
ar
X

iv
:1

00
9.

58
07

v1
  [

m
at

h.
PR

] 
 2

9 
Se

p 
20

10

Almost sure localization of the eigenvalues in a gaussian

information plus noise model. Application to the spiked models.

Philippe Loubaton, Pascal Vallet

Université Paris-Est Marne la Vallée

LIGM (CNRS- UMR 8049)

5 Bd. Descartes, 77454 Marne-la-Vallée (France)

{loubaton,vallet}@univ-mlv.fr

Abstract. Let ΣN be a M ×N random matrix defined by ΣN = BN +σWN where BN is a uniformly bounded deter-

ministic matrix and where WN is an independent identically distributed complex Gaussian matrix with zero mean and

variance 1
N

entries. The purpose of this paper is to study the almost sure location of the eigenvalues λ̂1,N ≥ . . . ≥ λ̂M ,N

of the Gram matrix ΣNΣ
∗
N

when M and N converge to +∞ such that the ratio cN = M
N

converges towards a constant

c > 0. The results are used in order to derive, using an alernative approach, known results concerning the behaviour

of the largest eigenvalues ofΣNΣ
∗
N when the rank of BN remains fixed when M and N converge to +∞.

1 Introduction

The addressed problem and the results. Let ΣN be a M ×N complex-valued matrix defined by

ΣN = BN +σWN (1)

where BN is a M ×N deterministic matrix such that

sup
N

‖BN ‖<+∞ (2)

and where WN = [WN ]i , j is a M ×N complex Gaussian random matrix with independent identically distributed (i.i.d)

entries such that E[[WN ]i , j ] = 0, |E[[WN ]i , j ]|2 = 1
N , Re{[WN ]i , j } and Im{[WN ]i , j } are i.i.d zero mean real Gaussian ran-

dom variables. Model (1) is referred in the literature as the Information plus Noise Model (see e.g Dozier-Silverstein

[11]). In the context of this paper, we assume that Rank(BN ) = K (N ) = K < M because this assumption is verified in a

number of practical situations. The results developed in this paper can be easily extended to the case K = M .

The purpose of this paper is to study the almost sure location of the eigenvalues λ̂1,N ≥ . . . ≥ λ̂M ,N of the Gram

matrix ΣNΣ
∗
N when M and N converge to +∞ such that the ratio cN = M

N
converges towards a constant c > 0 and

to take benefit of the results to obtain, using a different approach than Benaych-Rao [6], the behaviour of the largest

eigenvalues of the Information plus Noise spiked models for which the rank K of BN remains constant when M and

N increase to +∞.

The empirical spectral measure (or eigenvalue distribution) µ̂N = 1
M

∑M
m=1δλ̂m,N

of matrix ΣNΣ
∗
N

has the same

asymptotic behaviour than a deterministic probability distributionµN (see Dozier-Silverstein [11] or Girko [13]) whose

support S N is the union of disjoint compact intervals called in the following the clusters of SN . The boundary points

of each cluster coincide with the positive extrema of a certain rational function depending on the empirical spectral

measure of matrix BN B∗
N

, σ2 and on the ratio cN = M
N

(see [10, 23]). Each cluster I of SN appears to be naturally

associated to another interval containing a group of consecutive eigenvalues of BN B∗
N ([23]). It is shown in [23] that

the property proved in Bai-Silverstein [2] holds in the context of model (1). Roughly speaking, it means that for an

interval [a,b] located outside SN for N large enough, no eigenvalue of ΣNΣ
∗
N belong to [a,b] almost surely, for all

large N .

In this paper, we establish the analog of the property called in [3] "exact separation": almost surely, for N large

enough, the number of eigenvalues ofΣNΣ
∗
N less than a (resp. greater than b) coincides with the number of eigenval-

ues of BN B∗
N associated to the clusters included into [0, a] (resp. included into [b,∞)).

We moreover use this result in order to study the case where Rank(BN ) = K is independent of N . It is assumed that

for each k = 1, . . . ,K , the non zero eigenvalues of BN B∗
N satisfy

lim
M→+∞

λk ,N =λk (3)

1

http://arxiv.org/abs/1009.5807v1


The support SN of µN is first characterized, and using the above results related to the almost sure location of the

(λ̂k ,N )k=1,...,M , it is proved that if λk >σ2pc, then,

λ̂k ,N →
(σ2 +λk )(σ2c +λk )

λk
(4)

and that if λk ≤σ2pc , then,

λ̂k ,N →σ2(1+
p

c)2 (5)

This behaviour was first established in Benaych-Rao [6] using a different approach.

Motivations. Our work has been originally motivated by the context of array processing in which the signals trans-

mitted by K < M sources are received by an array equiped with M sensors. Under certain assumptions, the M-

dimensional vector y(n) received on the sensor array at time n can be written as

y(n) =
K
∑

k=1

dk sk (n)+v(n) (6)

where each time series (sk(n))n∈Z represents a non observable deterministic signal corresponding to source k and

where dk is an unknown deterministic M-dimensional vector depending on the direction of arrival of the k-th source.

(v(n))n∈Z is an additive complex white Gaussian noise such that E[v(n)v(n)∗] =σ2IM . (6) is clearly equivalent to (1) if

we put

ΣN =
1

p
N

[

y(1), . . . ,y(N )
]

(7)

where WN = 1p
N

[v(1), . . . ,v(N )], BN = 1p
N

D[s(1), . . . ,s(N )], with s(n) = [s1(n), . . . , sK (n)]T and where D = [d1, . . . ,dK ].

Model (6) poses important statistical problems such as detection of the number of sources K or estimation of the

direction of arrivals of the K sources. A number of estimation schemes based on the eigenvalues and the eigenvectors

of matrixΣNΣ
∗
N were developed, and analysed if N →+∞ while M remains fixed. If however M and N are of the same

order of magnitude, the above technics may fail, and it is therefore quite relevant to study these statistical problems in

the asymptotic regime M , N →+∞ in such a way that M
N

→ c, c ∈ (0,+∞). The number of sources may be constant or

scale up with the dimensions M and N . For this, the first step is to evaluate the behaviour of the eigenvalues ofΣNΣ
∗
N .

About the literature. Concerning the zero-mean correlated model. The problems addressed in this paper were stud-

ied extensively in the context of the popular zero-mean correlated model defined by

ΣN = HN WN (8)

where HN is a deterministic M ×M matrix and where WN is a random matrix with possibly non Gaussian zero mean

variance 1
N i.i.d entries. The most complete results concerning the almost sure localization of the eigenvalues ofΣNΣ

∗
N

are due to Bai and Silverstein [2, 3] and were established in the non Gaussian case. Spiked models were first proposed

by Johnstone [17] in the context of (8) (matrix HN is a diagonal matrix defined as a finite rank perturbation of the

identity matrix). Later, Baik et al. [4] studied, in the complex Gaussian case, the almost sure convergence of the largest

eigenvalues of ΣNΣ
∗
N

and established central limit theorems. The analysis of [4] uses extensively the explicit form of

the joint probability distribution of the entries of ΣN . Using the results of [2, 3] as well as the characterization of the

support of the limiting distribution µN of the empirical eigenvalue distribution µ̂N (see Silverstein-Choi [22]), Baik-

Silverstein [5] addressed the non Gaussian case, and showed the almost sure convergence of certain eigenvalues of

ΣNΣ
∗
N . Mestre considered in [18] the case where HN H∗

N has a finite number of different positive eigenvalues having

multiplicities converving to +∞, and showed how to estimate the eigenvalues of HN H∗
N

as well as their associated

eigenspace. Similar ideas were also developed in [19] in order to address the source localization problem in the context

of large sensor arrays when the source signals are i.i.d. sequences. The analysis of Mestre [19, 18] is based on the results

of [2, 3] as well as on the observation that it is possible to exhibit contours depending on the Stieljes transform of µN ,

and enclosing each eigenvalue of HN H∗
N . Paul studied in [21] the behaviour of the eigenvectors associated to the

greatest eigenvalues of a Gaussian spiked model (almost sure convergence and central limit theorems). Bai and Yao

showed in [1] that certain eigenvalues of a non Gaussian spiked model satisfy a central limit theorem. We finally note

that the above results on zero-mean spiked models have been used in the context of source localization (see [16, 20]).
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Concerning the Information plus Noise model. Except our paper [23] devoted to the source localization of deter-

ministic sources, the almost sure location of the eigenvalues of matrix ΣNΣ
∗
N

was not studied previously. In [23], we

however followed partly the work of Capitaine et al. [8], devoted to finite rank deformed Gaussian (or satisfying a

Poincaré inequality) Wigner matrices, which was inspired by previous results of Haagerup and Thorbjornsen [14]. We

used in [23] the same approach to prove that for N large enough, no eigenvalue ofΣNΣ
∗
N is outside the support SN of

µN . In [23], we did not prove the analog of the exact separation established in[3], but a weaker related property using

a much simpler approach than in [3] and [8].

