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ANALOGUE OF THE DUISTERMAAT-VAN DER

KALLEN THEOREM FOR GROUP ALGEBRAS

WENHUA ZHAO AND ROEL WILLEMS

Abstract. Let G be a group, R an integral domain, and VG the
R-subspace of the group algebra R[G] consisting of all the elements
of R[G] whose coefficient of the identity element 1G of G is equal to
zero. Motivated by the Mathieu conjecture [M], the Duistermaat-
van der Kallen theorem [DK], and also by recent studies on the
notion of Mathieu subspaces introduced in [Z4] and [Z6], we show
that for finite groups G, VG under certain conditions also forms a
Mathieu subspace of the group algebraR[G]. We also show that for
the free abelian groups G = Zn (n ≥ 1) and any integral domain
R of positive characteristic, VG fails to be a Mathieu subspace of
R[G], which is equivalent to saying that the Duistermaat-van der
Kallen theorem [DK] cannot be generalized to any field or integral
domain of positive characteristic.

1. Introduction

Let’s first recall the following notion introduced recently by the first
author in [Z4] and [Z6], which can be viewed as a natural generalization
of the notion of ideals.

Definition 1.1. Let R be a commutative ring and A an associative

R-algebra. A R-submodule or R-subspace M of A is said to be a left

(resp., right; two-sided) Mathieu subspace of A if for any a, b, c ∈ A

with am ∈ M for all m ≥ 1, we have bam ∈ M (resp., amb ∈ M ;

bamc ∈ M) when m ≫ 0, i.e., there exists N ≥ 1 such that bam ∈ M
(resp., amb ∈ M ; bamc ∈ M) for all m ≥ N .

Two-sided Mathieu subspaces will also simply be called Mathieu
subspaces. A R-subspace M of A is said to be a pre-two-sided Mathieu
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subspace of A if it is both left and right Mathieu subspace of A. Note
that the pre-two-sided Mathieu subspaces were previously called two-

sided Mathieu subspace or Mathieu subspaces in [Z4].
The introduction of the notion of Mathieu subspaces in [Z4] and

[Z6] was mainly motivated by the studies of the Jacobian conjecture

[K] (see also [BCW] and [E1]), the Mathieu conjecture [M], the van-

ishing conjecture [Z1], [Z2], [Z5], [EWiZ] and more recently, the image

conjecture [Z3] as well as many other related open problems. For some
recent developments on Mathieu subspaces, see [Z6], [FPYZ], [EWrZ1],
[EWrZ2], [EZ] and [Z7]. For a recent survey on the the image conjecture

and it’s connections with some other problems, see [E2].
The notion was named after Olivier Mathieu in [Z4] due to his con-

jecture mentioned above, which now in terms of the new notion can be
re-stated as follows.

Conjecture 1.2. (The Mathieu Conjecture) Let G be a compact

connected real Lie group with the Haar measure σ. Let A be the algebra

of complex-valued G-finite functions on G, and M the subspace of A

consisting of f ∈ A such that
∫

G
f dσ = 0. Then M is a Mathieu

subspace of A.

J. Duistermaat and W. van der Kallen [DK] proved the Mathieu

conjecture for the case of tori, which now can be re-stated as follows.

Theorem 1.3. (Duistermaat and van der Kallen) Let z = (z1, z2,
..., zn) be n commutative free variables and V the subspace of the Lau-

rent polynomial algebra C[z−1, z] consisting of the Laurent polynomials

with no constant term. Then V is a Mathieu subspace of C[z−1, z].

Note that despite its innocent looking, the proof of the theorem above
is surprisingly difficult. The proof in [DK] uses some heavy machineries
such as toric varieties, resolutions of singularities, etc.
To discuss the main motivations and results of this paper, we start

with the following observation on the Duistermaat-van der Kallen The-
orem above.
Let G be the free abelian group Zn (n ≥ 1). Then the Laurent

polynomial algebra C[z−1, z] can be identified in the obvious way with
the group algebra C[G]. Under this identification, the subspace V ⊂
C[z−1, z] in the theorem corresponds to the subspace VG of the group
algebra C[G] consisting of the elements of C[G] whose “constant term”
(i.e., the coefficient of the identity element 1G of G) is equal to zero.
So, we are naturally led to the following (open) problem.

Problem 1.4. Let R be a commutative ring and G a group. Let VG

be the R-subspace of the elements of the group algebra R[G] with no
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“constant term”, i.e., the coefficient of the identity element 1G of G is

equal to zero. Then under what conditions on R and G, VG forms a

Mathieu subspace of the group algebra R[G]?

