Müntz-type theorems on the half-line with weights

Ágota P. Horváth *
Department of Analysis, Budapest University of Technology and Economics
H-1521 Budapest, Hungary
e-mail: ahorvath@renyi.hu

Abstract

We consider the linear span S of the functions $t^{a_{k}}$ (with some $a_{k}>0$) in weighted L^{2} spaces, with rather general weights. We give one necessary and one sufficient condition for S to be dense. Some comparisons are also made between the new results and those that can be deduced from older ones in the literature.

1 Introduction

The first "if and only if" solution to a problem of S. N. Bernstein 4] was given by Ch. H. Müntz 21]:
Theorem A
Let $0=\lambda_{0}<\lambda_{1}<, \ldots$ be an increasing sequence of real numbers. The linear subspace $\operatorname{span}\left\{t^{\lambda_{k}}: k=0,1, \ldots\right\}$ is dense in $C([0,1])$, if and only if $\sum_{k=1}^{\infty} \frac{1}{\lambda_{k}}=$ ∞.

This classical result was first proved in $L_{2}[0,1]$ and then extended to $C[0,1]$, as stated above. Also, it was stated only for increasing sequences λ_{k}. Subsequently, this theorem has had several different proofs and generalizations, and there are several surveys in this topic (see for instance the papers of J. Almira and A. Pinkus [1], [23]).

On $C[0,1]$ and $L_{p}(0,1)$, "full Müntz theorems", i.e. theorems with rather general exponents, were later proved by eg. P. Borwein, T. Erdélyi, W. B. Johnson and V. Operstein ([7], [13], [12], [22]). Versions of Müntz's theorem on

[^0]compact subsets of positive measure [8, [9, and on countable compact sets [2] were also proved. Further results can be found for instance in the monographs of P. Borwein, T. Erdélyi [10], and B. N. Khabibullin [16].

In this paper we are interested in Müntz-type theorems on $(0, \infty)$. Several papers were written in the '40s on the completeness of the set $\left\{t^{\lambda_{k}} e^{-t}\right\}$ in $L_{2}(0, \infty)$ (see eg. [14, [5], 6]). In particular, we will use some ideas of W. Fuchs. His theorem is the following:
Theorem B
Let a_{k} be positive numbers, such that $a_{k+1}-a_{k}>c>0(k=1,2, \ldots)$, and let $\log \Psi(r)=2 \sum_{a_{k}<r} \frac{1}{a_{k}}$, if $r>a_{1}$, and $\log \Psi(r)=\frac{2}{a_{1}}$ if $r \leq a_{1}$. Then $\left\{e^{-t} t^{a_{k}}\right\}$ is complete in $L_{2}(0, \infty)$, if and only if

$$
\int_{1}^{\infty} \frac{\Psi(r)}{r^{2}}=\infty
$$

A. F. Leontev [18] and G. V. Badalyan [3] proved similar theorems with more general weights (the weight being e^{-t} in the above theorem). In 1980, by the Hahn-Banach theorem technique, R. A. Zalik [27] proved a Müntz type theorem on the half-line with weights $|w| \leq c \exp \left(-|\log t|^{a}\right)(a>0)$. In 1996 Kroó and Szabados [17] also had a related result on $(0, \infty)$.

In Theorem 1 and Theorem 2 below we will prove Müntz-type theorems on the half-line with more general weights, which generalize all the results mentioned above.

Closely related to our topic (by a $\log t$ substitution) are the results on the whole real line for exponential systems. The basic paper in this respect was written by P. Malliavin [20], and by this tool there are some nice generalizations of the above mentioned results, for instance by B. V. Vinnitskii, A. V. Shapovalovskii [25], by G. T. Deng [11], and by E. Zikkos [28].

2 Definitions, Results

Let us begin with a rather general definition. Some specific examples are given subsequently.

Definition 1 We say that a weight function $w(t)=\nu(t) \mu(t)$ is admissible on $[0, \infty)$, if $\nu(t)$ and $\mu(t)$ are positive and continuous on $(0, \infty)$, w^{2} has finite moments, and there is a function γ on $[0, \infty)$, such that

$$
\gamma(t)=\sum_{k=0}^{\infty} c_{k} t^{\gamma_{k}}
$$

where $c_{k}>0$ for all k, and $0 \leq \gamma_{0}<\gamma_{1}<\gamma_{2}<\ldots$, and there is a $C_{0}>0$ such that $\forall t>C_{0}$

$$
\begin{equation*}
\frac{1}{w^{2}(t)} \leq \gamma(t) \tag{1}
\end{equation*}
$$

and there is a $C>1$, such that

$$
\begin{equation*}
\int_{0}^{\infty} \gamma\left(\frac{t}{C}\right) w^{2}(t) d t<\infty \tag{2}
\end{equation*}
$$

Furthermore we require that

$$
\begin{equation*}
\lim _{t \rightarrow 0+} \mu(t) \in(0, \infty) \tag{3}
\end{equation*}
$$

and there is an $a>0$ such that

$$
\begin{equation*}
\int_{0}^{1}\left(\frac{t^{a-1}}{\nu(t)}\right)^{2}<\infty \tag{4}
\end{equation*}
$$

Here and in the followings C, C_{i} and c are absolute constants, and the value of them will not be the same at each occurrence.

Remark:

If $\nu(t) \equiv 1$ (as in Theorem B) then we can choose $a=1$. Also, it is easy to see that we can always assume $a \geq 1$.

Examples :

$w(t)=t^{\beta} e^{-D t^{\alpha}}$, where $\beta>-\frac{1}{2}$ and $\alpha>0$ is admissible, namely it has finite moments, and $\gamma(t)=e^{3 D t^{\alpha}}$ serves the purpose. When $\beta=0$ and $D=\alpha=1$, we get back the original case of Fuchs (Theorem B). When $\beta>-\frac{1}{2}, D=\frac{1}{2}$ and $\alpha=1$, then w^{2} is a Laguerre weight. When $\beta=0, D>0$ and $\alpha>1$, then w is a Freud weight.