The almost sure behaviour (4), (5), of the largest eigenvalues of Information plus Noise spiked models appears to

be a consequence of the general results of [6] devoted to the analysis of certain random models with additive and/or

multiplicative finite rank perturbation. (4) and (5) are therefore not new, but the technics of [6] completely differ from

the approach used of the present paper which can be seen as an extension to the information plus noise model of the

paper [5].

Organization of the paper. In section 2, we review some results of [10] and [23] concerning the support SN of µN as

well as some useful background material. As [23] assumed cN < 1, we address the case cN = 1 and prove some extra

results concerning the behaviour of the Stieljes transform of µN around 0. In section 3, we prove the analog of the

exact separation of [3]. [8] generalized the approach of [3] to prove this property in the finite rank deformed Wigner

model. We however show that it is still possible to use again the ideas of [14]. We establish that it is sufficient to

prove that the mass (w.r.t. µN ) of any interval I of SN is equal to the proportion of eigenvalues of BN B∗
N associated

to I . For this, we evaluate an integral along a certain contour enclosing the eigenvalues of BN B∗
N associated to I .

This contour is the analog of the contour introduced by [18] in the context of model (8) and was extensively used

in [23]. Section 4 addresses the behaviour of the largest eigenvalues of an Information plus Noise spiked model.

We analyse the support SN of µN , which appears equivalent to evaluate the positive extrema of a certain rational

function. Using results concerning perturbed third order polynomial equations, it is shown that if λk 6= σ2pc for

k = 1, . . . ,K , the intervals of SN are [σ2(1−p
cN )2 +O(1/M),σ2(1+p

cN )2 +O(1/M)] and [λ−1
k ,N

(λk ,N +σ2cN )(λk ,N +
σ2)−O

+(M−1/2),λ−1
k ,N

(λk ,N +σ2cN )(λk ,N +σ2)+O
+(M−1/2)], where k is any index for which λk ,N > σ2pc, and where

O
+(M−1/2) represents a positive O(M−1/2) term. The results of section 3 imply immediately (4) and (5) when λk 6=

σ2pc for k = 1, . . . ,K . If one the (λk )k=1,...,K is equal to σ2pc, we use an argument similar to Baik-Silverstein [5], which

relies on an eigenvalue perturbation technic.

Model and assumptions. We now summarize the model and assumptions which will be used in the paper, and in-

troduce some definitions. Let M , N ,K ∈ N
∗ such that 1 ≤ K < M , K = K (N ) and M = M(N ), functions of N with

cN = M
N

→ c > 0 as N →∞. We consider a M ×N random matrixΣN defined as

ΣN = BN +σWN (9)

where σ> 0 and BN and WN satisfy the two following assumptions

Assumption A-1: Matrix BN is deterministic and satisfies supN ‖BN ‖<+∞

Assumption A-2: The entries of matrix WN are i.i.d and follow a standard complex normal distribution C N (0, 1
N

).

In the following, we study the context where

Assumption A-3: BN B∗
N is rank deficient, and the non zero eigenvalue of BN B∗

N have multiplicity 1.

The assumption on the multiplicities of the (λk ,N )k=1,...,K is not really necessary, but it allows to simplify the no-

tations. We denote by K the rank of BN B∗
N

(K may depend on N ), and by λ1,N > λ2,N > . . . > λK ,N > λK+1,N = . . . =
λM ,N = 0 its eigenvalues. We also assume that

Assumption A-4: cN = M
N

≤ 1 for each N

which, of course implies that c ≤ 1. Assuming cN ≤ 1 does not introduce any restriction because if cN > 1, the

eigenvalues ofΣNΣ
∗
N are 0 with multiplicity M −N as well as the eigenvalues of matrixΣ∗

NΣN . The location of this set

of eigenvalues can of course be deduced from the results related to cN < 1.

In this paper, C ∞
c (R,R) will denote the set of infinitely differentiable functions with compact support, defined from

R to R. If A ⊂R, ∂A and Int(A ) represent the boundary and the interior of A respectively.
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We finally recall the definition and useful well known properties of the Stieltjes transform, a fundamental tool

for the study of the eigenvalues of random matrices. Let µ be a positive finite measure on R. We define its Stieltjes

transform Ψµ as the function

Ψµ(z)=
∫

R

dµ(λ)

λ− z
∀z ∈C\supp(µ) (10)

where supp(µ) represents the support of measure µ. We have the following well-known properties

Property 1. Ψµ satisfies

1. Ψµ is holomorphic on C\supp(µ).

2. z ∈C
+ implies Ψµ(z) ∈C

+.

3. If µ(R−
∗ ) = 0, then zΨµ(z) ∈C

+ if z ∈C
+ .

2 Characterization of the support SN of measure µN

In this section, we recall some known results of [10] and [23] related to the support SN of measure µN . As we assumed

in [23] that cN < 1, we also provide, when it is necessary, some details on the specific case cN = 1.

2.1 Convergence of the empirical spectral measure µ̂N ofΣNΣ
∗
N torward µN

We recall that µ̂N is defined by µ̂N = M−1 ∑M
i=1

δλ̂i ,N
. Its Stieltjes transform m̂N is given, ∀z ∈C\{λ̂1,N , . . . , λ̂M ,N }, by

m̂N (z) =
∫

R

dµ̂N (λ)

λ− z
(11)

We have the following result

Theorem 1 ([11], [13], see also [15]). It exists a determinitic probability measure µN , such that µ̂N −µN
D−→ 0 as N →∞

with probability one. Equivalently, the Stieltjes transform mN of µN satisfies m̂N (z)−mN (z) → 0 almost surely ∀z ∈
C\R+. Moreover, ∀z ∈C\R+, mN (z) is the unique solution of the equation,

mN (z)=
1

M
Tr

[

−z(1+σ2cN mN (z))IM +σ2(1−cN )IM +
BN B∗

N

1+σ2cN mN (z)

]−1

(12)

satisfying Im(zmN (z))> 0 for z ∈C
+.

The behaviour of the Stieltjes transform mN around the real axis is fundamental to evaluate the support SN of µN .

The following theorem is essentially due to [10].

Theorem 2 ([10]). 1. If cN < 1, the limit of mN (z), as z ∈ C
+ converges to x, exists for each x ∈ R and is still denoted

by mN (x). If cN = 1, the limit exists for x 6= 0. The function x → mN (x) is continuous on R if cN < 1 and on R
∗ if

cN = 1. It is also continuously differentiable on R\∂SN .

2. If cN < 1, then Re(1+σ2cN mN (z)) ≥ 1/2 for each z ∈C
+∪R, and if cN = 1, this inequality holds on C

+∪R
∗.

3. mN (x) is solution of (12) for x ∈R\∂SN .

4. Measure µN is absolutely continuous and its density is given by fµN (x) =π−1Im(mN (x)).

The statements of this theorem are essentially contained in [10] (see also [23] for more details), except item 2

because it is shown in [10] that Re(1+σ2cN mN (z)) ≥ 0. We therefore prove item 2 in the Appendix A.

We note that as mN is a Stietljès transform, it also satisfies mN (z∗) = mN (z)∗. Therefore, it holds that

lim
z∈C−
z→x

mN (z) = mN (x)∗ (13)

for x ∈R if cN < 1 and for x ∈R
∗ if cN = 1.
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In the following, we denote by fN ,φN and wN the functions defined by

fN (w) =
1

M
Tr

(

BN B∗
N −wIM

)−1
(14)

φN (w) = w
(

1−σ2cN fN (w)
)2 +σ2(1−cN )

(

1−σ2cN fN (w)
)

(15)

wN (z) = z(1+σ2cN mN (z))2 −σ2(1−cN )(1+σ2cN mN (z)) (16)

Functions wN and φN are of crucial importance because, as shown in [23], Int(SN ) = {x > 0,Im(wN (x)) > 0} and for

each x ∈R\∂SN , wN (x) is solution of the equation φN (w) = x. The characterization of SN proposed in [23], based on

a reformulation of the results in [10], consists in identifying wN (x) out of the set of solutions of φN (w) = x.

We also note that eq. (12) is equivalent to

mN (z)

1+σ2cN mN (z)
= fN (wN (z)) (17)

and that the identity

1

1+σ2cN mN (z)
= 1−σ2cN fN (wN (z)) (18)

holds for z ∈C
+∪R if cN < 1, or for z ∈C

+∪R
∗ if cN = 1.

2.2 Properties of φN and wN , and characterization of SN

In this paragraph, we recall the main properties of functions φN and wN , as well the structure of SN . Lemmas 1, 2

as well as Theorem 3 are proved in [23] for cN < 1, but the derivations for cN = 1 are similar, except items 6 and 8 of

lemma 2.

Lemma 1. 1. The functionφN admits 2QN non-negative local extrema counting multiplicities (with 1≤QN ≤ K +1)

whose preimages are denoted w−
1,N < 0< w+

1,N
≤ w−

2,N . . . ≤ w−
QN ,N < w+

QN ,N
.

2. Define x−
q,N

=φN (w−
q,N

) and x+
q,N

=φN (w+
q,N

) for q = 1. . .QN . Then,

x−
1,N < x+

1,N ≤ x−
2,N < . . . ≤ x−

QN ,N < x+
QN ,N (19)

and x−
1,N > 0 if cN < 1 while x−

1,N = 0 if cN = 1.

