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Wave fronts and (almost) free divisors

Susumu Tanabé

Dedicated to 60th birthday of David Mond

Abstract. In this note we present a description of wave
front evolving from an algebraic hypersurface by means
of a pull-back of the discriminantal loci of a tame poly-
nomial via a polynomial mapping. As an application we
give examples of wave fronts which define free/almost free
divisors near the focal point.

0 Introduction

During the last decade we witnessed an intensive development of studies on
wave fronts mainly from the differential geometric point of view. We restrict
ourselves to recall the works of authors like S.Izumiya, K.Saji, M.Umehara,
K.Yamada. After their definition, a map germ f : (Rn, 0) → (Rn+1, 0) is
called a wave front if there exists a unit vector field e along f such that the
(f, e) : (Rn, 0) → (PTRn+1, 0) is a Legendrian immersion.

In this article we propose an approach to the geometric studies of wave
front (equidistant, parallel) surfaces based on complex analytic tools. The
main difference between our method and the above mentioned differential
geometric method consists in the way to represent a wave front: we try to
describe it by means of its defining equation, while the latter relies on its
parametrisation. Here we present a description of wave front evolving from
an algebraic hypersurface by means of the discriminantal loci of a tame poly-
nomial. In contrast to [1], we do not identify the deformation parameter space
of a polynomial and the space-time variables (x, t). This situation makes us
to consider a mapping ι (1.7) from the physical space-time (x, t) world to
the deformation parameter space. As we treat the deformation of the phase
function Ψ(x, t, z) (1.4) (or square distant function Φ(x, t, z), Remark 1.1)
in a global setting, we are obliged to take into account its vanishing cycles
at infinity.
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To avoid difficulties associated to the vanishing cycles at infinity with
non-trivial monodromy (denoted by E ′

c in [8, Theorem 0.5]), we have chosen
a strategy to treat only tame polynomial cases (see Lemma 2.1).

The majority of ever existing works reduce the Lagrangian or Legendrian
singularities to local normal forms with the aid of diffeomorphisms. In [15]
we have proposed an asymptotic analysis of the fundamental solution to hy-
perbolic Cauchy problem around the singular loci of the globally evolving
wave front. In this article we removed the quasihomogeneity condition im-
posed on the initial wave front in [15]. Our Theorems 2.5, 3.1 generalise
[15, Theorem 10].

Another objective of this article is to show that certain wave front gives
example of an almost free divisor. The research on this kind of divisor has
been initiated by J.Damon [6] and D.Mond [13]. The former gave the rank of
”singular vanishing cycles” module while the latter uses differential forms to
describe the vanishing cohomology in the singular Milnor fibre of an almost
free divisor. Their activities are motivated by a discovery [7] on the stabiliza-
tion of a singular mapping: the discriminant of a stabilization plays a role
of ”Milnor fibre” for the discriminant of the mapping. Despite remarkable
results on topological invariants of almost free divisors, quite few non-trivial
examples are present in their works, especially those with the physical mean-
ings are absent. Here we supply a class of examples that arise from geometric
optics. We shall notice, however, our basic idea to construct an almost free
divisor ι−1(Dϕ) as a pull back of a free divisor Dϕ (the definition of its free-
ness as a divisor coincides with the formulation oheorem 2.5, 1) below) via
a polynomial mapping has already been underlined by J.Damon in [7, p.219]
and [6] where he uses the terminology ”nonlinear section” of a free divisor.

It is a great pleasure for us to dedicate our humble result to the 60th
birthday of David Mond who founded a beautiful and significant theory on
interrelations between free and almost free divisors. This relation would have
never come into author’s attention if not twice stays at University of Warwick
realised by his invitation.

1 Preliminaries on the wave fronts

In this section we prepare fundamental notations and lemmata to develop our
studies in further sections. Let us denote by Y := {(z, u) ∈ C

n+1;F (z)+u =
0} the complexified initial wave front set defined by a polynomial F (z) ∈
R[z1, · · · , zn], z = (z1, · · · , zn). The real initial wave front set is given by
Y ∩ Rn+1.

Let us consider the traveling of the ray starting from a point (z, u) ∈ Y
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along unit vectors perpendicular to the hypersurface tangent to Y at (z, u).
It will reach at the point (x1, · · · , xn+1)

xj = ±t
1

|(dzF (z), 1)|

∂F (z)

∂zj
+ zj , 1 ≤ j ≤ n,

xn+1 = ±t
1

|(dzF (z), 1)|
+ u with (z, u) ∈ Y, (1.1)

at the moment t. Further on, we denote by x′ = (x1, · · · , xn), x = (x′, xn+1).
We see that (x, t) and (z, u) satisfying the relation (1.1) are located on the
zero loci of two phase functions

ψ±(x, t, z, u) = (〈x′ − z, dzF (z)〉 + (xn+1 − u))± t|(dzF (z), 1)|, (1.2)

each of which corresponds to the backward ψ+(x, t, z, u) (resp. the forward
ψ−(x, t, z, u) ) wave propagation. To simplify the argument, we will not
distinguish forward and backward wave propagations in future. This leads
us to introduce an unified phase function

ψ(x, t, z, u) := ψ+(x, t, z, u) · ψ−(x, t, z, u)

= (〈x′ − z, dzF (z)〉 + (xn+1 + u))
2
− t2|(dzF (z), 1)|

2, (1.3)

Let us denote by Wt the wave front at time t with the initial wave front
Y i.e. Y = W0. Now we consider the following projection.