Let $w(t)=(4+\sin t) t^{\beta} \prod_{k=1}^{n} e^{-D_{k} t^{\alpha_{k}}}$, and let us assume, that $\beta>-\frac{1}{2}$, and $0 \leq \alpha_{1}<\alpha_{2} \ldots<\alpha_{n}$, and $D_{n}>0$. Then w is admissible, and $e^{D t^{\alpha n}}$ is a suitable choice for $\gamma(t)$, if D is large enough. In particular, if $w(t)=t(4+\sin t) e^{-t}$ then the second derivative of $-\log \left(w\left(e^{t}\right)\right)$ takes some negative values on (A, ∞) for any $A>0$. This means that the results of [28] are not applicable in this case.

Definition 2 Let w be a positive continuous weight function with w^{2} having finite moments. Then define $\varphi(x)$ and $K(x)$ corresponding to $w(x)$ as

$$
\begin{equation*}
\varphi(x)=\left(\int_{0}^{\infty} t^{2 x} w^{2}(t) d t\right)^{\frac{1}{2 x}}=(K(x))^{\frac{1}{2 x}}, \quad x>0 \tag{5}
\end{equation*}
$$

Furthermore let us define another property of a weight function. The classical weight functions, and also our examples above, fulfil this "normality" condition, as we can see later.

Definition 3 Let us call a weight function w^{2} with finite moments "normal", if the largest zero of the $n^{\text {th }}$ orthogonal polynomial $\left(x_{1, n}\right)$ with respect to w^{2}, can be estimated as:

$$
x_{1, n} \leq e^{c n}
$$

where $c=c(w)$ is a positive constant independent of n.

Remark:

In the cases of Laguerre and Freud weights $x_{1, n} \leq c n^{\lambda}$, where $\lambda=\lambda(w)$ is a positive constant depending on the weight function, moreover the same estimation is valid for a more general classes of weights on the real axis ($[19] \mathrm{p}$. 313. Th. 11.1). As an application of the result of A. Markov ([24] p. 115. Th. 6.12.2), we can get a similar estimation for the examples above; for instance $w(x)=x^{\gamma} e^{-x^{\alpha}}$, there is a $\beta>0$ such that with $W(x)=x^{\beta} e^{-x}$, the quotient $\frac{W}{w}$ is increasing on $(0, \infty)$; if $w(x)=x(4+\sin x) e^{-x}$, then the corresponding W can be $W(x)=x^{2} e^{-\frac{x}{2}}$.

Definition 4 Let $\left\{a_{k}\right\}_{k=1}^{\infty}$ be positive numbers in increasing order. We define (as in 14 and Theorem B above)

$$
m(r)=\left\{\begin{array}{l}
\frac{1}{a_{1}}, \text { if } 0 \leq r \leq a_{1} \tag{6}\\
\sum_{a_{k}<r} \frac{1}{a_{k}}, \text { if } r>a_{1}
\end{array}\right.
$$

and let

$$
\begin{equation*}
\Psi(r)=e^{2 m(r)} \tag{7}
\end{equation*}
$$

Let us also introduce the following notations:

Notation:

Let w be a positive continuous weight function, and let us define the weighted L^{2} space as $L_{w}^{2}(0, \infty)=\left\{f \mid f w \in L^{2}(0, \infty)\right\}$, and $\|f\|_{2, w}=\|f w\|_{2,(0, \infty)}$.

$$
\begin{equation*}
S=\operatorname{span}\left\{t^{a_{k}}: k=1,2, \ldots\right\} \tag{8}
\end{equation*}
$$

with $0<a_{1}<a_{2}<\ldots$..
We are now in position to state the main results of this note (the proofs will follow in the next Section).

Theorem 1 Let w be an admissible and normal weight function on $[0, \infty)$. If there exists a monotone increasing function f on $[0, \infty)$, such that for all $0<x \leq r$

$$
\begin{equation*}
x \log \frac{\Psi(r)}{\varphi(x)} \leq f(r) \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{1}^{\infty} \frac{f(r)}{r^{2}}<\infty \tag{10}
\end{equation*}
$$

then S is incomplete in $L_{w}^{2}(0, \infty)$.

This result is then nicely complemented by the following positive result.

Theorem 2 Let w be positive and continuous on $(0, \infty)$, such that w^{2} has finite moments. Let us suppose that there is a constant $d>0$ such that

$$
\begin{equation*}
a_{k+1}-a_{k}>d \tag{11}
\end{equation*}
$$

If there exists a monotone increasing function h on $[0, \infty)$, for which

$$
\begin{equation*}
C<\frac{h(r)}{h\left(r_{1}\right)}<D, \quad \text { for } \quad \frac{1}{2} \leq \frac{r}{r_{1}} \leq 2 \tag{12}
\end{equation*}
$$

with some $0<C, D$, and there are $\alpha, C, c>0$, such that for all $0<x \leq r$

$$
\begin{equation*}
0<h(r) \leq C^{\frac{1}{x}} \frac{c x}{\varphi^{\alpha}(x)} \Psi^{\alpha}(r) \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{1}^{\infty} \frac{h(r)}{r^{2}}=\infty \tag{14}
\end{equation*}
$$

then S is complete in $L_{w}^{2}(0, \infty)$.

Comparing the conditions of the above theorems we conclude the following:

Corollary:

If w is admissible and normal on $(0, \infty)$, and there is a d such that $a_{k+1}-a_{k}>$ $d>0$, and $f(r)=c h(r)$, where h has the same properties as in Theorem 2, then S is dense in $L_{w}^{2}(0, \infty)$ if and only if $\int_{1}^{\infty} \frac{h(r)}{r^{2}}=\infty$.