3. For q = 1, . . . ,QN , each interval ]w−
q,N , w+

q,N
[ contains at least an element of the set {λ1,N , . . . ,λK ,N ,0} and each

eigenvalue of BN B∗
N belongs to one of these intervals.

4. The function φN is increasing on the intervals ]−∞, w−
1,N ], [w+

1,N , w−
2,N ], . . . , [w+

QN−1,N , w−
QN ,N ] and [w+

QN ,N ,+∞[.

Moreover,

φN

(]

−∞, w−
1,N

])

=
]

−∞, x−
1,N

]

(20)

φN

([

w+
q,N , w−

q+1,N

])

=
[

x+
q,N , x−

q+1,N

]

for each q = 1, . . . ,QN −1 (21)

φN

([

w+
QN ,N ,+∞

[)

=
[

x+
QN ,N ,+∞

[

. (22)

In figure 1, we give a typical representation of function φN . We are now in position to recall the characterization of

SN presented in [23].

Theorem 3. The support SN is given by

SN =
QN
⋃

q=1

[

x−
q,N , x+

q,N

]

(23)

with x−
1,N = 0 if cN = 1 and x−

1,N > 0 if cN < 1.
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w

φ(w)

w−
1

w+
1

w−
2

w+
2

w−
3

w+
3

x−
1

x+
1

x−
2

x+
2

x−
3

x+
3

λ1λ2λ3λ4

Support S

Figure 1: Function φ for K = 4 and c < 1. Here Q = 3.

The intervals ([x−
q,N , x+

q,N
])q=1,...,QN will be called the clusters of SN . Cluster [x−

q,N , x+
q,N

] corresponds to the interval

[w−
q,N , w+

q,N
] in the sense that x−

q,N = φN (w−
q,N ) and x+

q,N
= φN (w+

q,N
). Finally, we shall say that an eigenvalue λk ,N of

BN B∗
N

is associated to cluster [x−
q,N

, x+
q,N

] if λk ,N ∈ (w−
q,N

, w+
q,N

).

In the same way as in theorem 2, we set wN (x) = limz∈C+ ,z→x wN (z) for x ∈ R if cN < 1 and for x ∈ R
∗ if cN = 1. We

notice that limz∈C− ,z→x wN (z) = wN (x)∗. Function x → wN (x) satisfies the following properties.

Lemma 2. The following properties hold

1. x → wN (x) is continuous on R if cN < 1 and on R
∗ if cN = 1, and is continuously differentiable on R\∂SN .

2. wN is real and increasing on R\SN .

3. 1−σ2cN fN (wN (x)) 6= 0 for x ∈R\∂SN .

4. x ∈ Int(SN ) if and only if wN (x) ∈C
+.

5. For x ∈ R\∂SN , wN (x) is a solution of the equation φN (w) = x: If x ∈ Int(SN ), wN (x) is the unique solution

belonging to C
+. If x ∈ S

c
N

, wN (x) coincides with φ−1
N (x), where φ−1

N denotes the inverse of function φN well

defined on the intervals (−∞, x−
1,N ), (x+

1,N , x−
2,N ), . . . , (x+

QN−1,N , x−
QN ,N ), (x+

QN ,N ,+∞).

6. Function x → wN (x) is continuous at x = x−
1,N = 0 for cN = 1.

7. For q = 1, . . . ,QN , wN (x−
q,N

) = w−
q,N

and wN (x+
q,N

) = w+
q,N

.

8. Let q = 1, . . . ,QN . Then, there exists a constant C > 0 and neighborhoods V (x−
q,N

), V (x+
q,N

) of respectively x−
q,N

and

x+
q,N such that,

|w ′
N (x)| ≤C

(

∣

∣

∣x − x−
q,N

∣

∣

∣

−1/2
)

∀x ∈ V (x−
q,N )∩R\{x−

q,N } (24)

|w ′
N (x)| ≤C

(

∣

∣

∣x − x+
q,N

∣

∣

∣

−1/2
)

∀x ∈ V (x+
q,N )∩R\{x+

q,N } (25)

The lemma was proved in [23] in the case cN < 1. The proofs extend easily to cN = 1, except items 6 and 8 for q = 1.

These 2 statements are proved in the Appendix B.

We finish this section by showing that the following result holds.

Corollary 1. We have

sup
N

x+
QN ,N <∞ (26)

i.e. ∪N SN is a bounded set.
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Proof: We define λmax by λmax = supN ‖BN ‖2. It follows that for w > λmax

sup
N

| fN (w)| ≤
1

|λmax −w |
(27)

sup
N

| f ′
N (w)| ≤

1

|λmax −w |2
(28)

sup
N

|w f ′
N (w)| ≤

w

|λmax −w |2
(29)

(30)

and since φ′
N

(w) = (1−σ2cN fN (w))2−2σ2cN w f ′
N

(w)(1−σ2cN fN (w))−σ4cN (1−cN ) f ′
N

(w) converges towards 1 when

w →+∞, we deduce that for ǫ > 0, ∃wǫ > λmax such that ∀w > wǫ, φ′
N (w) > ǫ for all N . Since φ′

N (w+
QN ,N

) = 0, this

implies that

sup
N

w+
QN ,N ≤ wǫ <+∞ (31)

Moreover, using w+
QN ,N

= wN (x+
QN ,N

) = x+
QN ,N

(1+σ2cN mN (x+
QN ,N

))2 −σ2(1− cN )(1+σ2cN mN (x+
QN ,N

)), and item 2 of

Theorem 2, we get that

x+
QN ,N ≤

wǫ

(1+σ2cN mN (x+
QN ,N

))2
+

σ2(1−cN )

1+σ2cN mN (x+
QN ,N

)
< 4wǫ+2σ2 (32)

This completes the proof. ä

3 Almost sure location of the sample eigenvalues.

We first recall the following result of[23]. It can be seen as an extension of the property established in [2] in the context

of non Gaussian correlated zero mean random matrices.

Theorem 4 ([23]). Let a,b ∈R, ǫ> 0 and N0 ∈N such that

]a −ǫ,b +ǫ[∩SN =;, for each N > N0 (33)

Then, with probability one, no eigenvalue of ΣNΣ
∗
N belongs to [a,b] for N large enough.

We remark that Theorem 4 extends to semi-infinite intervals [b,+∞) because, as ‖WN W∗
N‖ → (1+

p
c)2 almost

surely, then it holds that λ̂1,N = ‖ΣNΣ
∗
N‖≤ supN ‖BN B∗

N‖+2σ2(1+
p

c)2 almost surely for N large enough.

In order to interpret this result, assume that for each N > N1 ≥ N0, the number of clusters of SN does not depend

on N (denote Q the number of clusters), and that for each q = 1, . . . ,Q , the sequences (x−
q,N )N>N1 and (x+

q,N )N>N1 con-

verge torwards limits x−
q and x+

q satisfying x−
1 ≤ x+

1 < x−
2 ≤ x+

2 < . . . < x−
Q ≤ x+

Q
. In this context, Theorem 4 implies that

almost surely, for each ǫ> 0, each eigenvalue belongs to one of the intervals [x−
q −ǫ, x+

q +ǫ] for N large enough.

We now establish the following property, called "exact separation" in the context of non Gaussian correlated zero

mean random matrices (see [3]) .

Theorem 5. Let a,b ∈R, ǫ> 0, N0 ∈N such that ]a −ǫ,b +ǫ[∩SN =; for N > N0. Then, we have

card{k : λ̂k ,N < a} = card{k : λk ,N < wN (a)} (34)

card{k : λ̂k ,N > b} = card{k : λk ,N > wN (b)} (35)

with probability one for N large enough.

Under the above simplified assumptions, this result means that almost surely for N large enough, the number of

sample eigenvalues that belong to each interval [x−
q −ǫ, x+

q +ǫ] coincides with the number of eigenvalues of BN B∗
N that

are associated to the cluster [x−
q,N , x+

q,N ].

To prove Theorem 5, we use the same technic as in [23], where a less general result is presented in the case c < 1.
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3.1 Preliminary results

We first need to state preliminary useful lemmas. The first lemma is elementary and is related to the solutions of the

equation 1−σ2cN fN (w) = 0.

Lemma 3. The equation 1−σ2cN fN (w) = 0 admits K +1 real solutions z0,N < 0 < z1,N < λ1,N < . . . < zK ,N < λK ,N . If

cN < 1, z0,N < w−
1,N

while if cN = 1, z0,N = w−
1,N

. Moreover, for each k = 1, . . . ,K , each solution zk ,N belongs to the interval

]w−
q,N , w+

q,N
[ containing eigenvalue λk ,N , with q ∈ {1, . . . ,QN }.

The next two lemmas are fundamental, and were proved by Haagerup in [14] in the Wigner case models (see also

[7]). Lemma 4 is established in [23, Prop. 4 and Lemma 2].