The problem above not only provides a different point of view to get
further understanding on the remarkable Duistermaat-van der Kallen
Theorem, but also gives a family of candidates for Mathieu subspaces,
which may provide some new understandings on the still very myste-
rious notion of Mathieu subspaces. This makes the problem itself very
interesting and worthy to investigate.
One of the main results of this paper is that for any finite group G

and an integral domain R of characteristic p = 0 or p > |G| (the order

of G), the R-subspace VG does form a Mathieu subspace of R[G] (see
Theorem 3.5), i.e., Problem 1.4 in this case can be solved completely.
However, for the case that 0 < char. R = p ≤ |G|, the situation

becomes much more subtle. For example, the magic condition p ∤ |G|
for the group algebras of finite groups G (e.g., see [P]) does not resolve
the difficulty completely, i.e., under this condition VG still may or may
not be a Mathieu subspaces ofR[G] (e.g., see Theorem 4.1 and Example
4.2).
In this paper, we first study Problem 1.4 for the group algebras

of finite groups G over integral domains R of any characteristics. In
particular, besides the main result mention above, for finite abelian
groups we also give a complete solution of Problem 1.4 for the case
that the base integral domain R satisfies certain primitive root of unity
conditions (see Theorems 3.5 and 4.1), e.g., when R is an algebraically
closed field.
We then show that for the group algebras of the free abelian groups

G = Zn (n ≥ 1) over any integral domain R of positive characteristic,
VG is not a Mathieu subspace of R[G], by showing that an example sug-
gested by Arno van den Essen does provide a desired counter-example.
Consequently, it follows that the Duistermaat-van der Kallen theorem,
Theorem 1.3, cannot be generalized to the Laurent polynomial algebra
R[z−1, z] over any field or integral domain R of positive characteristic.
The arrangement of this paper is as follows.
In Section 2, we recall some general results on Mathieu subspaces

obtained in [Z4] and [Z6], which will be needed later in this paper. In
Section 3, we prove some results on Problem 1.4 for the group algebras
of finite groupsG over arbitrary commutative rings or integral domains.
In particular, we show in Theorem 3.5 that when the base ring R is an
integral domain of characteristic p = 0 or p > |G|, the subspace VG is
always a Mathieu subspace of R[G].
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In Section 4, we focus on the group algebras of finite abelian groups
G over integral domains R of characteristic p > 0. The main results
of this section is Theorem 4.1, which combining with Theorem 3.5
provides a complete solution of Problem 1.4 for the group algebras of
finite abelian groups G over the integral domains R which satisfies a
primitive root of unity condition, e.g., when R is an algebraically closed
field.
In Section 5, we consider Problem 1.4 for the group algebras of the

free abelian groups Zn (n ≥ 1) over an integral domain R of charac-
teristic p > 0. We prove that VG in this case fails to be a Mathieu
subspace of R[Zn] by showing that the example in Lemma 5.2, which
was suggested by Arno van den Essen to the authors, does provide a
desired counter-example.

2. Some Results on Mathieu Subspaces

In this section, we recall some general facts on Mathieu subspaces
which will be needed later in this paper. Although all the results be-
low with certain modifications hold for all types of Mathieu subspaces
(one-sided, pre-two-sided, etc.) We here only focus on the two-sided
case, which by Corollary 3.2 in the next section will be enough for our
purpose.
Throughout this paper, unless stated otherwise, R and K always

stand respectively for a unital commutative ring and a field of any
characteristic, and A a unital algebra over R or K.
Following [Z6], we define for any R-subspace V of a R-algebra A the

radical, denoted by
√
V , to be the set of a ∈ A such that am ∈ V when

m ≫ 0.
We start with the following equivalent formulation of Mathieu sub-

spaces, which was given in Proposition 2.1 in [Z6].

Proposition 2.1. Let A be a R-algebra and V a R-subspace of A.

Then V is a Mathieu subspace of A iff for any a ∈
√
V and b, c ∈ A,

we have bamc ∈ V when m ≫ 0.

The following characterization of the Mathieu subspaces with alge-
braic radicals was also proved in Theorem 4.2 in [Z6].

Theorem 2.2. Let A be a K-algebra and V a K-subspace of A such

that
√
V is algebraic over K (i.e., every element of

√
V is algebraic

over K). Then V is a Mathieu subspace of A iff for any idempotent

e ∈ V (i.e., e2 = e), we have (e) ⊆ V , where (e) denotes the ideal of A

generated by e.
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The next proposition is easy to check directly (or see Proposition 2.7
in [Z6]).