Remark:

(1) Let

$$
B_{\alpha}(r)=\inf _{x \in(0, r)} C^{\frac{1}{x}} \frac{x}{\varphi^{\alpha}(x)}
$$

Then assuming (11) and (12), if there exists a $0 \leq h(r) \leq c B_{\alpha}(r) \Psi^{\alpha}(r)$, for which (14) is valid, then S is dense in $L_{w}^{2}(0, \infty)$.
(2) Theorem 2 can be stated also in $L_{w}^{p}(0, \infty)$, with $1 \leq p<\infty$, and in $C_{w,(0, \infty)}$ with the same proof. That is, let us define

$$
\varphi_{p}(x)=\left(\int_{0}^{\infty} t^{p x} w^{p}(t) d t\right)^{\frac{1}{p x}}, \quad x>0, \quad 1 \leq p<\infty
$$

and

$$
\varphi_{c}(x)=\left(\sup _{t>0} t^{x} w(t) d t\right)^{\frac{1}{x}}, \quad x>0
$$

Using the standard the notations $L_{w}^{p}(0, \infty)=\left\{f:\|f w\|_{p,(0, \infty)}<\infty\right\}$, and $C_{w,(0, \infty)}=\left\{f \in C(0, \infty): \lim _{\substack{t \rightarrow 0+\\ t \rightarrow \infty}} f(t) w(t)=0\right\}$, we can formulate the following theorem:

Theorem 3 Let w be positive and continuous on $(0, \infty)$, and let us assume that $t^{x} w(t) \in L_{(0, \infty)}^{p}$ in the L_{w}^{p}-case, and that for all $a>0 \lim _{\substack{t \rightarrow 0+\\ t \rightarrow \infty}} t^{a} w(t)=0$ in the C_{w}-case. Furthermore let $\left\{a_{k}\right\}$ be a sequence of positive numbers for which (11) is satisfied. If there is a monotone increasing function h on $(0, \infty)$ with the properties (12) and (14), and for which there are $\alpha, C, c>0$, such that for all $0<x \leq r$

$$
0<h(r) \leq C^{\frac{1}{x}} \frac{c x}{\varphi_{p / c}^{\alpha}(x)} \Psi^{\alpha}(r)
$$

then S is complete in $L_{w}^{p}(0, \infty) /$ in $C_{w,(0, \infty)}$.
(3) If $B_{\alpha}(r)>B>0(\forall r \geq 1)$, then $h(r)=B \Psi^{\alpha}(r)$. This is the situation when $w(t)=e^{-D t^{\alpha}}$. Furthermore with suitable D and $\alpha \inf _{x \in(0, r)} \frac{x}{\varphi^{\alpha}(x)}>B>0$. In this case

$$
K(x)=\int_{0}^{\infty} t^{2 x} e^{-2 D t^{\alpha}} d t=\frac{1}{\alpha(2 D)^{\frac{2 x+1}{\alpha}}} \Gamma\left(\frac{2 x+1}{\alpha}\right)
$$

By Stirling's formula (see eg. [15])

$$
\frac{x}{\varphi^{\alpha}(x)}=\frac{x}{\left(\frac{\sqrt{2 \pi\left(\frac{2 x+1}{\alpha}\right)^{\frac{2 x+1}{\alpha}-\frac{1}{2}} e^{-\frac{2 x+1}{\alpha}} e^{J\left(\frac{2 x+1}{\alpha}\right)}}}{\alpha(2 D)^{\frac{2 x+1}{\alpha}}}\right)^{\frac{\alpha}{2 x}}}=(*),
$$

where J is the Binet function. For $x>0$ we have $0<J(x)<\frac{1}{12 x}$. That is,

$$
(*) \geq \frac{2 D e \alpha x}{2 x+1}\left(\frac{2 D e \alpha}{2 x+1}\left(\frac{\alpha(2 x+1)}{2 \pi}\right)^{\frac{\alpha}{2}} \frac{1}{e^{\frac{\alpha^{2}}{1(2 x+1)}}}\right)^{\frac{1}{2 x}}=b(D, \alpha, x)
$$

and $b(D, \alpha, x)$ tends to $D e \alpha$ when x tends to infinity, and if $C(\alpha, D)=\frac{\sqrt{2 D e \alpha}}{e^{\frac{\alpha^{2}}{12}}\left(\frac{2 \pi}{\alpha}\right)^{\frac{\alpha}{4}}}>1$ then $\lim _{x \rightarrow 0+} \frac{x}{\varphi^{\alpha}(x)}=\infty$. (In the case of Fuchs, $\alpha=D=1, C(\alpha, D)>1$.)
(4) For $\alpha=D=1, h(r)=f(r)=\Psi(r), r \geq 0$. By the substitution $t=D u^{\alpha}$ (without any further restrictions on the exponents a_{k} for $\alpha \geq 1$, and with the restriction $a_{k} \neq \frac{1}{2}\left(\frac{1}{\alpha}-1\right)$ for $\left.0<\alpha<1\right)$, after some obvious estimations one can deduce from the result of Fuchs (Theorem B), that $\left\{t^{a_{k}} e^{-D t^{\alpha}}\right\}$ is dense if and only if $\int_{1}^{\infty} \frac{\Psi^{\alpha}(r)}{r^{2}}=\infty$. We get the same from Theorems 1 and 2. After the third remark we need to check the assumptions of Theorem 1. Now $\varphi^{x}(x)=$ $\sqrt{K(x)} \leq(c x)^{\frac{x}{\alpha}}$, and so

$$
\left(\frac{\varphi(x)}{\Psi(r)}\right)^{x} \leq\left(\frac{c x}{\Psi^{\alpha}(r)}\right)^{\frac{x}{\alpha}}
$$

Theorem 4 With the notations of Theorem 1

$$
\begin{equation*}
f(r)=C+r \max \left\{\frac{1}{2} \frac{K^{\prime}}{K}(r), 2 m(r)\right\}-\frac{1}{2} \log K(r) \tag{15}
\end{equation*}
$$

is a good choice for $f(r)$ with a suitable C. That is, if w is admissible on $[0, \infty)$, and

$$
\begin{equation*}
\int_{1}^{\infty} \frac{r \max \left\{\frac{1}{2} \frac{K^{\prime}}{K}(r), 2 m(r)\right\}-\frac{1}{2} \log K(r)}{r^{2}}<\infty \tag{16}
\end{equation*}
$$

then S is incomplete in $L_{w}^{2}(0, \infty)$.