Lemma 4. Let ψ ∈C
∞
c (R,R), independent of N , then

E

[

1

M
Tr ψ

(

ΣNΣ
∗
N

)

]

−
∫

SN

ψ(λ)dµN (λ) =O

(

1

N 2

)

(36)

Lemma 5 is not explicitely stated in [23], but it is straightforward to prove it, using the derivation of [23, eq. (37)].

The proof is thus omitted.

Lemma 5. Let ψ ∈ C
∞
c (R,R), independent of N and constant on each cluster of SN for N large enough. Then, for all

large N ,

Var

[

1

M
Tr ψ

(

ΣNΣ
∗
N

)

]

=O

(

1

N 4

)

(37)

We are now in position to prove theorem 5.

3.2 End of the proof

We first prove (34) and assume that a > 0 because (34) is obvious if a ≤ 0. We consider η < ǫ and assume without

restriction that 0 < η< a. We consider a function ψa ∈C
∞
c (R,R), independent of N , such that ψa ∈ [0,1] and

ψa(λ) =
{

1 ∀λ ∈
[

0, a −η
]

0 ∀λ≥ a
(38)

By lemma 4, we have

E

[

1

M
Tr ψa

(

ΣNΣ
∗
N

)

]

−
∫

R+
ψa (λ)dµN (λ) =O

(

1

N 2

)

(39)

or equivalently

E

[

1

M
Tr ψa

(

ΣNΣ
∗
N

)

]

=µN

(

[0, a −η]
)

+O

(

1

N 2

)

(40)

Lemma 5 also implies that

Var

[

1

M
Tr ψa

(

ΣNΣ
∗
N

)

]

=O

(

1

N 4

)

(41)

Therefore, the Markov inequality leads to inequality

P

(∣

∣

∣

∣

1

M
Tr ψa

(

ΣNΣ
∗
N

)

−µN

(

[0, a −η]
)

∣

∣

∣

∣

>
1

N 4/3

)

≤ N 8/3 Var

[

1

M
Tr ψa

(

ΣNΣ
∗
N

)

]

+N 8/3

∣

∣

∣

∣

E

[

1

M
Tr ψa

(

ΣNΣ
∗
N

)

−µN

(

[0, a −η]
)

]∣

∣

∣

∣

2

(42)

=O

(

1

N 4/3

)

(43)

which implies that with probability one,

1

M
Tr ψa

(

ΣNΣ
∗
N

)

=µN

(

[0, a −η]
)

+O

(

1

N 4/3

)

(44)
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The remainder of the proof is dedicated to the evaluation of µN ([0, a − η]). Let IN = max{q : x+
q,N < a}. It is clear

that µN ([0, a −η]) =
∑IN

q=1µN ([x−
q,N , x+

q,N ]) because µN ((a −η, a)) = 0. By theorem 2, µN is absolutely continuous with

density π−1Im(mN (x)). Therefore, it holds that

µN ([x−
q,N , x+

q,N ]) =
1

π
Im

{

∫x+
q,N

x−
q,N

mN (x)dx

}

(45)

In order to evaluate the righthandside of (45), we use the contour integral approach introduced in [23]. For this, we

consider the curve Cq,N defined by

Cq,N =
{

wN (x) : x ∈ [x−
q,N , x+

q,N ]
}

∪
{

wN (x)∗ : x ∈ [x−
q,N , x+

q,N ]
}

(46)

We notice that x → wN (x) (resp. x → wN (x)∗) is a one-to-one correspondance from (x−
q,N

, x+
q,N

) onto {wN (x), x ∈
(x−

q,N
, x+

q,N
)} (resp. {wN (x)∗, x ∈ (x−

q,N
, x+

q,N
)}) because if wN (x) = wN (y), then φN (wN (x)) = x = φN (wN (y)) = y (see

Lemma 2, item 5).

It follows from lemma 2 items 1, 4 and 7 that Cq,N is a closed continuous contour enclosing the interval ]w−
q,N , w+

q,N [.

Cq,N is differentiable at each point except at w−
q,N and w+

q,N
(see item 8 of Lemma 2). However, (24) and (25) imply

that |w ′
N | is summable on [x−

q,N , x+
q,N

]. Therefore, for each function g continuous in a neighborhood of Cq,N , satisfying

(g (w))∗ = g (w∗), it is still possible to define the contour integral
∮

C
−
q,N

g (w)d w by

∮

C
−
q,N

g (w)d w = 2i Im

{

∫x+
q,N

x−
q,N

g (wN (x))w ′
N (x)dx

}

(47)

The notation C
−
q,N means that the contour Cq,N is oriented clockwise. Although Cq,N is not differentiable, the main

results related to contour integrals of meromorphic functions remain valid. In particular, it holds that

IndC
−
q,N

(ξ) =
1

2πi

∫

C
−
q,N

dλ

ξ−λ
=







1 if ξ ∈
]

w−
q,N , w+

q,N

[

0 if ξ 6∈
[

w−
q,N , w+

q,N

] (48)

In order to evaluate the righthandside of (45) using a contour integral, we remark that

mN (x) =
fN (wN (x))

1−σ2
N

cN fN (wN (x))
∀x ∈R\∂SN (49)

(see (17) and item 3 of lemma 2). Moreover, by item 5 of lemma 2, we have w ′
N (x)φ′

N (wN (x)) = 1 on (x−
q,N , x+

q,N ).

Therefore, we have

µN ([x−
q,N , x+

q,N ]) =
1

π
Im

{

∫x+
q,N

x−
q,N

gN (wN (x))w ′
N (x)dx

}

(50)

where gN (w) is the rational function defined by

gN (w) =
fN (w)φ′

N (w)

1−σ2
N

cN fN (w)
= fN (w)

(1−σ2cN fN (w))2 −2σ2
N cN w f ′

N (w)(1−σ2
N cN fN (w))−σ4

N cN (1−cN ) f ′
N (w)

1−σ2
N

cN fN (w)
(51)

In order to justify the existence of the integral at the righthandside of (50), we prove that gN (w) is continuous in a

neighborhood of Cq,N . We first note that the poles of gN (w) coincide with the eigenvalues of BN B∗
N and the zeros

(zk ,N )k=0,...,K of 1−σ2
N cN fN (w). As wN (x) is not real on (x−

q,N , x+
q,N ), x → gN (wN (x)) is continuous on (x−

q,N , x+
q,N ). It

remains to check the continuity at x−
q,N and x+

q,N
. If cN < 1, w−

q,N = wN (x−
q,N ) and w+

q,N
= wN (x+

q,N
) do not coincide

with one the poles of gN (w). If cN = 1 and q = 1, this property still holds true except for w−
1,N = wN (x−

1,N ) = wN (0)

because z0,N = w−
1,N (see Lemma 3). However, if cN = 1, the solutions of 1−σ2

N cN fN (w) are not poles of gN due to a

pole zero cancellation.

Therefore, it is clear that µN ([x−
q,N , x+

q,N
]) can also be written as

µN ([x−
q,N , x+

q,N ]) =
1

2πi

∮

C
−
q,N

gN (λ)dλ (52)

The integral can be evaluated using residue theorem and we give here the main steps of calculation. Define Iq = {k ∈
{1,2, . . . ,K } : λk ,N ∈]w−

q , w+
q [} and Lq = card(Iq ) > 0 (Lq > 0 from lemma 1 item 3). Assume cN < 1. Since Cq,N only

encloses ]w−
q,N , w+

q,N [, we will have residues at the following points:
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• for q = 1: residues at z0,N , 0 and zk ,N ,λk ,N for k ∈I1.

• for q ≥ 2: residues at zk ,N ,λk ,N for k ∈Iq .

If cN = 1, the zeros of 1−σ2cN fN (w) are not poles of gN (w):

• for q = 1: residues at 0 and λk ,N for k ∈I1.

• for q ≥ 2: residues at λk ,N for k ∈Iq .

We just consider the case cN < 1 in the following (the calculations are similar for cN = 1 and are therefore omitted). We

consider the decomposition gN (λ) = g1,N (λ)+ g2,N (λ)+ g3,N (λ), with

g1,N (λ) = fN (λ)
(

1−σ2cN fN (λ)
)

(53)

g2,N (λ) =−2σ2cNλ fN (λ) f ′
N (λ) (54)

g3,N (λ) =−σ4cN (1−cN )
fN (λ) f ′

N (λ)

1−σ2cN fN (λ)
(55)

These three functions admit poles at 0,λk ,N , and g3,N has moreover poles at (zk ,N )k=0,...,K . After tedious but straight-

forward calculations, we finally find that for k ∈ {1,2, . . . ,K },

Res
(

g1,N ,λk ,N

)

=−
1

M
+

2σ2cN

M2

∑

l 6=k

1

λl ,N −λk ,N
(56)

Res
(

g2,N ,λk ,N

)

=−
2σ2cN

M2

∑

l 6=k

1

λl ,N −λk ,N
(57)

Res
(

g3,N ,λk ,N

)

=−
1−cN

cN
(58)

For the residues at 0, we get

Res
(

g1,N ,0
)

=−
M −K

M
+2σ2cN

M −K

M

1

M
Tr BN B∗

N (59)

Res
(

g2,N ,0
)

=−2σ2cN
M −K

M

1

M
Tr BN B∗

N (60)

Res
(

g3,N ,0
)

=−
1−cN

cN
(61)

Finally, the residues at zk ,N for k = 0, . . . ,K are given by Res(g3,N , zk ,N ) = 1−cN
cN

. Using these evaluations, we obtain

immediately that if q ≥ 2, then,

µN ([x−
q,N , x+

q,N ]) =−
∑

k∈Iq

[

Res
(

g1,N ,λk ,N

)

+Res
(

g2,N ,λk ,N

)

+Res
(

g3,N ,λk ,N

)

+Res
(

g3,N , zk ,N

)]

(62)

=
Lq

M
(63)

This coincides with the ratio of eigenvalues of BN B∗
N associated to the cluster [x−

q,N , x+
q,N ] (i.e. the eigenvalues (λk ,N )k=1,...,Iq

).