π : {(z, u) ∈ Y : ψ(x, t, z, u) = 0} → Cn+2

(x, t, z, u) 7→ (x, t).

Lemma 1.1. For x ∈ Wt, the point (x, t) belongs to the critical value set of
the projection π defined just above.

We can understand this fact in several ways. Instead of purely geometrical
interpretation, in our previous publication [15] we adopted investigation of
the singular loci of the integral of type,

I(x, t) =

∫

γ

H(z, u)(
1

ψ+(x, t, z, u)
+

1

ψ−(x, t, z, u)
)dz ∧ du

for γ ∈ Hn(Y ) and H(z, u) ∈ OCn+1 . The above integral ramifies around its
singular lociWt and by the general theory of the Gel’fand-Leray integrals (cf.
[17]), Wt is contained in the critical value set mentioned in the Lemma 1.1.

According to the Lemma 1.1, The set BW := ∪t∈CWt ⊂ Cn+1 (the real
part of it is the big wave front after Arnol’d [1, 6.3], [2, 22.1]) can be
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interpreted as a subset of the discriminant of the function (called the phase
function)

Ψ(x, t, z) := (〈x′ − z, dzF (z)〉 + xn+1 + F (z))
2
− t2(|dzF (z)|

2 + 1) (1.4)

for x′ = (x1, · · · , xn). This is a set of (x, t) for which the algebraic variety

Xx,t := {z ∈ C
n : Ψ(x, t, z) = 0}

has singular points.

Remark 1.1. Masaru Hasegawa and Toshizumi Fukui [12] study the wave
front Wt as a discriminantal loci of the function,

Φ(x, t, z) = −
1

2
(|(x′ − z, xn+1 + F (z))|2 − t2),

that measures the tangency of the sphere {(z, zn+1) ∈ Rn+1 : |(z − x′, zn+1 −
xn+1)|

2 = t2} with the hypersurface Y ∩ R
n+1. In some cases, this approach

allows us to get less complicated expression of the defining equation of BW
in comparison with ours in Theorem 2.5.

As Hasegawa points out, generally speaking, the inclusion of BW into
the discriminant of (1.4) is strict. The parabolic points of F (z) produce addi-
tionally so called ”asymptotic normal surface.” The discriminant, however,
represents the big wave front in the neighbourhood of a focal point (see below).
Hence in our further studies on the local property around the focal point, this
difference is negligeable.

We assume that the variety Xx,t has at most isolated singular points for
a point (x, t) of the space-time. Among those points, we choose a focal
point (x0, t0) ∈ Cn+2 i.e. the point where the maximum of the sum of all
local Milnor numbers is attained. If we denote by z(1), · · · , z(k) the singular
points located on Xx0,t0 and Milnor numbers corresponding to these points
by µ(z(i)), i = 1, ..., k, the following inequality holds for the focal point

sum of Milnor numbers of singular points on Xx,t ≤
k

∑

i=1

µ(z(i)),

for every (x, t) ∈ C
n+2.

Assume that the quotient ring

C[z]

(dzΨ(x0, t0, z))C[z]
(1.5)
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is a µ dimensional C vector space that admits a basis {e1(z), · · · , eµ(z)} that
contains a set of basis elements as follows,

e1(z) = 1, ej+1(z) = (zj − z
(i)
j ), 1 ≤ j ≤ n, (1.6)

for a fixed i ∈ [1, k]. Here we remark that
∑k

i=1 µ(z
(i)) ≤ µ. The denominator

(dzΨ(x0, t0, z))C[z] of the expression (1.5) means the Jacobian ideal of the
polynomial Ψ(x0, t0, z).

Now we decompose the difference

Ψ(x, t, z)−Ψ(x0, t0, z) =
m
∑

j=1

sj(x, t)ej(z)

by means a set of polynomials in z, {e1(z), · · · , eµ(z), eµ+1(z), · · · , em(z)}
and a set of polynomials in (x, t),

ι : Cn+2 → Cm

(x, t) 7→ ι(x, t) := (s1(x, t), · · · , sm(x, t))

(1.7)

thus defined.In this way we introduce a set of polynomials {eµ+1(z), · · · ,
em(z) } in addition to the basis of (1.5). We consider a polynomial ϕ(z, s) ∈
C[z, s] for s = (s1, · · · , sm) defined by

ϕ(z, s) = Ψ(x0, t0, z) +
m
∑

j=1

sjej(z). (1.8)

Locally this is a versal (but not miniversal) deformation of the holomor-
phic function germ Ψ(x0, t0, z) at z = z(i).

