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Abstract

We consider the linear span S of the functions ¢t** (with some ax > 0)
in weighted L? spaces, with rather general weights. We give one necessary
and one sufficient condition for S to be dense. Some comparisons are also
made between the new results and those that can be deduced from older
ones in the literature.

1 Introduction

The first ”if and only if” solution to a problem of S. N. Bernstein [4] was given
by Ch. H. Mintz [21]:

Theorem A

Let 0 = Ay < A1 <,... be an increasing sequence of real numbers. The linear
Ak L . : ‘ S S

subspace span{t** : k =0,1,...} is dense in C([0,1]), if and only if >3~ | 5~ =

00.

This classical result was first proved in Ls[0, 1] and then extended to C[0, 1],
as stated above. Also, it was stated only for increasing sequences Ag. Subse-
quently, this theorem has had several different proofs and generalizations, and
there are several surveys in this topic (see for instance the papers of J. Almira

and A. Pinkus [1], [23]).

On C[0,1] and L,(0,1), "full Miintz theorems”, i.e. theorems with rather
general exponents, were later proved by eg. P. Borwein, T. Erdélyi, W. B.
Johnson and V. Operstein ([7], [13], [12], [22]). Versions of Miintz’s theorem on
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compact subsets of positive measure [§], [9], and on countable compact sets [2]
were also proved. Further results can be found for instance in the monographs
of P. Borwein, T. Erdélyi [10], and B. N. Khabibullin [16].

In this paper we are interested in Miintz-type theorems on (0, 00). Several
papers were written in the ’40s on the completeness of the set {t*e~*} in
L2(0,00) (see eg. [14], [B], [6]). In particular, we will use some ideas of W.
Fuchs. His theorem is the following:

Theorem B

Let ay, be positive numbers, such that ax41 —ar > ¢ > 0 (k = 1,2,...),
and let log¥(r) =23, _, i, if > a1, and log¥(r) = % if r < ai. Then
{e~tt%} is complete in L(0,00), if and only if

[

A. F. Leontev [I8] and G. V. Badalyan [3] proved similar theorems with
more general weights (the weight being e~! in the above theorem). In 1980,
by the Hahn-Banach theorem technique, R. A. Zalik [27] proved a Miintz type
theorem on the half-line with weights |w| < cexp(—|logt|*) (a > 0). In 1996
Kroé and Szabados [I7] also had a related result on (0, 00).

In Theorem [Tl and Theorem [2] below we will prove Miintz-type theorems on
the half-line with more general weights, which generalize all the results men-
tioned above.

Closely related to our topic (by a logt substitution) are the results on the
whole real line for exponential systems. The basic paper in this respect was
written by P. Malliavin [20], and by this tool there are some nice generaliza-
tions of the above mentioned results, for instance by B. V. Vinnitskii, A. V.
Shapovalovskii [25], by G. T. Deng [11], and by E. Zikkos [28].

2 Definitions, Results

Let us begin with a rather general definition. Some specific examples are given
subsequently.

Definition 1 We say that a weight function w(t) = v(t)u(t) is admissible on
[0,00), if v(t) and u(t) are positive and continuous on (0,00), w? has finite
moments, and there is a function v on [0,00), such that

Y(E) =D et

k=0

where ¢, > 0 for all k, and 0 < vy < v1 <72 < ..., and there is a Cy > 0 such

that ¥t > Cy 1

w2 (t

) <A(t) (1)



and there is a C' > 1, such that

/Oooy (é) W (D)t < o, (2)

Furthermore we require that

t£%1+ u(t) € (0,00), (3)

and there is an a > 0 such that
1 tafl 2
— ] < oo (4)
| (&)

Here and in the followings C, C; and ¢ are absolute constants, and the value
of them will not be the same at each occurrence.

Remark:
If v(t) = 1 (as in Theorem B) then we can choose a = 1. Also, it is easy to
see that we can always assume a > 1.

Examples :

w(t) = tPe= P where § > —% and o > 0 is admissible, namely it has finite
moments, and y(t) = e3P*" serves the purpose. When 3 =0 and D =a =1,
we get back the original case of Fuchs (Theorem B). When 8 > —1, D = 1 and
a =1, then w? is a Laguerre weight. When 8 =0, D > 0 and o > 1, then w is
a Freud weight.

Let w(t) = (4 +sint)t? [[;_, e P+*"* and let us assume, that 8 > —1, and
0<o <ay...<ay,and D,, > 0. Then w is admissible, and ePt™™ is a suitable
choice for ¥(t), if D is large enough. In particular, if w(t) = ¢(4 + sint)e™" then
the second derivative of — log(w(e')) takes some negative values on (A, co) for
any A > 0. This means that the results of [28] are not applicable in this case.