If q = 1,

µN ([x−
1,N , x+

1,N ]) =−
∑

k∈I1

[

Res
(

g1,N ,λk ,N

)

+Res
(

g2,N ,λk ,N

)

+Res
(

g3,N ,λk ,N

)

+Res
(

g3,N , zk ,N

)]

(64)

−
[

Res
(

g1,N ,0,
)

+Res
(

g2,N ,0,
)

+Res
(

g3,N ,0,
)

+Res
(

g3,N , z0,N ,
)]

(65)

=
L1

M
+

M −K

M
(66)

which also coincides with the ratio of eigenvalues of BN B∗
N associated to the cluster [x−

1,N , x+
1,N ] (the (λk ,N )k=1,...,I1

and

0 with multiplicity M −K ).

Therefore, using (44), we get that

Tr ψa

(

ΣNΣ
∗
N

)

−
(

IN
∑

q=1

Lq + (M −K )

)

=O

(

1

N 1/3

)

(67)
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But almost surely, for N large enough, Tr ψa (ΣNΣ
∗
N ) is exactly the number of eigenvalues contained in [0, a] because

no eigenvalue of ΣNΣ
∗
N

belong to [a −η, a] (use Theorem 4 with a −η in place of a). The left handside of (67) is thus

an integer. Since this integer decreases at rate N−1/3, it is equal to zero for N large enough. (34) follows from the

observation that
∑IN

q=1 Lq +M −K is equal to the number of eigenvalues of BN B∗
N that are less than wN (a).

To evaluate the number of eigenvalues in interval ]b,+∞[, we use that no eigenvalue belongs to [a,b] (Theorem

4). Therefore,

card{k : λ̂k ,N > b} = M −card{k : λ̂k ,N < a} (68)

(34) implies that

card{k : λ̂k ,N > b} = M −
IN
∑

q=1

Lq − (M −K ) (69)

which coincides with the number of eigenvalues of BN B∗
N

in interval ]wN (b),+∞[. This concludes the proof of theo-

rem 5.

4 Applications to the spiked models

In this section, we use the above results in order to evaluate the behaviour of the largest eigenvalues of the Information

plus Noise spiked models. In the remainder of this section, we assume that

Assumption A-5: K does not depend on N and for all k = 1, . . . ,K , the positive sequence (λk ,N ) writes

λk ,N =λk +εk ,N (70)

with limN→+∞ εk ,N = 0 and λi 6=λ j for i 6= j .

We define Ks by

Ks = max{k : λk >σ2pc} (71)

and the function ψ by

ψ(λ) =
(σ2 +λ)(σ2c +λ)

λ
(72)

In the following, we characterize the support SN of measure µN and use the above results on the almost sure location

of the sample eigenvalues in order to prove the Theorem

Theorem 6. We have with probability one,

λ̂k ,N −−−−→
N→∞

{

ψ(λk ) if k ≤ Ks

σ2(1+
p

c)2 k ∈ {Ks +1, . . . ,K }
(73)

We note that Theorem 6 was already proved in the recent paper [6] using a different approach.

4.1 Preliminary results on perturbed equations

We first state two useful Lemmas related to the solutions of perturbed equations. They can be interpreted as exten-

sions of Lemmas 3.2 and 3.3 of [5]. In the following, we denote respectively by Do (z,r ), Dc (z,r ) and C (z,r ) the open

disk, closed disk and circle of radius r > 0 with center z. Moreover, in this paragraph, the notation o(1) denotes a term

that converges towards 0 when the variable ǫ converges towards 0. The first result is a straightforward modification of

[5, lemma 3.2]. Its proof is thus omitted.

Lemma 6. For each ǫ> 0, we consider hǫ(z)= h(z)+χǫ(z) with h,χǫ two holomorphic functions in a disk Do(z0,r0). We

assume that supz∈Do (z0 ,r0) |χǫ(z)| = o(1). We consider z0,ǫ = z0 +δǫ with δǫ = o(1). Then, ∃ ǫ0 > 0 and r > 0 such that for

each 0< ǫ≤ ǫ0, z0,ǫ ∈Do(z0,r ) and the equation

z − z0,ǫ−ǫhǫ(z)= 0 (74)
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admits a unique solution in Do(z0,r ) given by

zǫ = z0,ǫ+ǫh(z0)+o(ǫ) (75)

Moreover, if we assume that z0 ∈ R, h(z) ∈ R for z ∈ R, and that for ǫ small enough, z0,ǫ ∈ R, hǫ(z) ∈ R for z ∈ R, then

zǫ ∈R.

The second result is an extension of [5, Lemma 3.3] to certain third degree equations. The proof is given the

Appendix C.

Lemma 7. For each ǫ> 0 and i = 1,2, we consider hi ,ǫ(z) = hi (z)+χi ,ǫ(z) with hi ,χi ,ǫ holomorphic functions in a disk

Do (z0,r0). We assume that h1(z0) 6= 0 and that supz∈Do (z0 ,r0) |χi ,ǫ(z)| = o(1) for i = 1,2. We consider z0,ǫ = z0 +δǫ with

δǫ = o(1). Then, ∃ ǫ0 > 0 and r > 0 such that z0,ǫ ⊂Do (z0,r ) ∀ǫ ∈]0,ǫ0[ and the equation

(

z − z0,ǫ

)3 −ǫ
(

z − z0,ǫ

)

h1,ǫ(z)+ǫ2h2,ǫ(z)= 0 (76)

has 3 solutions in Do (z0,r ) given by

z−
ǫ = z0,ǫ−

p
ǫ
√

h1(z0)+o(
p
ǫ) (77)

z+
ǫ = z0,ǫ+

p
ǫ
√

h1(z0)+o(
p
ǫ) (78)

zǫ = z0,ǫ+ǫ
h2(z0)

h1(z0)
+o(ǫ) (79)

where
p

. is an arbitrary branch of the square root, analytic in a neighborhood of h1(z0). Moreover, if we assume that

z0 ∈ R, hi (z) ∈ R for z ∈ R and that for ǫ small enough that z0,ǫ ∈ R, hi ,ǫ(z) ∈ R for z ∈ R, then zǫ is real. Moreover, if

h1(z0) > 0 then z−
ǫ , z+

ǫ and zǫ are real while z−
ǫ , z+

ǫ are non real if h1(z0) < 0.

4.2 Characterization of SN and limits of the largest eigenvalues if λk 6=σ2
p

c for k = 1, . . . ,K

In this paragraph, we identify the clusters of the support SN , and evaluate of the points x−
q,N

, x+
q,N

for q = 1, . . . ,QN .

From theorem 3, these points coincide with the positive extrema of function φN (defined in (15)), and eventually

x−
1,N = 0 if cN = 1. Therefore, we first evaluate the real zeros of φ′

N (w) = (1 − σ2cN fN (w))2 − 2σ2cN w f ′
N (w)(1 −

σ2cN fN (w))−σ2cN (1−cN ) f ′
N (w). Straightforward calculations give

φ′
N (w) =

1

w2
∏K

k=1
(λk ,N −w)3

[

γ1,N (w)+
1

M
γ2,N (w)+

1

M2
γ3,N (w)

]

(80)

with

γ1,N (w) = (w2 −σ4cN )
K
∏

k=1

(λk ,N −w)3 (81)

γ2,N (w) =−2σ2cN

K
∏

k=1

(λk ,N −w)
K
∑

j=1





λ j ,N

(

w2 +σ2(1+cN )w −
σ2(1+cN )λ j ,N

2

)

K
∏

l=1
l 6= j

(λl ,N −w)2





 (82)

γ3,N (w) =σ4c2
N







K
∑

k=1

λk ,N

K
∏

l=1
l 6=k

(λl ,N −w)













K
∑

k=1

λk ,N (3w −λk ,N )
K
∏

l=1
l 6=k

(λl ,N −w)2





 (83)

Therefore, φ
′
N

(w)= 0 if and only if

γ1,N (w)+
1

M
γ2,N (w)+

1

M2
γ3,N (w) = 0 (84)

We assume c < 1, which implies that cN < 1 for N large enough. The calculations are essentially the same if c = 1. We

first observe that the zeros of φN are included into a compact interval I independent of N (see the proof of Corollary

1). Next, we claim that for each α> 0, it exists β> 0 and N0 ∈N such that

∣

∣

∣

∣

γ1,N (w)+
1

M
γ2,N (w)+

1

M2
γ3,N (w)

∣

∣

∣

∣

>β (85)
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if N > N0 and |w −σ2pc| >α, |w +σ2pc| >α, |w −λk | >α,k = 1, . . . ,K and w ∈I . This follows immediately from the

inequality

∣

∣

∣

∣

γ1,N (w)+
1

M
γ2,N (w)+

1

M2
γ3,N (w)

∣

∣

∣

∣

≥ |γ1,N (w)|−
1

M
γ2,max −

1

M2
γ3,max (86)

where γi ,max = maxw∈I |γi ,N (w)| for i = 2,3. This shows that the solutions of eq. (84) are located around the points

σ2pc,−σ2pc ,λk ,k = 1, . . . ,K .