Proposition 2.3. Let I be an ideal of A and V a R-subspace of A such

that I ⊆ V . Then V is a Mathieu subspace of A iff V/I is a Mathieu

subspace of the quotient algebra A/I.

Finally, let’s recall the following family of Mathieu subspaces of the
polynomial algebra K[z] in n variables z := (z1, z2, ..., zn), which was
given in Proposition 4.6 in [Z4].

Proposition 2.4. Let n, d ≥ 1 and R an arbitrary integral domain.

Let S = {v1, v2, ..., vd} ⊂ Rn (with d distinct elements) and 0 6= ci ∈ R
(1 ≤ i ≤ d). Denote by V the subspace of f(z) ∈ R[z] such that

d
∑

i=1

cif(vi) = 0.(2.1)

Then V is a Mathieu subspace of R[z] iff for any non-empty subset

J ⊂ {1, 2, ..., d}, we have 1

∑

i∈J

ci 6= 0.(2.2)

Note that the proposition above was only proved in [Z4] under the
condition that R is a field. But, it is easy to see that the same proof
actually goes through equally well for all integral domains.

3. Some General Results for the Case of Finite Groups

Throughout the rest of this paper, unless stated otherwise, G stands
for a finite group, R a commutative ring, andK a field of any character-
istic. We denote by R[G] and K[G] the group algebra of G over R and
K, respectively. Furthermore, we also fix the following terminologies
and notations.

i) We denote by 1 or 1G the identity element of the group G and
also the identity element of the group algebra R[G].

ii) For any u ∈ R[G], we denote by Const(u) the coefficient of 1G
of u, and call it the constant term of u.

iii) The set of all the elements of R[G] with no constant term will
be denoted by VG,R, or simply by VG if the base ring R is clear
in the context.

iv) When R is an integral domain, by the characteristic of R (de-
noted by char. R) we mean the characteristic of the field of
fractions of R.

1Note that Eq. (2.2) in [Z4] had been misprinted.
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Next, we start with the following equivalent formulation of Problem
1.4 for the group algebras of finite groups.

Proposition 3.1. Let R be any commutative ring and G a finite group.

Then VG is a Mathieu subspace of any fixed type of R[G] iff all elements

of
√
VG are nilpotent.

Proof: First, it is easy to see that the (⇐) part follows directly from
the assumption and Definition 1.1.
For the (⇒) part, here we only give a proof for the left Mathieu

subspace case. The proofs of the other three cases are similar.
Assume that VG is a left Mathieu subspace and let u ∈

√
VG. Re-

placing u by a positive power of u, if necessary, we may assume that
um ∈ VG for all m ≥ 1.
Now, since G is finite, by Definition 1.1 there exists N ≥ 1 such that

g−1um ∈ VG for all g ∈ G and m ≥ N . In particular, for each g ∈ G,
the constant term of g−1uN , which is the same as the coefficient of g
in uN , is equal to 0, whence uN = 0, i.e., u is nilpotent.
Another way to show the (⇒) part is as follows.
Assume otherwise and let u ∈

√
VG such that um 6= 0 for all m ≥ 1.

Since G is finite, there exists g ∈ G such that the coefficient of g in
um is nonzero for infinitely many m ≥ 1. Then the constant term of
g−1um is nonzero for infinitely many m ≥ 1. Then by Definition 1.1
VG is not a Mathieu subspace of R[G], which is a contradiction. 2

Two immediate consequences of Proposition 3.1 are the following
two corollaries.

Corollary 3.2. Let R and G be as in Proposition 3.1. Then VG is

a Mathieu subspace of any fixed type of R[G] iff VG is a (two-sided)
Mathieu subspace of R[G].

Therefore, throughout the rest of this paper we may and will focus
only on the two-sided case.

Corollary 3.3. Let R and G be as in Proposition 3.1. Assume that

VG is a Mathieu subspace of R[G]. Then VG contains no nonzero idem-

potent of R[G].

Proof: Assume otherwise. Let e ∈ VG be a nonzero idempotent,
i.e., e2 = e 6= 0. Then for any m ≥ 1, we have em = e ∈ VG, whence
e ∈

√
VG. But, since e is clearly not nilpotent, by Proposition 3.1 VG

is not a Mathieu subspace of R[G], which is a contradiction. 2

When the base ring R is a field, we show next that the converse of
Corollary 3.3 actually also holds.
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Proposition 3.4. Let K be a field and G a finite group. Then VG is

a Mathieu subspace of K[G] iff VG contains no nonzero idempotent of

K[G].