Remark:

$$
\begin{aligned}
& \text { If } w(t)=e^{-D t^{\alpha}} \text {, and } \frac{1}{2} \frac{K^{\prime}}{K}(r)>2 m(r) \text { on a set } H \text {, then on } H \\
& \qquad \begin{array}{r}
f(r)=r \frac{1}{2} \frac{K^{\prime}}{K}(r)-\frac{1}{2} \log K(r) \\
=\frac{r}{\alpha}\left(\frac{\Gamma^{\prime}}{\Gamma}\left(\frac{2 r+1}{\alpha}\right)-\log (2 D)\right)-\frac{1}{2} \log \left(\frac{1}{\alpha(2 D)^{\frac{2 x+1}{\alpha}}} \Gamma\left(\frac{2 x+1}{\alpha}\right)\right) \\
=\frac{r}{\alpha} \log \frac{2 r+1}{\alpha}-\frac{r}{2(2 r+1)}-\frac{r}{\alpha} I\left(\frac{2 r+1}{\alpha}\right)-\frac{r}{\alpha} \log (2 D) \\
-\frac{1}{2} \log \frac{\sqrt{2 \pi}\left(\frac{2 x+1}{\alpha}\right)^{\frac{2 x+1}{\alpha}-\frac{1}{2}} e^{-\frac{2 x+1}{\alpha}} e^{J\left(\frac{2 x+1}{\alpha}\right)}}{\alpha(2 D)^{\frac{2 x+1}{\alpha}}} \\
=\frac{r}{\alpha}-\frac{2-\alpha}{4 \alpha} \log \frac{2 r+1}{\alpha}+O(1)
\end{array}
\end{aligned}
$$

(In the last step we used that $\frac{\Gamma^{\prime}}{\Gamma}(z)=\log z-\frac{1}{2 z}-I(z)$ where $I(z)=$ $2 \int_{0}^{\infty} \frac{t}{\left(t^{2}+z^{2}\right)\left(e^{2 \pi t}-1\right)} d t($ see eg [26]).) That is, if H is large then the integral in (10) is divergent.

3 Proofs

For the proof of the first theorem, at first we need a lemma:
Lemma 1 Let $a=m$ be a positive integer. If w^{2} is a continuous, positive, normal weight function on $(0, \infty)$ with finite moments, then there is a function $b(z)$ such that $\frac{1}{b(z)}$ is regular on $\Re z \geq-a$, and it fulfils the inequality on $\Re z \geq$ $-\frac{1}{2}$:

$$
\sqrt{\frac{K(x+a)}{K(x)}} \leq|b(z)|
$$

where $z=x+i y$.

Proof:

At first let $x=n$ be also a positive integer. Then, using the Gaussian quadrature formula on the zeros of the $N^{t h}$ orthogonal polynomials $\left(x_{1, N}>\right.$ $\left.\ldots>x_{k, N}>\ldots>x_{N, N}\right)$ with respect to w^{2}, where $N=n+m+1$, we get, that

$$
\frac{K(n+m)}{K(n)}=\frac{\int_{0}^{\infty} t^{2(n+m)} w^{2}}{\int_{0}^{\infty} t^{2 n} w^{2}}=\frac{\sum_{k=1}^{N} \lambda_{k, N} x_{k, N}^{2(n+m)}}{\sum_{k=1}^{N} \lambda_{k, N} x_{k, N}^{2 n}} \leq x_{1, N}^{2 m}
$$

that is, by the condition of "normality"

$$
\sqrt{\frac{K(n+m)}{K(n)}} \leq e^{c N m}
$$

Now we can consider, that $\frac{K(x+a)}{K(x)}$ is increasing on $\Re z>-\frac{1}{2}$, namely

$$
\left(\frac{K(x+a)}{K(x)}\right)^{\prime}=\frac{K(x+a)}{K(x)}\left(\frac{K^{\prime}}{K}(x+a)-\frac{K^{\prime}}{K}(x)\right),
$$

which is nonnegative, because $\frac{K^{\prime}}{K}$ is increasing. The last statement can be seen by the Cauchy-Schwarz inequality, that is the derivative of $\frac{K^{\prime}}{K}$ is nonnegative:

$$
\left(2 \int_{0}^{\infty} t^{2 x}|\log t| w^{2}(t) d t\right)^{2} \leq \int_{0}^{\infty} t^{2 x} w^{2}(t) d t \int_{0}^{\infty} t^{2 x} 4 \log ^{2} t w^{2}(t) d t
$$

So with $a=m$ and $x>0$,

$$
\sqrt{\frac{K(x+a)}{K(x)}} \leq e^{c a(a+1+\lceil x\rceil)} \leq e^{c a(a+2+x)}=C(a)\left|e^{c a z}\right|
$$

Remark:

(1) If $\left(\frac{\varphi(2 x)}{\varphi(x)}\right)^{x}$ does not grow too quickly, then one can choose $b(z)=c(a) b_{1}(z)$, where $b_{1}(z)$ is independent of a, because
$\sqrt{\frac{K(x+a)}{K(x)}} \leq K^{\frac{1}{4}}(2 a) \frac{K^{\frac{1}{4}}(2 x)}{K^{\frac{1}{2}}(x)}=c(a)\left(\frac{\varphi(2 x)}{\varphi(x)}\right)^{x}$
(2) Usually we can give $b(z)$ in polynomial form, for instance if $w(t)=e^{-D t^{\alpha}}$ then $\sqrt{\frac{K(x+a)}{K(x)}}=\frac{1}{(2 D)^{\frac{\alpha}{\alpha}}} \sqrt{\frac{\Gamma\left(\frac{2 x+1}{\alpha}+\frac{2 a}{\alpha}\right)}{\Gamma\left(\frac{2 x+1}{\alpha}\right)}} \leq c(2 x+1+2 a)^{\frac{a}{\alpha}}$, and so $b(z)=c(z+$ $2 a)^{n}$, where $n>\frac{a}{\alpha}$ is an integer.
Proof: of Theorem 1.
Let us extend $f(r)$ to \mathbb{R} as $f(-r)=f(r)$. Let $a \geq 1$ be as in (4). Furthermore let a be an integer. Because $\int_{1}^{\infty} \frac{f(r)}{r^{2}}<\infty$, the function

$$
\begin{equation*}
p(z)=p(x+i y)=p\left(r e^{i \vartheta}\right)=\frac{2}{\pi}(x+a) \int_{-\infty}^{\infty} \frac{f(t)}{(x+a)^{2}+(t-y)^{2}} d t \tag{17}
\end{equation*}
$$

is harmonic on $\Re z>-a$. Since $f(t)$ is increasing, and $x^{2}+y^{2}=r^{2}$

$$
\begin{gathered}
p(z) \geq \frac{2}{\pi} f(r) \int_{|t|>r} \frac{x+a}{(x+a)^{2}+(t-y)^{2}} d t \\
=f(r) \frac{2}{\pi}\left(\pi-\left(\arctan \frac{r-y}{x+a}+\arctan \frac{r+y}{x+a}\right)\right)>f(r) .
\end{gathered}
$$

(In the last inequality we applied the height theorem of a triangle.) Let us choose q so that $-p+i q$, and hence $g(z)=g_{a}(z)=e^{-p+i q}$, be regular on $\Re z>-a$. According to the assumptions of Theorem 1, for this $g(z) \not \equiv 0$ on $\Re z \geq-a$ we have that

$$
\begin{equation*}
|g(z)| \leq e^{-f(r)} \leq\left(\frac{\varphi(x)}{\Psi(r)}\right)^{x} \quad \Re z \geq 0 \tag{18}
\end{equation*}
$$

We will show that in this case S is not dense. For this let us define a regular function on the half plane $\Re z \geq 0$ by

$$
\begin{equation*}
H(z)=\prod_{k=1}^{\infty} \frac{a_{k}-z}{a_{k}+z} e^{\frac{2 z}{a_{k}}} \tag{19}
\end{equation*}
$$

According to a Lemma of Fuchs (14 L.5)

$$
\begin{equation*}
|H(z)| \leq(C \Psi(r))^{x} \quad \text { on } \quad \Re z \geq 0 \tag{20}
\end{equation*}
$$

Let us replace the a_{k}-s in the definition of $H(z)$ by $a_{k}+a$, and let us denote the new function by $H^{*}(z)$. Now, with the help of g and H^{*} we can define a function $G(z)=G_{a}(z)$ which is regular on $\Re z \geq-a$:

$$
\begin{equation*}
G(z)=\frac{g(z+a) H^{*}(z+a)}{b(z) C_{1}^{z+a}} \tag{21}
\end{equation*}
$$

where, according to Lemma $1, \frac{1}{b(z)}$ is regular on $\Re z \geq-a$, and on $\Re z \geq-\frac{1}{2}$ we have

$$
\begin{equation*}
\sqrt{\frac{K(x+a)}{K(x)}} \leq|b(z)| \tag{22}
\end{equation*}
$$

Because for an $a>0 \frac{K(x+a)}{K(x)}$ is positive, and it tends to zero, when x tends to $-\frac{1}{2}$, according to Lemma 1 , we can suppose that $|b(z)|>\delta>0$ on $\Re z \in\left[-a,-\frac{1}{2}\right]$.

Now, because $\left|H^{*}(z+a)\right| \leq(C \Psi(r))^{x+a}(x \geq-a)$ (see (20)), we have that if C_{1} is large enough, than according to (22)

$$
\begin{equation*}
|G(z)| \leq(\varphi(x))^{x} \quad \text { on } \quad \Re z>-\frac{1}{2} \tag{23}
\end{equation*}
$$

and because $a>\frac{1}{2}$, on $\Re z \in\left[-a,-\frac{1}{2}\right]$:

$$
\begin{equation*}
|G(z)| \leq \frac{(\varphi(x+a))^{x+a}}{|b(z)|} \leq \frac{1}{\delta_{x \in\left[-a,-\frac{1}{2}\right]}} \max ^{K(x+a)}=M \tag{24}
\end{equation*}
$$

In the followings we will show that if there exists a function G which is not identically zero, and is regular on $\Re z \geq-a$, and fulfils the equations $G\left(a_{k}\right)=$ $0(k=1,2, \ldots)$, and the inequalities (23) and (24) are valid, then S is not complete.

For the purpose of showing this, we need to construct a function $0 \not \equiv k(t) \in$ $L_{w}^{2}(0, \infty)$ such that $\int_{0}^{\infty} t^{a_{k}} k(t) w^{2}(t)=0$ for $k=1,2, \ldots$. We give $k(t)$ by the inversion formula for the Mellin transform of $\frac{G(z)}{(1+a+z)^{2}}$: on $\Re z \geq-a$ let us define the function $u(t)$ by an integral along a line parallel with the imaginary axis

$$
\begin{equation*}
t \nu(t) u(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{G(z)}{(1+a+z)^{2}} t^{-z} d y \tag{25}
\end{equation*}
$$