In a disk Do(σ2pc,r ), Eq. (84) is equivalent to

w −σ2pcN +
1

M

w −σ2pcN

γ1,N (w)

(

γ2,N (w)+
1

M
γ3,N (w)

)

= 0 (87)

We use Lemma 6 with ǫ = M−1, z0 = σ2pc, z0,ǫ = σ2pcN , and hǫ(w) = − (w−σ2pcN )

γ1,N (w )

[

γ2,N (w)+ 1
M
γ3,N (w)

]

and h(w) =
limM→+∞ hǫ(w). h(w) is obtained by replacing cN and the (λk ,N )k=1,...,K by c and the (λk )k=1,...,K in the expression of

hǫ. Lemma 6 implies that it exists r for which equation (87), or equivalently equation (84), has a unique solution in

Do (σ2pc ,r ) for M large enough. This solution is given by σ2pcN +O( 1
M

). It is easy to check that

φN

(

σ2pcN +O
(

M−1
))

=σ2(1+
p

cN )2 +O

(

1

M

)

(88)

This quantity is positive, thus showing that σ2pcN +O(M−1) is the pre-image of a positive extremum of φN . Exchang-

ing σ2pc with −σ2pc , we obtain similarly that it exists a neighborhood of −σ2pc in which equation (84) has a unique

solution given by −σ2pcN +O( 1
M

). Moreover,

φN

(

−σ2pcN +O
(

M−1
))

=σ2(1−
p

cN )2 +O

(

1

M

)

(89)

so that −σ2pcN +O( 1
M

) is also the pre-image of a positive extremum of φN .

We now consider i ∈ {1, . . . ,K }, and study the equation (84) in a neighborhood Do (λi ,r ) of λi . In order to use

Lemma 7, we put ǫ= 1
M , z0 =λi , z0,ǫ =λi ,N . It is easily seen that in Do (λi ,r ), eq. (84) is equivalent to

(w −λi ,N )3 −
1

M
(w −λi ,N )h1,ǫ(w)+

1

M2
h2,ǫ(w) = 0 (90)

where

h1,ǫ(w) =
2σ2cN

∑N
k=1

[

λk ,N

(

w2 +σ2(1+cN )w − σ2(1+cN )λk,N

2

)

∏K
l=1
l 6=k

(λl ,N −w)2

]

(w2 −σ4cN )
∏K

k=1
k 6=i

(λk ,N −w)2
(91)

h2,ǫ(w) =−
γ3,N (w)

(w2 −σ4c2
N

)
∏K

k 6=i
(λk ,N −w)3

(92)

We denote by h1(w) and h2(w) the limits of h1,ǫ(w) and h2,ǫ(w) when ǫ→ 0, i.e. the functions obtained by replacing

cN and the (λk ,N )k=1,...,K by c and the (λk )k=1,...,K respectively in the expressions of h1,ǫ,h2,ǫ. After some algebra, we

obtain that

h1(λi ) =
2σ2cλ2

i
(λi + σ2(1+c)

2
)

λ2
i
−σ4c

(93)

while h2(λi ) is equal to

h2(λi ) =−
2σ4c2λ3

i

λ2
i
−σ4c

(94)

Lemma 7 implies that it exists r such that

λi ,N −
1

M

σ2cλi

λi +σ2 1+c
2

+o

(

1

M

)

(95)
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is solution of (84) contained in Do(λi ,r ). It is however easy to check that

φN

(

λi ,N −
1

M

σ2cλi

λi +σ2 1+c
2

+o

(

1

M

)

)

=−
σ4(1−c)2

2λi

(

1−
c

2

)

< 0 (96)

Therefore, the above extremum is negative, and its pre-image cannot be one the points w−
q,N , w+

q,N . Moreover, if

λi < σ2pc, then h1(λi ) < 0 and (84) has no extra real equation in Do(λi ,r ). If λi > σ2pc , then h1(λi ) > 0, and the

quantities

λi ,N −
1

p
M

√

h1(λi )+o

(

1
p

M

)

(97)

λi ,N +
1

p
M

√

h1(λi )+o

(

1
p

M

)

(98)

are the 2 other real solutions of (84) contained in Do (λi ,r ). After some algebra, we get that

φN

(

λi ,N −
1

p
M

√

h1(λi )+o

(

1
p

M

))

=
(λi ,N +σ2cN )(λi ,N +σ2)

λi ,N
−

1
p

M

2
√

h1(λi )(λ2
i
−σ4c)

λ2
i

+o

(

1
p

M

)

(99)

φN

(

λi ,N +
1

p
M

√

h1(λi )+o

(

1
p

M

))

=
(λi ,N +σ2cN )(λi ,N +σ2)

λi ,N
+

1
p

M

2
√

h1(λi )(λ2
i
−σ4c)

λ2
i

+o

(

1
p

M

)

(100)

are both positive. It is easy to check that if k ≤ Ks , then, σ2pcN <λk ,N for N large enough. The above discussion thus

implies that SN has Ks +1 clusters, and that for k ≤ Ks , then

x−
1,N =σ2(1−

p
cN )2 +O

(

1

M

)

(101)

x+
1,N =σ2(1+

p
cN )2 +O

(

1

M

)

(102)

x−
Ks+2−k ,N =

(λk ,N +σ2cN )(λk ,N +σ2)

λk ,N
−

1
p

M

2
√

h1(λk )(λ2
k
−σ4c)

λ2
k

+o

(

1
p

M

)

(103)

x+
Ks+2−k ,N =

(λk ,N +σ2cN )(λk ,N +σ2)

λk ,N
+

1
p

M

2
√

h1(λk )(λ2
k
−σ4c)

λ2
k

+o

(

1
p

M

)

(104)

In order to complete the proof, we use theorem 5. Let k ∈ {1, . . . ,Ks}. From the previous analysis, the eigenvalue

λk ,N is the unique eigenvalue of BN B∗
N associated with interval ]w−

q,N , w+
q,N

[ with q = Ks −k +2, for N large enough.

Moreover, the number of clusters of SN is equal to Ks+1 for N large enough and the sequences x−
q,N and x+

q,N
converge

towards limits equal to σ2(1−
p

c)2 and σ2(1+
p

c)2 for q = 1, and both coincide with ψ(λKs+2−q ) for q ≥ 2. This

implies that for each ǫ> 0, almost surely for N large enough, then λ̂k ,N ∈ (ψ(λk )−ǫ,ψ(λk )+ǫ) for k = 1, . . . ,Ks and that

λ̂k ,N ∈ (σ2(1−
p

c)2 −ǫ,σ2(1+
p

c)2 +ǫ) for k > Ks . This shows that λ̂k ,N →ψ(λk ) for k = 1, . . . ,Ks .

We now prove the convergence of λ̂k ,N to σ2(1+
p

c)2 for Ks < k ≤ K . Let kmax = Ks +1 (i.e the index of the largest

eigenvalue associated with the first cluster [x−
1,N , x+

1,N
]). We have already shown limsupN λ̂kmax ,N ≤σ2(1+

p
c)2 almost

surely. It remains to prove liminfN λ̂kmax ,N ≥ σ2(1+
p

c)2. Assume the converse is true. Then it exists ǫ > 0 such that

liminfN λ̂kmax ,N < σ2(1+
p

c)2 − ǫ. We can thus extract a subsequence λ̂kmax ,φ(N) converging towards a limit less than

σ2(1+
p

c)2 −ǫ. Let µ̂φ(N) be the empirical spectral measure associated with matrixΣφ(N)Σ
∗
φ(N)

. We deduce that

µ̂φ(N)

(

]σ2(1+
p

c)2 −ǫ,σ2(1+
p

c)2]
)

= 0 a.s for all large N (105)

Theorem 1 implies that µ̂φ(N) converges torwards the Marcenko-Pastur distribution, which contradicts (105). There-

fore, we have shown that λ̂kmax,N →σ2(1+
p

c)2 with probability one. We can prove similarly that λ̂k ,N →σ2(1+
p

c)2 a.s

for Ks +1 < k ≤ K .