Proof: The (⇒) part is a special case of Corollary 3.3. To show
the (⇐) part, note that K[G] is algebraic over K, since it is of finite
dimension over K. In particular, the radical

√
VG of VG is algebraic

over K. Then by Theorem 2.2, VG is a Mathieu subspace of K[G]. 2

Next, we show that Problem 1.4 can be solved for the group algebras
of all finite groups G over integral domains R such that char. R = 0 or
char. R = p > |G|.
Theorem 3.5. Let G be a finite group and R an integral domain such

that char. R = 0 or char. R = p > |G|. Then VG is a Mathieu subspace

of R[G].

Proof: Let u ∈
√
VG. Then by Proposition 3.1 it suffices to show

that u is nilpotent. Note that by replacing u by a positive power of
u, if necessary, we may assume um ∈ VG, i.e., Const(u

m) = 0, for all
m ≥ 1.
Let µ : R[G] → EndR(R[G]) be the R-algebra homomorphism which

maps each v ∈ R[G] to the R-endomorphism mv ∈ EndR(R[G]) defined
by the left multiplication by v on R[G]. Then it is easy to check that
for any v ∈ R[G], the trace of the linear map µ(v) = mv is equal to
|G|Const(v). Consequently, for the u ∈

√
VG fixed at the beginning

and any m ≥ 1, the trace of the m-th power (µ(u))m = µ(um) of the
linear transformation µ(u) is equal to zero.
On the other hand, since char. R = 0 or char. R = p > |G|, it is

well-known in linear algebra that in this case the linear transformation
µ(u) must be nilpotent, i.e., (µ(u))m = µ(um) = 0 for m ≫ 0. Since µ
is clearly injective (e.g., by applying µ(v) to 1 ∈ R[G] for all v ∈ R[G]),
we also have um = 0 when m ≫ 0, i.e., u is nilpotent, as desired. 2

One remark on Theorem 3.5 is that when the conditions char. R = 0
and char. R = p > |G| fail, i.e., when 0 < char. R = p ≤ |G|, the
situation for Problem 1.4 becomes much more complicated.
For instance, as shown by the next lemma and also by Theorem 4.1 in

Section 4, the magic condition p ∤ |G| for the theory of group algebras
R[G] of finite groups G (e.g., see [P]) does not resolve the difficulty
completely for Problem 1.4.

Lemma 3.6. Let G be any finite group with |G| ≥ 2, and R an integral

domain of char. R = p > 0. Assume p | (|G|−1) (hence, p ∤ |G|). Then
VG is not a Mathieu subspace of R[G].
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Proof: Let u = −
∑

g∈G\{1G} g ∈ VG and v = 1G − u = 1− u. Note

that v is the sum of all the distinct elements of G in R[G]. Hence, for
any g ∈ G, we have vg = gv = v. Consequently, we have v2 = |G|v,
which in terms of u is the same as

(1− u)2 = 1− 2u+ u2 = |G|(1− u).

Solving u2 from the equation above, we get

u2 = (|G| − 1)− (|G| − 2)u.(3.1)

Since p | (|G| − 1), we have (|G| − 1) = 0 and (|G| − 2) = −1. Then
by Eq. (3.1), we have u2 = u. Since u 6= 0, by Corollary 3.3 VG is not
a Mathieu subspace of R[G]. 2

Next, we show the following lemma that will be needed later.

Lemma 3.7. Let R be any commutative ring and G any group (not
necessarily finite). Assume that VG is a Mathieu subspace of R[G].
Then for each subgroup H of G, VH is a Mathieu subspace of R[H ].

Proof: Assume otherwise. Let H be a subgroup of G such that VH

is not a Mathieu subspace of R[H ]. Then by Definition 1.1 and the
definition of VH , there exist u, v ∈ R[H ] such that Const(um) = 0 for
all m ≥ 1, but Const(umv) 6= 0 for infinitely many m ≥ 1.
Since R[H ] ⊆ R[G], we have u, v ∈ R[G], and um ∈ VG for all m ≥ 1,

but umv 6∈ VG for infinitely many m ≥ 1. Hence, VG is not a Mathieu
subspace of R[G], which is a contradiction. 2

Corollary 3.8. Let R and G be as in Lemma 3.7 and H a subgroup

of G. Assume that VH is not a Mathieu subspace of R[H ]. Then VG is

not a Mathieu subspace of R[G].

As an application of Lemma 3.7 or Corollary 3.8, we derive the fol-
lowing necessary condition for VG to be a Mathieu subspace of R[G]
over integral domains R of positive characteristic.