It can be easily seen (by taking the integral round a rectangle $x_{k} \pm i L k=1,2$, where $L \rightarrow \infty$) that the integral is independent of x. Let us choose

$$
\begin{equation*}
k(t)=\frac{\nu(C t) u(C t)}{w^{2}(t)} \tag{26}
\end{equation*}
$$

where C is the same as in (2). Using that

$$
\frac{G(z)}{(1+a+z)^{2}}=\int_{0}^{\infty} \nu(t) u(t) t^{z} d t
$$

we have that

$$
\begin{gather*}
\int_{0}^{\infty} t^{a_{k}} k(t) w^{2}(t) d t=\frac{1}{C_{1}^{a_{k}+a}} \int_{0}^{\infty} v^{a_{k}-1} v u(v) \nu(v) d v \\
=\frac{1}{C_{1}^{a_{k}+a}} \frac{G\left(a_{k}\right)}{\left(1+a+a_{k}\right)^{2}}=0 \tag{27}
\end{gather*}
$$

We have to show, that $k(t) \in L_{w}^{2}(0, \infty)$.

$$
\begin{equation*}
\|k\|_{2, w}^{2}=\int_{0}^{\infty} \frac{u^{2}(C t) \nu^{2}(C t)}{w^{2}(t)} d t=\int_{0}^{\frac{A}{C}}(\cdot)+\int_{\frac{A}{C}}^{\infty}(\cdot)=I+I I \tag{28}
\end{equation*}
$$

where $A=\max \left\{1, C C_{0}\right\}$.
According to (1), and by the positivity of the coefficients in γ,

$$
\begin{gather*}
I I \leq \int_{\frac{A}{C}}^{\infty} \nu^{2}(C t) u^{2}(C t) \sum_{k=0}^{\infty} c_{k} t^{\gamma_{k}} d t \leq \sum_{k=0}^{\infty} \frac{c_{k}}{C^{\gamma_{k}+1}} \int_{A}^{\infty} t^{\gamma_{k}} \nu^{2}(t) u^{2}(t) d t \\
=\sum_{\substack{k \\
\gamma_{k}<\frac{1}{3}}}(\cdot)+\sum_{\substack{k \\
\gamma_{k} \geq \frac{1}{3}}}(\cdot)=S_{1}+S_{2} \tag{29}
\end{gather*}
$$

Using Parseval's formula for the Mellin transform (see e.g. [15])

$$
\int_{0}^{\infty} t^{2 x+1} \nu^{2}(t) u^{2}(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left|\frac{G(z)}{(1+a+z)^{2}}\right|^{2} d y
$$

$$
\begin{equation*}
\leq c(\varphi(x))^{2 x} \leq c\left(\varphi\left(x+\frac{1}{2}\right)\right)^{2 x+1} \tag{30}
\end{equation*}
$$

where the equality is valid on $\Re z \geq-a$, the first inequality is on $\Re z>-\frac{1}{2}$, and the last inequality is on $\Re z \geq-\frac{1}{3}$ say, where we used again that $\frac{K(x+a)}{K(x)}$ is increasing, that is

$$
0<c \leq \frac{K\left(\frac{1}{6}\right)}{K\left(-\frac{1}{3}\right)} \leq \frac{K\left(x+\frac{1}{2}\right)}{K(x)}
$$

Therefore, by (30)

$$
\begin{gather*}
S_{2} \leq c \sum_{\substack{\gamma_{k} \\
k \geq \frac{1}{3}}} \frac{c_{k}}{C^{\gamma_{k+1}}} \int_{0}^{\infty} t^{\gamma_{k}} \nu^{2}(t) u^{2}(t) d t \leq c \sum_{k=0}^{\infty} \frac{c_{k}}{C^{\gamma_{k+1}}}\left(\varphi\left(\frac{\gamma_{k}}{2}\right)\right)^{\gamma_{k}} \\
\leq c \sum_{k=0}^{\infty} \frac{c_{k}}{C^{\gamma_{k+1}}} \int_{0}^{\infty} t^{\gamma_{k}} w^{2}(t) \leq c \sum_{k=0}^{\infty} c_{k} \int_{0}^{\infty}\left(\frac{t}{C}\right)^{\gamma_{k}} w^{2}(t) \\
=c \int_{0}^{\infty} \gamma\left(\frac{t}{C}\right) w^{2}(t)<\infty \tag{31}
\end{gather*}
$$

To estimate S_{1} and I, we will use that by (25), with $x=-\frac{1}{3}$

$$
\begin{equation*}
\nu^{2}(t) u^{2}(t) \leq c t^{-\frac{4}{3}} \varphi\left(-\frac{1}{3}\right)^{-\frac{2}{3}} \int_{-\infty}^{\infty} \frac{1}{\left|\left(\frac{2}{3}+a+i y\right)^{2}\right|^{2}} d y=c t^{-\frac{4}{3}} \tag{32}
\end{equation*}
$$

That is

$$
t^{\gamma_{k}} \nu^{2}(t) u^{2}(t) \leq c t^{\beta_{k}}, \quad \text { where } \quad \beta_{k}<-1
$$

and therefore S_{1} is bounded. Similarly, if instead of $x=-\frac{1}{3}$ we use $x=-a$ in (32), we obtain by (25) that $\nu^{2}(t) u^{2}(t) \leq c M^{2} t^{2 a-2}$, and so by (4)

$$
\begin{equation*}
I=\int_{0}^{\frac{A}{C}} \frac{u^{2}(C t) \nu^{2}(C t)}{\nu^{2}(t) \mu^{2}(t)} d t \leq c \int_{0}^{\frac{A}{C}} \frac{t^{2(a-1)}}{\nu^{2}(t)}<\infty \tag{33}
\end{equation*}
$$

This proves Theorem 1.
We now turn to the proof of Theorem 2, We will need a technical lemma. Following carefully the proof of Lemma 7 - Lemma 11 in [14, actually W. Fuchs proved the following:

Lemma 2 14 If there is a nonnegative, monotone increasing function h on $(0, \infty)$, which fulfils (12), and

$$
\begin{equation*}
\int_{1}^{\infty} \frac{h(r)}{r^{2}}=\infty \tag{34}
\end{equation*}
$$

and if there is a function g regular on $\Re z \geq 0$ such that there are $C, c>0$, $\alpha>0$

$$
\begin{equation*}
|g(z)| \leq C\left(\frac{c x}{h(r)}\right)^{\frac{x}{\alpha}} \tag{35}
\end{equation*}
$$

then

$$
\begin{equation*}
g \equiv 0 \quad \text { on } \quad \Re z \geq 0 \tag{36}
\end{equation*}
$$

Remark:

In Lemma $2 C$ and c means that instead of a regular function g another regular function: $b A^{z} g(z)$ can be considered (A, b are positive constants). It means that $\Psi(r)$ can be replaced by a function $\Psi_{1}(r)$ such that $\frac{\Psi}{\Psi_{1}}$ lies between finite positive bounds, and $\Psi_{1}(r)$ has a continuous derivative. Therefore in the followings we will assume that $\Psi(r)$, that is $m(r)$, is continuously differentiable, if it is necessary. Furthermore since $m(r)$ is increasing, we will assume that the derivative of m is nonnegative. If it is necessary, we can assume the same on h.

Proof: of Theorem 2.
From (13), and the previous lemma it follows that if a function $g(z)$ is regular on $\Re z \geq 0$, and it satisfies the inequality

$$
\begin{equation*}
|g(z)| \leq\left(c \frac{\varphi(x)}{\Psi(r)}\right)^{x} \tag{37}
\end{equation*}
$$

then $g \equiv 0$. Namely, if $r \geq x>0$, then (13) and (37) together gives (35), and by the definition of φ and $\Psi, \lim _{x \rightarrow 0+}\left(c \frac{\varphi(x)}{\Psi(r)}\right)^{x}=\|w\|_{2,(0, \infty)}$, so we can choose a constant C, such that $\left(\frac{\varphi(x)}{\Psi(r)}\right)^{x} \leq C\left(\frac{c x}{h(r)}\right)^{\frac{x}{\alpha}}$ on $\Re z \geq 0$.

Now let us assume, by contradiction, that S is not dense in L_{w}^{2}. In this case there is a function $f \not \equiv 0$ in L_{w}^{2}, such that the function

$$
\begin{equation*}
G(z)=\int_{0}^{\infty} t^{z} f(t) w^{2}(t) d t \tag{38}
\end{equation*}
$$

defined on $\Re z \geq 0$, satisfies the equalities

$$
\begin{equation*}
G\left(a_{k}\right)=0 \quad k=1,2, \ldots \tag{39}
\end{equation*}
$$

and we can estimate its modulus by

$$
\begin{equation*}
|G(z)| \leq\|f\|_{2, w}(\varphi(x))^{x} \tag{40}
\end{equation*}
$$

Let us define now on $\Re z \geq 0$

$$
\begin{equation*}
g(z)=\frac{G(z)}{H(z) C_{1}^{z+1}} \tag{41}
\end{equation*}
$$

where H is as in (19). By Lemma 4 [14]

$$
\begin{equation*}
|H(z)| \geq\left(C_{2} \Psi(r)\right)^{x} \tag{42}
\end{equation*}
$$

on $\mathbb{C} \backslash \cup_{k=1}^{\infty} B\left(a_{k}, \frac{d}{3}\right)$, where $B\left(a_{k}, \frac{d}{3}\right)$ are balls around a_{k} with radius depending on d (see (11)), and on the imaginary axis without exception. This implies that

$$
|g(z)| \leq\left(c \frac{\varphi(x)}{\Psi(r)}\right)^{x}
$$

on $\Re z \geq 0 \backslash \cup_{k=1}^{\infty} B\left(a_{k}, \frac{d}{3}\right)$ (and on the imaginary axis). But g is regular on $\Re z \geq 0$, so this inequality holds on the whole half-plane, and thus by Lemma 2 $g \equiv 0$, and hence $G \equiv 0$, a contradiction.
Proof: of Theorem 4
Let us introduce the following notation on $0 \leq x \leq r$, where $r \geq 0$ is fixed:

$$
\begin{equation*}
v_{r}(x)=2 x m(r)-\frac{1}{2} \log K(x) \tag{43}
\end{equation*}
$$

Because $\frac{K^{\prime}}{K}$ is increasing (see the first remark after the proof of Theorem 1), $v_{r}(x)$ is concave on $[0, r]$. That is, we need to distinguish three cases: (a) $v_{r}(x)$ is strictly decreasing on $(0, r]$, (b) $v_{r}(x)$ has a maximum on $(0, r]$, (c) $v_{r}(x)$ is strictly increasing on $[0, r]$.

In case (a) the first derivative of $v_{r}(x)$ is negative on $[0, r]$, that is

$$
\begin{equation*}
2 m(r)<\frac{K^{\prime}}{2 K}(x) \quad 0 \leq x \leq r \tag{44}
\end{equation*}
$$

Furthermore $\frac{K^{\prime}}{K}$ is increasing, and it means that

$$
\begin{equation*}
2 m(r) \leq \frac{K^{\prime}}{2 K}(0) \tag{45}
\end{equation*}
$$

Since the right-hand side is constant, and the left-hand side is increasing, there is an r_{0}, such that for all $r>r_{0}$ (45) must be wrong.

In case (b) there is an $0<x_{0}=x_{0}(r) \leq r$, where $v_{r}^{\prime}\left(x_{0}\right)=0$. That is, for all $0 \leq x \leq r$

$$
\begin{equation*}
v_{r}(x) \leq v_{r}\left(x_{0}\right)=\frac{x_{0}}{2}\left(\frac{K^{\prime}}{K}\left(x_{0}\right)-\frac{\log K\left(x_{0}\right)}{x_{0}}\right) \leq \frac{r}{2}\left(\frac{K^{\prime}}{K}(r)-\frac{\log K(r)}{r}\right) \tag{46}
\end{equation*}
$$

because $\frac{x}{2}\left(\frac{K^{\prime}}{K}(x)-\frac{\log K(x)}{x}\right)$ is increasing, since it's derivative is $\frac{1}{2} x\left(\frac{K^{\prime}}{K}\right)^{\prime}(x)$, which is nonnegative.