4.3 Characterization of SN and limits of the largest eigenvalues if σ2
p

c ∈ {λ1, . . . ,λK }

In this section, we handle the case where one the (λk )k=1,...,K , say λ j with j ≤ K , is equal to σ2pc . For this, we will use

the Fan inequality (see [12, Theorem 2]). For a rectangular matrix A, we will denote by κk (A) its k-th largest singular
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value. With this notations, we have κ j (B) =
√

λ j =
√

σ2
p

c . We also denote by u j ,N and v j ,N the left and right singular

vector of BN associated with κ j (BN ). Fan inequality gives, for ǫ> 0,

κ j (BN +σWN ) ≤κ j (BN +σWN +ǫu j ,N v∗j ,N )+κ1(ǫu j ,N v∗j ,N ) (106)

κ j (BN +σWN +ǫu j ,N v∗j ,N ) ≤κ j (BN +σWN )+κ1(ǫu j ,N v∗j ,N ) (107)

From the results of the previous section, it is clear that, almost surely,

κ j (BN +σWN +ǫu j ,N v∗j ,N ) =

√

ψ

(

(√

λ j +ǫ
)2

)

+o(1) (108)

Therefore, we end up with

√

ψ

(

(√

λ j +ǫ
)2

)

−ǫ≤ liminf
N

κ j (BN +σWN ) ≤ limsup
N

κ j (BN +σWN ) ≤

√

ψ

(

(√

λ j +ǫ
)2

)

+ǫ (109)

Since ψ(λ) →σ2(1+
p

c)2 when λ→σ2pc, this completes the results of theorem 6.

A Proof of item 2 of Theorem 2.

The proof is a direct consequence of Section 2 of [10] (formulas (2.1) to (2.5) of [10]). We first recall that if we denote

by g (z) and G(z) the terms defined for z ∈C
+ by

g (z)=
σ2cN

|1+σ2cN mN (z)|2
1

M
Tr BN B∗

N TN (z)TN (z)∗ (110)

G(z)=σ2cN
1

M
Tr TN (z)TN (z)∗ (111)

where TN (z)=
[

−z(1+σ2cN mN (z))IM +σ2(1−cN )IM + BN B∗
N

1+σ2cN mN (z)

]−1

, then, it is shown in [10] that

0< |z|G(z)< 1− g (z) (112)

for each z ∈C
+. If z1 = Re(z) and z2 = Im(z), (112) implies that 0 < 1− g (z)−|z1|G(z) ≤ 1− g (z)+ z1G(z). It is shown in

[10] that

Re(1+σ2cN mN (z))=
1+σ2(1−cN )G(z)+ Im(1+σ2cN mN (z))z2G(z)

1− g (z)+ z1G(z)
(113)

for z ∈C
+. As Im(1+σ2cN mN (z)) =σ2cN Im(mN (z))> 0 on C

+ (see item 3 of Property 1), we get that

Re(1+σ2cN mN (z))>
1

1− g (z)+ z1G(z)
>

1

1+ z1G(z)
(114)

The inequality |z1 |G(z) < 1 implies that Re(1+σ2cN mN (z)) > 1
2

for each z ∈C
+. This also implies that Re(1+σ2cN mN (x)) ≥

1
2

for x ∈R if cN < 1 and for x ∈R
∗ if cN = 1.

B Proof of items 6 and 8 of Lemma 2 when q = 1

In order to prove these 2 statements, we study the behaviour of wN (x) and of w
′
N (x) when x → 0, x < 0 and x → 0, x > 0.

We first look at the limit for x < 0. Lemmas 1 and 2 imply that wN is the inverse of φN on interval ]−∞,0[.

wN (x) is a continuous increasing function on (−∞,0) upperbounded by w−
1,N ; therefore, limx→0,x<0 wN (x) exists, and

is less than w−
1,N . Taking the limit when x → 0, x < 0 from both sides of the equation φN (wN (x)) = x for x ∈ (−∞,0),

and using the continuity of φN on (−∞,0], we obtain immediately that φN (limx→0,x<0 wN (x)) = 0. This implies that

limx→0,x<0 wN (x) = w−
1,N . This shows that wN is left continuous at x = 0. Since wN (x) = x(1 +σ2mN (x))2, it fol-

lows that 1+σ2mN (x) =O(|x|−1/2). As wN is continuously differentiable on (−∞,0), we can differentiate the relation
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φN (wN (x)) = x, and obtain that φ′
N (wN (x))w ′

N (x) = 1 for x < 0, or equivalently that w ′
N (x) = 1

φ′
N

(wN (x))
. In other words,

it holds that

w ′
N (x) =

1

[1−σ2 fN (wN (x))][1−σ2 fN (wN (x))−2σ2wN (x) f ′
N

(wN (x))]
(115)

We observe that 1−σ2 fN (w−
1,N ) = 0 so that 1−σ2 fN (wN (x))−2σ2wN (x) f ′

N (wN (x))) →−2σ2w−
1,N f ′

N (w−
1,N ) 6= 0 when

x ↑ 0. Moreover, Eq. (18) implies that

1

1−σ2 fN (wN (x))
= 1+σ2mN (x) for x < 0 (116)

which proves that (1−σ2 fN (wN (x)))−1 =O((−x)−1/2). (115) implies immediately that

w ′
N (x) =O

(

1
p
−x

)

(117)

We now study the behaviour of wN and w
′
N

when x → 0, x > 0. We first study
p

xmN (x) for x → 0, x > 0. For this, we

introduce the function ψ(ξ, y) defined by

ψ(ξ, y) = 1−
1

M
Tr

(

BN B∗
N

ξ

y +σ2ξ
−ξ(y +σ2ξ)

)−1

(118)

The introduction of ψ is based on the observation that eq. (12) for x > 0 is equivalent to ψ(
p

xmN (x),
p

x) = 0. We

denote by ξ0 the term ξ0 = iσ−2
√

|w−
1,N

| and notice that

ψ(ξ0,0) = 0 (119)

It is easily checked that ψ is holomorphic in a neighborhood of (ξ0,0) and that
∂ψ
∂ξ (ξ0,0) 6= 0. Therefore, from the

implicit function theorem (the analytic version - see e.g Cartan [9]), it exists a unique function ξ(y), holomorphic

in a neighborhood V of 0 satisfying ψ(ξ(y), y) = 0 for y ∈ V and ξ(0) = ξ0. As Im(ξ0) > 0, it is clear that it exists a

neighborhood V
′

of 0 included in V such that Im(ξ(y)) > 0 for each y ∈ V
′
. We claim that for

p
x ∈ V

′ ∩R
+∗, ξ(

p
x) =p

xmN (x). For this, we notice that if x ∈ (0, x+
1,N ), mN (x) is the unique solution of Eq. (12) for which Im(mN (x)) > 0.

Indeed, from item 5 of lemma 2, for x ∈ (0, x+
1,N ), wN (x) is the unique solution with positive imaginary part of equation

φN (w) = x. But, mN (x) is solution of (12) iff wN (x) is solution of φN (w) = x. Moreover mN (x) ∈ C
+ iff wN (x) ∈ C

+, a

property which is readily seen from the relation (17). The conclusion follows from the observation that mN (x) satisfies

(12) iff
p

xmN (x) satisfies ξ(
p

xmN (x),
p

x) = 0. This in turn shows that for each
p

x ∈ V
′ ∩R

+∗, ξ(
p

x) =
p

xmN (x), or

equivalently that ξ(y)= ymN (y2) for y ∈ V
′ ∩R

+∗. As ξ(y) is holomorphic in V
′
, ξ(y) = ξ0+o(1) and ξ

′
(y) = ξ1+o(1) for

some coefficient ξ1. Therefore, ymN (y2) = ξ0+o(1) and 2y2m
′
N (y2)+mN (y2) = ξ1+o(1) for y ∈ V

′∩R+∗, or equivalently
p

xmN (x) = ξ0 +o(1) and 2xm
′
N (x)+mN (x) = ξ1 +o(1) for x > 0 small enough. As wN (x) = x(1+σ2mN (x))2, we get

that

w
′
N (x) =

(

1+σ2mN (x)
)

(

1+σ2(mN (x)+2xm
′
N (x))

)

(120)

As (mN (x)+2xm
′
N (x)) is a O(1) term, and as mN (x) = ξ0p

x
+o( 1p

x
), we obtain that |w ′

N (x)| ≤ Cp
x

for x > 0 small enough

for some constant C > 0.

C Proof of lemma 7

We begin by choosing r > 0 and ǫ1 > 0 such that r < r0, z0,ǫ ∈ Dc (z0,r ) and Dc (z0,ǫ,r ) ⊂ D0(z0,r0), for each 0 < ǫ < ǫ1.

Let fǫ(z) = (z − z0,ǫ)3 − ǫ(z − z0,ǫ)h1,ǫ(z)+ ǫ2h2,ǫ(z) and gǫ(z) = (z − z0,ǫ)3. Moreover, define
Ki

2
= supDc (z0 ,r ) |hi (z)| (for

i = 1,2).