Proposition 3.9. Let R be an integral domain of characteristic p > 0
and G an arbitrary finite group. Write |G| = prd for some r ≥ 0 and

d ≥ 1 with p ∤ d. Assume that R contains a primitive d-th root of unity

and VG is a Mathieu subspace of R[G]. Then for each prime divisor q
of |G|, we have p ≥ q.

Proof: Assume otherwise and let q be a prime divisor of |G| such
that p < q. Then we have q | d, whence R also contains a primitive q-th
root of unity.
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Write |G| = qsn with s, n ≥ 1 such that q ∤ n. Then by the well-
known Sylow’s theorem in the theory of finite groups (e.g., see p. 105,
Theorem 2.11.7 in [He]), G has at least one q-Sylow subgroup H , i.e.,
a subgroup H of G with |H| = qs.
Now, pick up any non-identity element h ∈ H . Then h has order

qk for some 1 ≤ k ≤ r. Let g = h if k = 1; and g = hk−1 if k ≥ 2.
Then g has order q and hence, generates a cyclic subgroup Cq of G of
order |Cq| = q. Then by Theorem 4.1 to be proved in Section 4, VCq

is
not a Mathieu subspace of R[Cq]. Hence, by Corollary 3.8 VG is not a
Mathieu subspace of R[G] either, which is a contradiction. 2

Finally, we point out that when the finite group G in Proposition
3.9 is abelian, a much stronger condition will be given in Theorem 4.1
of the next section.

4. The Case for Finite Abelian Groups

In this section, we study Problem 1.4 for finite abelian groups over
certain integral domains. The main result of this section is the following
theorem.

Theorem 4.1. Let R be an integral domain of characteristic p > 0,
and G a finite abelian group with |G| = prd for some r ≥ 0 and d ≥ 1
with p ∤ d. Assume that R contains a primitive d-th root of unity. Then

VG is a Mathieu subspace of R[G] iff p > d.

Two remarks on Theorem 4.1 are as follows.

First, when the integral domain R has char. R = 0 (or char. R =
p > |G|), Problem 1.4 has been solved by Theorem 3.5, together with
which Theorem 4.1 provides a complete solution of Problem 1.4 for
the group algebras of all finite abelian groups when the base integral
domain R satisfies the primitive root of unity condition in Theorem
4.1, e.g., when R is an algebraically closed field.
Second, from the example below we see that the d-th primitive root

of unity condition on the integral domain R in Theorem 4.1 is necessary.

Example 4.2. Let F3 be the field with three elements. Note that F3

obviously does not contain any primitive 5th root of unity. But, VZ5
is

a Mathieu subspace of F3[Z5], although char.F3 = 3 < d = 5.

Proof: Assume otherwise. Then by Proposition 3.4, there exists a
nonzero idempotent f ∈ VZ5

. By identifying the group algebra F3[Z5]
with the quotient algebra F3[t]/(t

5 − 1) of the polynomial algebra F3[t]
in one variable t, we may write f = c1t+ c2t

2 + c3t
3 + c4t

4. Then it is
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easy to check that the following equations hold:

Const(f 2) = 2(c1c4 + c2c3),

f 3 = c31t
3 + c32t+ c33t

4 + c34t
2.

Since f 2 = f 3 = f ∈ VZ5
, hence we also have

c1c4 = −c2c3,(4.1)

c1 = c32; c2 = c34; c3 = c31; c4 = c33.(4.2)

From the four equations in Eq. (4.2), it is easy to see that if one of
the ci’s is equal to zero, then so are all the ci’s. Since f 6= 0, we see
that all the ci’s are nonzero.
By combining equations in Eqs. (4.1)-(4.2), it is also easy to see that

(c2c3)
3 = −(c2c3), whence (c2c3)

2 = −1. However, the base field F3

contains no square root of −1. Hence, we get a contradiction. 2

Next, we will devote the rest of this section to give a proof for The-
orem 4.1. First, we need to show the following reduction lemma.

Lemma 4.3. Let R be an integral domain of characteristic p > 0 and

H a finite abelian group. Let q = pr for some r ≥ 1 and G = H × Zq.

Then VH is a Mathieu subspace of R[H ] iff VG is a Mathieu subspace

of R[G].