Definition 2 Let w be a positive continuous weight function with w? having
finite moments. Then define p(z) and K(x) corresponding to w(x) as

8-

o(z) = (/OOO thwQ(t)dt) = (K(2))*=, z>0. (5)

Furthermore let us define another property of a weight function. The clas-
sical weight functions, and also our examples above, fulfil this "normality” con-
dition, as we can see later.

Definition 3 Let us call a weight function w? with finite moments "normal”,
if the largest zero of the n' orthogonal polynomial (z1.,,) with respect to w?,
can be estimated as:

Ti,n < ecn,

where ¢ = c¢(w) s a positive constant independent of n.



Remark:

In the cases of Laguerre and Freud weights x1, < cn’, where A = A(w)
is a positive constant depending on the weight function, moreover the same
estimation is valid for a more general classes of weights on the real axis ([I9] p.
313. Th. 11.1). As an application of the result of A. Markov ([24] p. 115. Th.
6.12.2), we can get a similar estimation for the examples above; for instance
w(z) = x7e™" there is a B > 0 such that with W (x) = 2%e~", the quotient
W is increasing on (0, 00); if w(z) = (4 +sinz)e~, then the corresponding W
can be W(z) = z2e” 2.

Definition 4 Let {ax}32, be positive numbers in increasing order. We define
(as in [T4] and Theorem B above)

(6)

m(r) = a1 .
(r) ak<r%, ifr>a

{ Loifo<r<a

and let
(r) =2, (7)

Let us also introduce the following notations:
Notation:

Let w be a positive continuous weight function, and let us define the weighted
L? space as L7,(0,00) = {f[fw € L*(0,00)}, and || fll2,w = [ fw]|2,(0,00)-

S =span{t® :k=1,2,...} (8)

with 0 <ay <ag <....

We are now in position to state the main results of this note (the proofs will
follow in the next Section).

Theorem 1 Let w be an admissible and normal weight function on [0, 00).
If there exists a monotone increasing function f on [0,00), such that for all
O<z<r

v (r)

o(z)

/100 fg) < 0, (10)
)

then S is incomplete in L2 (0, 00).

xlog < f(r), 9)

and

This result is then nicely complemented by the following positive result.



Theorem 2 Let w be positive and continuous on (0,00), such that w? has finite
moments. Let us suppose that there is a constant d > 0 such that

g1 — Ag > d (11)
If there exists a monotone increasing function h on [0,00), for which

h(r)
h(r1)

with some 0 < C, D, and there are o, C,c > 0, such that for all 0 < x <r

r

C < <2 (12)

1
<D, for =<
2 1

Cx

0<h(r)<C* =@ T (r), (13)
and o p
/1 g) — o0, (14)

then S is complete in L2 (0, 00).

Comparing the conditions of the above theorems we conclude the following:

Corollary:
If w is admissible and normal on (0, 00), and there is a d such that ag41 —ag >
d > 0, and f(r) = ch(r), where h has the same properties as in Theorem 2, then

S is dense in L2 (0, 00) if and only if [ hr(g) = o0.

Remark:

(1) Let
B,(r) = inf Cx x .
(r) z€(0,r) ()
Then assuming (11) and (12), if there exists a 0 < h(r) < ¢By(r)¥*(r), for
which (14) is valid, then S is dense in L2 (0, c0).

(2) Theorem 2 can be stated also in L%, (0, 00), with 1 < p < 00, and in Cy, (0,c0)
with the same proof. That is, let us define

1
o e
cpp(:v)z(/ tpmwp(t)dt) , >0, 1<p<oo
0

and
we(x) = <sup t””w(t)dt) ’ , x>0.
>0

Using the standard the notations L% (0,00) = {f : [[fwl 0,0c) < 00}, and
Cu,(0,00) = {f € C(0,00) : lime~os+ f(t)w(t) = 0}, we can formulate the follow-

ing theorem:



Theorem 3 Let w be positive and continuous on (0,00), and let us assume that
t*w(t) € Ll(jo)oo) in the L? -case, and that for all a > 0 limt;rg t*w(t) = 0 in
the Cy,-case. Furthermore let {ar} be a sequence of positive numbers for which
(11) is satisfied. If there is a monotone increasing function h on (0,00) with
the properties (12) and (14), and for which there are a, C,c > 0, such that for

ald<z<r
cx

‘PS/C(CU)