In case (c) $2 m(r)>\frac{K^{\prime}}{2 K}(x)$ if $0 \leq x \leq r$. That is, $2 m(r)>\frac{K^{\prime}}{2 K}(r)$. In this case $v_{r}(x) \leq v_{r}(r), \frac{r}{2}\left(\frac{K^{\prime}}{K}(r)-\frac{\log K(r)}{r}\right) \leq v_{r}(r)$, and $v_{r}(r)$ itself is increasing, because using the remark after Lemma 1

$$
v_{r}(r)^{\prime}=\left(2 m(r)-\frac{1}{2} \frac{K^{\prime}}{K}(r)\right)+2 r m^{\prime}(r) \geq 0
$$

That is, we can find a constant C, such that $v_{r}(x) \leq f(r)$ even in case (a), and f is increasing.

References

[1] J. M. Almira, Müntz Type Theorems, Surveys in Approximation Theory 3 (2007) 152-194.
[2] J. M. Almira, On Müntz Theorem for Countable Compact Sets, Bull. Belg. Math. Soc. Simon Stevin 13 69-73
[3] G. V. Badalyan, On a Theorem of Fuchs, Mat. Zametki 5 (6) (1969) 723731.
[4] S. N. Bernstein, Sur lesrecherches récentes a la meilleure approximation des fonctions continues par les polynomes, in Proc. of 5th Inter. Math. Congress 1 (1912) 256-266.
[5] R. P. Boas, Density Theorems for Power Series and Complete Sets, Trans. Amer. Math. Soc. 61 (1) (1947) 54-68.
[6] R. P. Boas, H. Pollard, Properties Equvivalent to the Completeness of $\left\{e^{-t} t^{\lambda_{n}}\right\}$, Bull. Amer. Math. Soc. 52 (4) (1946) 348-351.
[7] P. Borwein, T. Erdélyi, The Full Müntz Theorem in $C[0,1]$ and $L_{1}[0,1], J$. London Math. Soc. 54 (1996) 102-110.
[8] P. Borwein, T. Erdélyi, Generalizations of Müntz Theorem via a Remeztype Inequality for Müntz Spaces, J. Amer. Math. Soc. 10 (1997) 327-349.
[9] P. Borwein, T. Erdélyi, Müntz's Theorem on Compact Subsets of Positive Measure, in Approximation Theory, eds.Govil et. al., Marcel Dekker (1988) 115-131.
[10] P. Borwein, T. Erdélyi, Polynomials and Polynomial Inequalities, Springer Verlag, New York (1996)
[11] G. T. Deng, Incompleteness and Closure of a Linear Span of Exponential System in a Weighted Banach Space, J. Approx. Theory 125 (2003) 1-9.
[12] T. Erdélyi, The "Full Müntz Theorem" Revisited, Constr. Approx. 21 (2005) 319-335.
[13] T. Erdélyi, W. B. Johnson, The Full Müntz Theorem in $L_{p}(0,1)$ for $0<$ $p<\infty$, J. Anal. Math. 84 (2001) 145-152.
[14] W. H. J. Fuchs, On the Closure of $\left\{e^{-t} t^{\alpha_{\nu}}\right\}$, Proc. Cambr. Phil. Soc, 42 (1946) 91-105.
[15] P. Henrici, Applied and Computational Complex Analysis, Wiley (1991)
[16] B. N. Khabibullin, Completeness of Exponential Systems and Uniqueness Sets, Russian. Russia, Ufa, Bashkir State University Press (2006)
[17] A. Kroó, J. Szabados, On Weighted Approximation by Lacunary polynomials and Rational Functions on the Half-axis, East J. on Approx. 2 (3) (1996) 289-300.
[18] A. F. Leontev, On the Problem of the Completeness on a System of Powers on the Semi-axis, Russian. Izv. Akad. Nauk SSSR, Ser. Matem. 26 (5) (1962) 781-792.
[19] E. Levin, D. S. Lubinsky, Orthogonal Polynomials for Exponential Weights, Springer-Verlag New York (2001)
[20] P. Malliavin, Sur qelques procedes d'extrapolation, Acta Math. 93 (1955) 179-255.
[21] Ch. H. Müntz, Über den Approximationssatz von Weierstrass, in H. A. Schwarz's Festschrift, Berlin (1914) 303-312.
[22] V. Operstein, Full Müntz Theorem in $L_{p}(0,1)$, J. Approx. Theory 85 (1996) 233-235.
[23] A. Pinkus, Density in Approximation Theory, Surveys in Approximation Theory 1 (2005) 1-45.
[24] G. Szegő, Orthogonal Polynomials, Amer. Math. Soc. Pupl. XXIII (1959)
[25] B. V. Vinnitskii, A. V. Shapovalovskii, A Remark on the Completeness of Systems of Exponentials with Weight in $L_{2}(\mathbb{R})$, Ukrainian Math. J. 52 (7) (2000) 1002-1009.
[26] E. T. Whittaker, G. N. Whatson, Modern Analysis, Cambridge Univ. Press (1952)
[27] R. A. Zalik, Weighted Polynomial Approximation on Unbounded Intervals, J. Approx. Theory 28 (1980) 113-119.
[28] E. Zikkos, Completeness of an Exponential System In Weighted Banach Spaces and Closure of its Linear Span, J. Approx. Theory 146 (2007) 115148.

[^0]: *Supported by Hungarian National Foundation for Scientific Research, Grant No. K-61908. Key words:Müntz theorem, complete system, weighted spaces.
 2000 MS Classification: 42A65, 42A55