Proof: For convenience, we identify Zq with the multiplicative cyclic
group Cq with q-element. We also identifyH and Cq with the subgroups
H × {1Cq

} and {1H} × Cq of G, respectively.
Under these identifications, G is also the inner product of its sub-

groups H and Cq, and the group algebras R[H ] and R[Cq] become
subalgebras of R[G]. Then the (⇐) part of the lemma follows immedi-
ately from Lemma 3.7.
To show the (⇒) part, pick up any u ∈

√
VG. Then by Proposition

3.1, it suffices to show that u is nilpotent. To do so, replacing u by
a positive power of u, if necessary, we assume that um ∈ VG for all
m ≥ 1.
Write u =

∑

s∈Cq
αss with αs ∈ R[H ] for each s ∈ Cq. Note that for

any k ≥ 1 and s ∈ Cq, we have sq
k

= 1Cq
, since |Cq| = q. Then by the

conditions that char. R = p > 0 and q is a positive power of p, for any
k ≥ 1 we also have

uqk =
∑

s∈Cq

αqk

s sq
k

=
∑

s∈Cq

αqk

s ∈ R[H ].
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Moreover, since um ∈ VG for all m ≥ 1, we have (uq)k = uqk ∈
R[H ]∩VG = VH for all k ≥ 1, whence uq ∈

√
VH . Since by assumption

VH is a Mathieu subspace of R[H ], applying Proposition 3.1 to the
group algebra R[H ] we see that uq is nilpotent, whence so is u. 2

Next, let’s recall the following well-known fundamental theorem of
finite abelian groups.

Theorem 4.4. Any finite abelian group can be written as a direct prod-

uct of cyclic groups whose orders are powers of primes.

For the proof of the theorem above, see any abstract algebra text
book (e.g., see Th.2.2, Ch.II, [Hu]).
Note that by applying Theorem 4.4 and Lemma 4.3 (inductively),

it is easy to see that we may actually assume that the exponent r
in Theorem 4.1 is equal to zero, i.e., it suffices to show the following
lemma.

Lemma 4.5. Let G be a finite abelian group and R an integral domain

of characteristic p > 0 such that p ∤ d := |G|. Assume that R contains

a primitive d-th root of unity. Then VG is a Mathieu subspace of R[G]
iff p > d = |G|.
From now on and throughout the rest of this section, we let G and

R be as in the lemma above.
Note first that when d = |G| = 1, we have VG = {0}, which is

obviously a Mathieu subspace of R[G]. Hence, Lemma 4.5 holds in
this trivial case. So we will assume d = |G| ≥ 2.
Note also that by Theorem 4.4, we may (and will) further assume

that the abelian group G is given by

G = Zd1 × Zd2 × · · · × Zdn(4.3)

for some n ≥ 1 and di ≥ 2 (1 ≤ i ≤ n).
But, here we do not need to assume that the integers di ≥ 2 (1 ≤

i ≤ n) are powers of primes.
In order to study the group algebra R[G] of G in Eq. (4.3), we need

to write the factor groups Zdi (1 ≤ i ≤ n) in Eq. (4.3) as multiplicative
groups Hi with a fixed generator ei ∈ Hi, i.e., for each 1 ≤ i ≤ n, we
let

Hi = {eki | 0 ≤ k ≤ di − 1} ≃ Zdi .(4.4)

For convenience, for each 1 ≤ i ≤ n, we also identify Hi (implicitly)
with the subgroup of G in Eq. (4.3) consisting of all the n-tuples whose
j-th (j 6= i) component being the identity element of Hj ≃ Zdj . Note
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that under this identification, we have Hi ⊂ G, whence G is also the
inner product of the subgroups Hi (1 ≤ i ≤ n), i.e., with the abusive
notations fixed above, we have

G = H1 ·H2 · · ·Hn = H1 ×H2 × · · · ×Hn(4.5)

Furthermore, we also need to introduce the following two sets:

D :={β = (β1, β2, ..., βn) ∈ Nn | 0 ≤ βi ≤ di − 1}(4.6)

S :=
{

a = (a1, a2, ..., an) ∈ Rn | adii = 1
}

.(4.7)

Note that since R contains a primitive d-th root of unity, R also
contains a primitive di-th (1 ≤ i ≤ n) root of unity, since di | d. Then
from Eqs. (4.6) and (4.7), we have |S| = d = |D| = |G|.
Next, with the notations fixed above we give an equivalent formula-

tion of Lemma 4.5 in terms of the polynomial algebra R[z] over R in n
variables z := (z1, z2, ..., zn).
First, we define and consider the following R-linear functional:

L : R[z] → R(4.8)

f →
∑

a∈S

f(a).