8=

0<h(r)<C

¥ (r),
then S is complete in LE (0, 00)/in Cy (0,00

(3) If Bo(r) > B >0 (Vr > 1), then h(r) = B¥*(r). This is the situation when
w(t) = e~ P Furthermore with suitable D and « inf e (o,r) Sa%(m) >B>0.In

this case - ) ) )
K(z) = / (2w 2Dt gy _ 7 < z+ >
0 a(2D) e «

By Stirling’s formula (see eg. [15])

= = (k
e G AT
a(2D) 2:;1

where J is the Binet function. For z > 0 we have 0 < J(x) < ﬁ That is,

>
)= 571

1
2Deaz [ 2Dea [a(2z+1)\* 1 B
<2x — ( o ) . ) =b(D,a,x)

[e3
e12(2z+1)

and b(D, a, x) tends to Dea when x tends to infinity, and if
C(a,D) = —¥2Pea_ >~ 1 then lim, o4 T = o (In the case of Fuchs,

Iy

eIz (2x)4

a=D=1, C'(aj)) > 1)

(4) For « = D =1, h(r) = f(r) = ¥(r),r > 0. By the substitution ¢t = Du®

(without any further restrictions on the exponents ay, for a > 1, and with the
1

restriction ay # (L — 1) for 0 < a < 1), after some obvious estimations one

can deduce from the result of Fuchs (Theorem B), that {t*e¢~P*"} is dense if
and only if floo ‘wy) = 0o. We get the same from Theorems 1 and 2. After the
third remark we need to check the assumptions of Theorem 1. Now ¢?(z) =

K(z) < (cz)=, and so




Theorem 4 With the notations of Theorem 1

’

firy=C+ rmax{%%(r)ﬂm(r)} - %logK(r) (15)

is a good choice for f(r) with a suitable C. That is, if w is admissible on [0, 0),
and

’

/°° rmax{%%(r)jm(r)} — 2log K(r)

3 < oo (16)

then S is incomplete in L2 (0, 00).

Remark:

If w(t) = e~ P and %K?/(r) > 2m(r) on a set H, then on H

f(r)= r%%(r) - %logK(r)

=£ (1“F (2r(jl> —1og(2D)> _ %log (a(le)%F (2:6;1))

2 1 2 1
zilog el ! L Tt —Zlog(QD)
a a 22r+1) « a a
1 VIR ()T e e ()
—=log FTES
2 a(2D)™a
T 2-« 2r+1
=—— 1 o(1
o da & o +0()

(In the last step we used that PT/(z) =logz — 5= — I(z) where I(z) =
2 fooo Mﬁ_l)dt (see eg [26]).) That is, if H is large then the integral in
(10) is divergent.

3 Proofs

For the proof of the first theorem, at first we need a lemma:

Lemma 1 Let a = m be a positive integer. If w? is a continuous, positive,
normal weight function on (0,00) with finite moments, then there is a function

b(z) such that ﬁ is reqular on Rz > —a, and it fulfils the inequality on RNz >

1.
5
K(z+a)

IO < [b(2)l,

where z = x + 1y.



Proof:
At first let * = n be also a positive integer. Then, using the Gaussian
quadrature formula on the zeros of the N orthogonal polynomials (z1 y >

. > XN > ... > xy.N) with respect to w?, where N = n +m + 1, we get,
that
K(n 4 m) fooo t2(n+m)w Ek 1 )‘k NT k(n+m) o
= == =T 9
K(n) fooo t2n? Zk:l )‘knyk,N L
that is, by the condition of "normality”
K(n + m) e¢2N7n
Kn) —
Now we can consider, that Kl(f(;r)a ) is increasing on Rz > — 1, namely
K(z+a) , K(x+a) (K K
() = (w0 -%@).
which is nonnegative, because K? is increasing. The last statement can be seen

by the Cauchy-Schwarz inequality, that is the derivative of K? is nonnegative:

oo 2 o) o)
(2 / t2z|logt|w2(t)dt> < / 2w (t)dt / 2 41og? tw? (t)dt.
0 0 0

So with ¢ = m and x > 0,

K(x+a) <

ca(a+1+[z]) ~ pcalat24x) _ C caz|
e <e (@) o=

Remark:

( %))) does not grow too quickly, then one can choose b(z) = ¢(a)bi(2),

where b1(z) is independent of a, because

1 z
K(z+a) K1(2z) ©(2z)
O Ki (2(1)—1(%@) = c(a) ( ) )

(2) Usually we can give b(z) in polynomial form, for instance if w(t) = e~ P*"

Kta) _ 2z+1

then |/ =505 (2D 2z+1 < c(2z+1+2a)a, and so b(z) = c(z +

2a)", where n. > 2 is an 1nteger.
Proof: of Theorem 1.
Let us extend f(r) toR as f(—r) = f(r). Let a > 1 be asin (4). Furthermore

