K
′

K
(r) − logK(r)

r

)

(46)

because x
2

(

K
′

K (x) − logK(x)
x

)

is increasing, since it’s derivative is 1
2x
(

K
′

K

)

′

(x),

which is nonnegative.

In case (c) 2m(r) > K
′

2K (x) if 0 ≤ x ≤ r. That is, 2m(r) > K
′

2K (r). In this

case vr(x) ≤ vr(r),
r
2

(

K
′

K (r) − logK(r)
r

)

≤ vr(r), and vr(r) itself is increasing,

because using the remark after Lemma 1

vr(r)
′

=

(

2m(r) − 1

2

K
′

K
(r)

)

+ 2rm
′

(r) ≥ 0

That is, we can find a constant C, such that vr(x) ≤ f(r) even in case (a), and
f is increasing.
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[12] T. Erdélyi, The ”Full Müntz Theorem” Revisited, Constr. Approx. 21

(2005) 319-335.
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