Lemma 4.6. Let G and R be fixed as above. Then for any α ∈ D, we

have

L(zα) =

{

d if α = 0;

0 if α 6= 0.
(4.9)

Proof: If α = 0, then L(zα) =
∑

a∈S 1 = |S| = d. So we let α 6= 0.
Without losing any generality, we assume that the first component of
α is nonzero, and denote it by k (for short).
Let ξ1 be a primitive d1-th root of unity in R. Then we have ξk1 6= 1,

since 1 ≤ k ≤ d1 − 1. Note that for each root 1 6= r ∈ R of the
polynomial zd11 −1 ∈ R[z1], r is also a root of the polynomial

∑d1−1

ℓ=0
zℓ1,

for zd11 − 1 = (z1 − 1)
∑d1−1

ℓ=0
zℓ1. Therefore, for the fixed primitive d1-th

root of unity ξ1 ∈ R, we have
d1−1
∑

ℓ=0

(ξℓ1)
k =

d1−1
∑

ℓ=0

(ξk1 )
ℓ = 0.(4.10)

Now, for each 1 ≤ i ≤ n, set Ci := {ξℓi | 0 ≤ ℓ ≤ di − 1}, where ξi is
any fixed primitive di-th root of unity in R. Then from the definition
of the set S in Eq. (4.7), we have S = C1 × C2 × · · · × Cn. By taking
the sum L(zα) =

∑

a∈S a
α first over the set C1, it follows immediately

from Eq. (4.10) that L(zα) = 0. 2
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Next, we define the following R-algebra homomorphism:

ϕ : R[z] → R[G](4.11)

zi → ei.

Note that the kernel of the R-algebra homomorphism ϕ above is the
ideal of R[z] generated by the polynomials zdii −1 (1 ≤ i ≤ n). We will

denote this ideal by I~d, where
~d stands for the n-tuple (d1, d2, ..., dn).

The pre-image of VG ⊂ R[G] under the linear map ϕ is given by the
following lemma.

Lemma 4.7. With the setting above, we have

ϕ−1(VG) = Ker L.(4.12)

Proof: First, let V0 be the R-subspace of R[z] spanned by zα (0 6=
α ∈ D) and V := R · 1⊕ V0. Then by the definition of ϕ in Eq. (4.11),
it is easy to see that we have

ϕ−1(VG) =
{

f ∈ R[z]
∣

∣ f ≡ r (mod I~d) for some r ∈ V0

}

.(4.13)

Therefore, it suffices to show that Ker L coincides with the set on
the right-hand side of the equation above.
Now, let f ∈ R[z]. Then there exists a unique r ∈ V such that

f ≡ r (mod I~d). By Eq. (4.13) we have

f ∈ ϕ−1(VG) ⇔ r ∈ V0.(4.14)

Furthermore, since S is the zero-set of the ideal I~d in Rn, we have
f(a) = r(a) for all a ∈ S. In particular, we have L(f) = L(r) and
hence,

f ∈ KerL ⇔ r ∈ KerL.(4.15)

Write r(z) =
∑

α∈D cαz
α. Then by Eq. (4.9) we have

L(r) = L(c0) +
∑

06=α∈D

cαL(z
α) = dc0.

Since p ∤ d, we see that r ∈ KerL iff c0 = 0 iff r ∈ V0. Then by
the equivalences in Eqs. (4.14) and (4.15), we have that f ∈ ϕ−1(VG)
iff f ∈ KerL, whence the lemma follows. 2

Finally, we can give a proof for Lemma 4.5 as follows, from which
the proof of the main result Theorem 4.1 will be completed.

Proof of Lemma 4.5: Note that the (⇐) part of the lemma follows
directly from Theorem 3.5, which actually does not need the primitive
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root of unity condition on R in the lemma. But, with the primitive
root of unity condition on R it also follows from the arguments below.
First, we consider the R-homomorphism ϕ : R[z] → R[G] defined in

Eq. (4.11). Note that ϕ is surjective with the kernel I~d. Hence, from
Eq. (4.12) we have I~d ⊆ KerL and ϕ(KerL) = VG.
Therefore, we may identify R[G] with the quotient algebra R[z]/I~d,

and VG with KerL/I~d. Via these identifications and by Proposition 2.3,
we have that VG is a Mathieu subspace of R[G], iff KerL is a Mathieu
subspace of the polynomial algebra R[z].
Second, by applying Proposition 2.4 to the set S in Eq. (4.7) with

ci = 1 (1 ≤ i ≤ d), we have that KerL is a Mathieu subspace of R[z], iff
for any non-empty subset J ⊆ {1, 2, ..., d}, the cardinal number |J | 6= 0
in R, i.e., |J | 6≡ 0 mod p. Furthermore, it is easy to see that the latter
property holds iff p > d = |G|.
Finally, by combining the three equivalences above, we see that the

lemma follows. 2

5. The Case for the Group Algebra R[Zn] with char. R = p > 0

In this section, we show that Problem 1.4 has a negative answer
for the group algebras of the free abelian groups Zn (n ≥ 1) over all
integral domains R of positive characteristics. More precisely, we have
the following proposition.