()

let a be an integer. Because fl < 00, the function

po) =plo+in) =plre”) = 2 va) [~ IO a )



is harmonic on Rz > —a. Since f(t) is increasing, and x? + y2 = 2

2 T+a
p(z) > ;f(r)/u>r (:1:—|—a)2+(t—y)2dt

= f(r)% (w— (arctanr_y +arctan;ii>) > f(r).

xr+a

(In the last inequality we applied the height theorem of a triangle.) Let us
choose ¢ so that —p + ig, and hence g(z) = g.(2) = e PT% be regular on
Rz > —a. According to the assumptions of Theorem 1, for this g(z) #Z 0 on
Rz > —a we have that

l9()] < e < (%) Rz > 0. (18)

We will show that in this case S is not dense. For this let us define a regular
function on the half plane %z > 0 by

i A — 2 2z
H(z) = H ak+ze% (19)
k=1

According to a Lemma of Fuchs (JI4] L.5)
|H(z)] < (CT¥(r))® on Rz>0. (20)

Let us replace the ag-s in the definition of H(z) by ar + a, and let us denote
the new function by H*(z). Now, with the help of g and H* we can define a
function G(z) = G,(z) which is regular on Rz > —a:

_g(z+a)H* (2 +a)

G(Z) - b(Z)Clera ) (21)

where, according to Lemma 1, le) is regular on Rz > —a, and on Rz > —% we

have
K(z+a)
S A | 22
L9 < oo 22)
Because for ana > 0 Kj(f(;r; ) is positive, and it tends to zero, when z tends to -3,

according to Lemma 1, we can suppose that [b(z)| > 6 > 0 on Rz € [—a, —1].
Now, because |H*(z + a)| < (C¥(r))**T* (z > —a) (see (20)), we have that
if C; is large enough, than according to (22)
1
G2)] = (p(2))" on Rz > -, (23)

]:
g% max ]\/K(:C—i—a):M (24)

N[

and because a > %, on Rz € [—a, —

(p(z +a)"™



In the followings we will show that if there exists a function G which is not
identically zero, and is regular on Rz > —a, and fulfils the equations G(ay) =
0 (k = 1,2,...), and the inequalities (23) and (24) are valid, then S is not
complete.

For the purpose of showing this, we need to construct a function 0 # k(t) €
L2(0,00) such that [°t**k(t)w?(t) = 0 for k = 1,2,.... We give k(t) by the
(13‘57_’?2)2: on Rz > —a let us define
the function u(t) by an integral along a line parallel with the imaginary axis

inversion formula for the Mellin transform of

1 [ G(z)
tr(t)u(t) = — ———t7%d 25
viput) = 5= | Gt (25)
It can be easily seen (by taking the integral round a rectangle xj +iL k = 1,2,
where L — 00) that the integral is independent of . Let us choose

_ v(Ct)u(Ct)
where C' is the same as in (2). Using that
G(z) =
— = = tu(t)t>dt
el OO
we have that
/ % k(t)w? (t)dt = %/ v Lyu(v)v(v)dv
0 CT* Jo
1 G(ar) (27)

= kaJra (1 —I—CL—I—CLk)2 -
We have to show, that k(t) € L2 (0, 00).

< u?(Ct)v? @ o
I e NGRS RCE SO/ e

where A = max{1,CCy}.
According to (1), and by the positivity of the coefficients in ~,

0o 00 00 - o
1< [ Cremeen Y e <y e [ oo
c k=0 k=0

=S O+ Y ()=5+5 (29)

k 1 k 1
<3 T3

Using Parseval’s formula for the Mellin transform (see e.g. [15])

/OOO 25,2 (1) (1) = % /°° ’ . +Ga(zj -~

— 00

2

10



2x+1
<clpl)™ sc(vlaty) (30)

where the equality is valid on Rz > —a, the first inequality is on Rz > —%,
K(z+a) is
K(x)

and the last inequality is on Rz > —% say, where we used again that
increasing, that is

O0<e<

Therefore, by (30)

Sy < e Z C?:H /Ooo 2 () (t)dt < 6;0 C,CWI:H (<P (%))%

k>%
& Ck oo ) e [eS) t Tk 9
Tk _
SCZCWH/O 7w (t) Schk/O (C> w=(t)
k=0 k=0

e [Ta(5) < (31)

To estimate S; and I, we will use that by (25), with = —%

(t)u?(t) < 3 (—%>_§ /00 ;dy =ct7s (32)

oo ‘(% —I—a—i—iy)z‘?