As supz∈Do (z0 ,r0) |χǫ(z)| = o(1), it exists ǫ2 ≤ ǫ1 such that supDc (z0 ,r ) |hi ,ǫ(z)| ≤ Ki (for i = 1,2) for each ǫ ≤ ǫ2. For

z ∈Dc (z0,r ), it holds that

∣

∣ fǫ(z)− gǫ(z)
∣

∣≤ ǫ
∣

∣z − z0,ǫ

∣

∣

∣

∣h1,ǫ(z)
∣

∣+ǫ2
∣

∣h2,ǫ(z)
∣

∣ (121)
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As z0,ǫ− z0 = o(1), it exists ǫ3 ≤ ǫ2 such that, for each ǫ≤ ǫ3, |z − z0,ǫ| < 2r on Dc (z0,r ). Hence, for each ǫ≤ ǫ3, it holds

that

∣

∣ fǫ(z)− gǫ(z)
∣

∣≤ 2ǫr K1 +ǫ2K2 (122)

on Dc (z0,r ). We now restrict z to C (z0,r ), the boundary of Dc (z0,r ). It exists ǫ4 ≤ ǫ3 for which 2ǫr K1+ǫ2K2 < r 3

2 < r 3 =
|z − z0|3 holds on C (z0,r ) for each ǫ≤ ǫ4. Therefore, ∀z ∈C (z0,r ), we have | fǫ(z)− gǫ(z)| < |gǫ(z)| for ǫ≤ ǫ4. It follows

from Rouché’s theorem that these values of ǫ, then fǫ and gǫ have the same number of zeros inside Do (z0,r ). Thus, for

ǫ≤ ǫ4, the equation

(z − z0,ǫ)3 −ǫ(z − z0,ǫ)h1,ǫ(z)+ǫ2h2,ǫ(z)= 0 (123)

has three solutions in Do (z0,r ). Using the the same procedure to functions fǫ(z) = (z − z0,ǫ)2 − ǫh1,ǫ(z) and gǫ(z) =
(z − z0,ǫ)2, we deduce that if ǫ≤ ǫ5 ≤ ǫ4, the equation

(z − z0,ǫ)2 −ǫh1,ǫ(z)= 0 (124)

has two solutions ẑ−
ǫ , ẑ+

ǫ in Do(z0,r ). We clearly have |z0,ǫ − ẑ−
ǫ | = O(ǫ1/2) and |z0 − ẑ−

ǫ | = o(1). Therefore, h1,ǫ(ẑ−
ǫ )−

h1(z0) = o(1). As h1(z0) 6= 0, it exists ǫ6 ≤ ǫ5 and a neighborhood of h1(z0), containing h1,ǫ(ẑ−
ǫ ),h1,ǫ(z0) for each ǫ ≤

ǫ6, in which a suitable branch of the square-root
p

. is analytic. We assume that solution ẑ−
ǫ is given by z0,ǫ− ẑ−

ǫ =
−
p
ǫ
√

h1,ǫ(ẑ−
ǫ ). As |h1(z0)−h1,ǫ(ẑ−

ǫ )| = o(1), we have

z0,ǫ− ẑ−
ǫ =−

p
ǫ
√

h1(z0)+o(
p
ǫ) (125)

We obtain similarly that z0,ǫ− ẑ+
ǫ =

p
ǫ
√

h1(z0)+o(
p
ǫ).

Considering again ẑ−
ǫ , it follows that it exists ǫ7 ≤ ǫ6 such that for each ǫ≤ ǫ7, it holds that

∣

∣z0,ǫ− ẑ−
ǫ

∣

∣>
p
ǫ
√

h1(z0)

2
>
p
ǫ
p

r ′ (126)

with r ′ < |h1(z0)|
4

. For ǫ≤ ǫ8 ≤ ǫ7, we have
p
ǫr ′ < r and for z ∈Dc (z0,ǫ,

p
ǫr ′), we get

∣

∣(z − z0,ǫ)2 −ǫh1,ǫ(z)
∣

∣> ǫ|h1,ǫ(z)|− |z − z0,ǫ|2 > ǫ
(

|h1,ǫ(z)|− r
′)

(127)

It is easy to check that for each ǫ≤ ǫ9 ≤ ǫ8, then |h1,ǫ(z)| > |h1(z0)|
2 for z ∈Dc (z0,ǫ,

p
ǫr ′). Therefore,

∣

∣(z − z0,ǫ)2 −ǫh1,ǫ(z)
∣

∣> ǫ

( |h1(z0)|
2

− r ′
)

> ǫr ′ (128)

The inequalities (126) and (128) prove that in Dc (z0,ǫ,
p
ǫr ′), the equation (124) has no solution and that the equation

(z − z0,ǫ)3 −ǫ(z − z0,ǫ)h1,ǫ(z)= 0 has only one solution there.

We now study the number of solutions in Dc (z0,ǫ,
p
ǫr ′) of the equation (123). Consider

fǫ(z)= (z − z0,ǫ)3 −ǫ(z − z0,ǫ)h1,ǫ(z)+ǫ2h2,ǫ(z) (129)

gǫ(z)= (z − z0,ǫ)3 −ǫ(z − z0,ǫ)h1,ǫ(z) (130)

We have | fǫ(z)− gǫ(z)| = ǫ2|h2,ǫ(z)|. We consider z ∈ C (z0,ǫ,
p
ǫr ′). >From (128), |gǫ(z)| > (ǫr ′)3/2. Therefore, for each

ǫ≤ ǫ10 ≤ ǫ9, it holds that |gǫ(z)| > ǫ2|h2,ǫ(z)| = | fǫ(z)−gǫ(z)|. Thus, from Rouché’s theorem, the equation (123) has only

one solution in Do (z0,ǫ,
p
ǫr ′), denoted by zǫ. To obtain zǫ, we write

zǫ− z0,ǫ =
−ǫ2h2,ǫ(zǫ)

(zǫ− z0,ǫ)2 −ǫh1,ǫ(zǫ)
(131)

Since |(z − z0,ǫ)2 −ǫh1,ǫ(z)| > ǫr
′

on Dc (z0,ǫ,
p
ǫr ′) (see (128)) , we get that

∣

∣zǫ− z0,ǫ

∣

∣≤
ǫ2K2

ǫr ′ (132)

=O (ǫ) (133)
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But from equation (123), we also have ǫ(zǫ− z0,ǫ)h1,ǫ(zǫ) = (zǫ− z0,ǫ)3 +ǫ2h2,ǫ(zǫ) which leads to

zǫ− z0,ǫ =+ǫ
h2,ǫ(zǫ)

h1,ǫ(zǫ)
+

(zǫ− z0,ǫ)3

ǫh1,ǫ(zǫ)
(134)

it is clear that

h2,ǫ(zǫ)

h1,ǫ(zǫ)
−

h2(z0)

h1(z0)
= o(1) (135)

so that

zǫ− z0,ǫ =+ǫ
h2(z0)

h1(z0)
+o(ǫ) (136)

We now evaluate the two remaining solutions of (123) located in the set Do (z0,r )\Do (z0,ǫ,
p
ǫr ′), denoted z−

ǫ , z+
ǫ .

As |z−
ǫ − z0,ǫ| >

p
r ′ǫ, we can write

(

z−
ǫ − z0,ǫ

)2 = ǫh1,ǫ(z−
ǫ )−ǫ2 h2,ǫ(z−

ǫ )

z−
ǫ − z0,ǫ

(137)

This implies that |z−
ǫ −z0,ǫ| =O(

p
ǫ) and that |z−

ǫ −z0| = o(1). Taking a suitable branch of the square root, (137) implies

that

z−
ǫ − z0,ǫ =−

√

ǫh1,ǫ(z−
ǫ )+o(

p
ǫ) =−

√

ǫh1(z0)+o(
p
ǫ) (138)

We obtain similarly that z+
ǫ − z0,ǫ =

√

ǫh1(z0)+o(
p
ǫ).

We finally verify that if z0 and z0,ǫ belong to R for each ǫ, and that hi (z) and hi ,ǫ(z) belong to R for each ǫ if z ∈ R

for i = 1,2, then zǫ is real while z−
ǫ , z+

ǫ are real if h1(z0) > 0.

If zǫ is not real, it is clear that z∗
ǫ is also solution of Eq. (123) because functions hi ,ǫ verifies (hi ,ǫ(z))∗ = hi ,ǫ(z∗). As

|z∗
ǫ −z0,ǫ| = |zǫ−z0,ǫ| =O(ǫ), and that (123) has a unique solution in the disk Do(z0,ǫ,

√

ǫr
′
), this implies that z∗

ǫ = zǫ. On

the other hand, assume that h1(z0)> 0 and the z−
ǫ , z+

ǫ are non-real. Then, z+ ∗
ǫ and z− ∗

ǫ are also solution of (124). Since

equation (124) has only two solutions outside the disk Do (z0,ǫ,
√

ǫr
′
), it follows that ẑ+

ǫ and ẑ−
ǫ are complex conjuguate.

But as their real parts have opposite sign for ǫ small enough, this leads to a contradiction. Therefore ẑ+
ǫ and ẑ−

ǫ are

real. We finally note that if h1(z0) < 0, then ẑ+
ǫ and ẑ−

ǫ are non real.
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