Proposition 5.1. For any integral domain R of char. R = p > 0, VZn

is not a Mathieu subspace of the group algebra R[Zn].

Note that under the natural identification R[Zn] ≃ R[z−1, z] (the
Laurent polynomial algebra in n variables z = (z1, z2, ..., zn) over R),
the proposition above is equivalent to saying that for any integral do-
main R of char. R = p > 0, the subspace V of all the Laurent poly-
nomials in R[z−1, z] with no constant term does not form a Mathieu
subspace of the Laurent polynomial algebra R[z−1, z]. In particular, it
follows that the Duistermaat-van der Kallen Theorem, Theorem 1.3,
cannot be generalized to any field of characteristic p > 0.
To show Proposition 5.1, note first that we may identify Z as the

subgroup of Zn consisting of all the elements (a, a, ..., a) ∈ Zn with a ∈
Z. Then by Corollary 3.8, we may actually assume n = 1. Furthermore,
via the identification R[Z] ≃ R[z, z−1] mentioned above, it will be
enough to show the following lemma. The example in the lemma was
suggested to the authors by Arno van den Essen.

Lemma 5.2. Let p be a prime and z a free variable. Set f := z−1 +
zp−1 ∈ Zp[z

−1, z]. Then the following two statements hold:
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i) Const(fm) = 0 for all m ≥ 1;

ii) Const
(

z−1f pk−1
)

= (−1)p
k−1

for all k ≥ 1.

In order to prove the lemma above, we need first to show the following
lemma.

Lemma 5.3. For any prime number p > 0, the following statements

hold.

i) For any k, a ∈ N such that k ≥ 1 and a ≤ pk − 1, we have
(

pk − 1

a

)

≡ (−1)a mod p.(5.1)

ii) For any integer b ≥ 1, we have
(

bp

b

)

≡ 0 mod p.(5.2)

Proof: i) Let x be a free variable. We consider the polynomial

(x− 1)p
k−1 in the rational function field Zp(x), for which we have the

following two equations:

(1− x)p
k−1 =

pk−1
∑

a=0

(−1)a
(

pk − 1

a

)

xa,(5.3)

(1− x)p
k−1 =

(1− x)p
k

1− x
=

1− xpk

1− x
=

pk−1
∑

a=0

xa.(5.4)

Note that Eq. (5.4) above also holds for the case p = 2, since 1 = −1
in Z2. Now, by comparing the coefficients of xa in the polynomials on
the right-hand sides of Eqs. (5.3) and (5.4), we see that i) follows.
ii) Write b = prn for some r ≥ 0 and n ≥ 1 such that p ∤ n. In

particular, we have pr+1 ∤ b.
We consider the polynomial (x + 1)bp ∈ Zp[x]. Note that the coef-

ficient of xb in (x + 1)bp is equal to
(

bp

b

)

. On the other hand, we also
have

(x+ 1)bp = (x+ 1)np
r+1

= (xpr+1

+ 1)n.

Now, assume that
(

bp

b

)

6≡ 0 mod p. Then by the equation above,

xb appears in the polynomial (xpr+1

+ 1)n with a nonzero coefficient,
whence b = pr+1k for some 1 ≤ k ≤ n. But this implies pr+1 | b, which
is a contradiction. 2

Proof of Lemma 5.2: i) Since f = z−1 + zp−1, the constant term of

fm (m ≥ 1) is given by the sum of
(

m

b

)

for all the integers 0 ≤ b ≤ m
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such that −(m − b) + b(p − 1) = 0, which is the same as m = bp.
Therefore, there is at most one such an integer b, which is m/p if (and
only if) p |m. Hence we have

Const(fm) =

{

(

bp

b

)

if p |m and b = m/p;

0 if p ∤ m.
(5.5)

Then from the equation above and Eq. (5.2), we see that i) follows.
ii) By a similar argument as in i), it is easy to check that for any

k ≥ 1, the coefficient of z in f pk−1 is given by
(

pk−1

pk−1

)

, which by Eq. (5.1)

is equal to (−1)p
k−1

. Hence, we have Const(z−1f pk−1) = (−1)p
k−1

for
all k ≥ 1, i.e., ii) holds. 2
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