That is
2 (P (t) < et’,  where By < —1,
and therefore S; is bounded. Similarly, if instead of z = —% we use £ = —a in
(32), we obtain by (25) that v%(t)u?(t) < cM?*t**=2 and so by (4)
A A
& u?(Ct2(Ct @ ¢2a-1)
I:/ %dtﬁc‘/ 5 < oo (33)
o vA(O)uA(t) o VA1)

This proves Theorem 1.

We now turn to the proof of Theorem 2l We will need a technical lemma.
Following carefully the proof of Lemma 7 — Lemma 11 in [14], actually W. Fuchs
proved the following:

Lemma 2 [T]|] If there is a nonnegative, monotone increasing function h on
(0,00), which fulfils (12), and
< h
/ ") -, (34)
1

11



and if there is a function g reqular on Rz > 0 such that there are C,c > 0,
a>0 .
cr \©

<C|— 35

< e (55 (35)

g=0 on Rz>0 (36)

then

Remark:

In Lemma 2 C and ¢ means that instead of a regular function g another
regular function: bA%g(z) can be considered (A,b are positive constants). It
means that ¥(r) can be replaced by a function ¥4 (r) such that \% lies between
finite positive bounds, and ¥4 (r) has a continuous derivative. Therefore in the
followings we will assume that ¥(r), that is m(r), is continuously differentiable,
if it is necessary. Furthermore since m(r) is increasing, we will assume that the
derivative of m is nonnegative. If it is necessary, we can assume the same on h.

Proof: of Theorem 2.
From (13), and the previous lemma it follows that if a function g(z) is regular
on Rz > 0, and it satisfies the inequality

l9(2)] < (cg((g)m : (37)

then g = 0. Namely, if > 2 > 0, then (13) and (37) together gives (35), and
)

by the definition of ¢ and ¥, lim,_,o+ (c‘é((”;) = [Jwl2,(0,00), 80 We can choose

(1) z cxT ’
a constant C, such that (ém> <C (h(r)> on Rz > 0.

Now let us assume, by contradiction, that S is not dense in L2 In this case
there is a function f # 0 in L2, such that the function

Glz) = / £ (0w (t)dt (38)
0
defined on Rz > 0, satisfies the equalities
G(ag)=0 k=1,2,... (39)
and we can estimate its modulus by
IG(2)] < 1 fllzw (0(2))" (40)

Let us define now on ®z > 0

G(z)

9(2) = H)CT (41)
where H is as in (19). By Lemma 4 [I4]
[H(2)| > (C2¥(r))” (42)

12



on C\U B (ak, %), where B (ak, %) are balls around aj with radius depending
on d (see (11)), and on the imaginary axis without exception. This implies that

p(@)\"
<
ol < (<52)
on Rz > 0\ U2, B (a, %) (and on the imaginary axis). But ¢ is regular on
Rz > 0, so this inequality holds on the whole half-plane, and thus by Lemma 2
g =0, and hence G = 0, a contradiction.

Proof: of Theorem [l
Let us introduce the following notation on 0 < z < r, where r > 0 is fixed:

vp(x) = 2zm(r) — %log K(x) (43)

’

Because K? is increasing (see the first remark after the proof of Theorem 1),
vr(x) is concave on [0,7]. That is, we need to distinguish three cases: (a) v,.(x)
is strictly decreasing on (0,r], (b) v,(z) has a maximum on (0,7], (c) v,(z) is

strictly increasing on [0, 7].

In case (a) the first derivative of v,(z) is negative on [0, 7], that is

’

K
2m(r) < ﬁ(x) 0<z<r. (44)
Furthermore K?, is increasing, and it means that
K_/
2m(r) < 55-(0) (45)

Since the right-hand side is constant, and the left-hand side is increasing, there
is an ro, such that for all » > ry (45) must be wrong.

In case (b) there is an 0 < xg = zo(r) < r, where v].(z9) = 0. That is, for
al0 <z <r

(&) < (o) = 2 (%xo) _ w) _r (%m . w) 6)

2 To =2 T

’ ’
z [ K log K(z) \ . : . . oy . . -1 K
because 3 (—K (.’I]) IR — 1S Increasing, since it’s derivative is 55E e (.’L’),

which is nonnegative.
In case (c) 2m(r) > £-(z) if 0 < = < r. That is, 2m(r) > £-(r). In this
case v, (z) < vp(r), & (K?(r) - M) < v,(r), and v, (r) itself is increasing,

because using the remark after Lemma 1

’UT(T‘), = <2m(7°) - %%(r)) +2rm’ (ry>0

That is, we can find a constant C, such that v,(x) < f(r) even in case (a), and
f is increasing.

13
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