2 Discriminant of a tame polynomial

Definition 2.1. The polynomial f(z) ∈ C[z] is called tame if there is a
compact neigbourhood K of the critical points of f(z) such that ‖dzf(z)‖ =
√

(dzf(z), dzf(z)) is away from 0 for all z 6∈ K.

In the sequel we use the notation s′ = (s2, · · · , sm) and s = (s1, s
′).

Further on we impose the following conditions on ϕ(z, s) introduced in
(1.8). Assume that there exists an open set 0 ∈ V ⊂ Cm−1 such that

dimC

C[z]

(dzϕ(z, s))C[z]
<∞, (2.1)
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for every s′ ∈ V and s1 ∈ C. In addition to this, we assume that for every
s = (s1, · · · , sn+1, 0, · · · , 0) ∈ C× V, the equality

dimC

C[z]
(

dz(Ψ(x0, t0, z) +
∑n+1

j=2 sjej(z))
)

C[z]
= µ, (2.2)

holds.

Lemma 2.1. Under the conditions (1.5), (2.1), (2.2) there exists a con-
structible subset Ũ ⊂ V , such that ϕ(z, s) is a tame polynomial for every
s ∈ C× Ũ and

dimC

C[z]

(dzϕ(z, s))C[z]
= µ,

for every s ∈ C× Ũ .

Proof By [4, Proposition 3.1] (2.2) yields the tameness of ϕ(z, 0). After
Proposition 3.2 of the same article, the set of s such that ϕ(z, s) be tame
is a constructible subset (i.e. locally closed set with respect to the Zariski
topology) of the form C×W for W ⊂ V . According to [4, Proposition 2.3]
the set

Tn = {s ∈ C×W : dimC

C[z]

(dzϕ(z, s))C[z]
≤ n},

is Zariski closed for every n. We can take C× Ũ = Tµ \ Tµ−1. Q.E.D.
Assumption I
(i) By shrinking Ũ if necessary, we assume that a constructible set U ⊂ Ũ

can be given locally by holomorphic functions (sν+1, · · · , sm) on the coordi-
nate space with variables (s2, · · · , sν), ν ≥ µ.

(ii) The image of the mapping ι of a neighbourhood of (x0, t0) is contained
in C× U. In other words,

ι(Cn+2, (x0, t0)) ⊂ (C× U, ι(x0, t0)).

For a fixed s̃′ = (s̃2, · · · , s̃m) ∈ U and the constructible subset U ⊂ V
of the Assumption I,(i) we see that ϕ(z, s1, s̃

′) is a tame polynomial for all
s1 ∈ C. For such ϕ(z, s1, s̃

′), we define the following modules,

Pϕ(s̃
′) :=

Ωn−1
Cn

dzϕ(z, s1, s̃′) ∧ Ωn−2
Cn + dΩn−2

Cn

, (2.3)

Bϕ(s̃
′) :=

Ωn
Cn

dzϕ(z, s1, s̃′) ∧ dΩ
n−2
Cn

. (2.4)
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the module Bϕ(s̃
′) is called an algebraic Brieskorn lattice. In considerig the

holomorphic forms multiplied by ϕ(z, s1, s̃
′) be zero in (2.3), (2.4) we can

treat two modules as C[s1] modules.
These modules contain the essential informations on the topology of the

variety
Z(s1,s̃′) = {z ∈ C

n : ϕ(z, s1, s̃
′) = 0}. (2.5)

Let us denote by Dϕ ⊂ C × U the discriminantal loci of the polynomial
ϕ(z, s) i.e.

Dϕ := {s ∈ C× U : ∃z ∈ Zs, s.t. dzϕ(z, s) = ~0}. (2.6)

Theorem 2.2. For a fixed s̃′ = (s̃2, · · · , s̃m) ∈ U , both Pϕ(s̃
′) and Bϕ(s̃

′) are
free C[s1] modules of rank µ.

Proof First we show the statement on Bϕ(s̃
′). After [8, Theorem 0.5] the

algebraic Brieskorn lattice Bϕ(s̃
′) is isomorphic to a free C[s1] module of finite

rank ( so called the Brieskorn-Deligne lattice). The topological triviality of
the vanishing cycles at infinity for ϕ(z, s1, s̃

′) ensures this isomorphism.
On the other hand, for (s̃1, s̃

′) ∈ C × U, the Corollary 0.2 of the same
article tells us the following equality.

dim Coker(s1 − s̃1|Bϕ(s̃
′))

= dim Hn−1(Z(s̃1,s̃′)) + sum of Milnor numbers of singular points on Z(s̃1,s̃′).

For (s̃1, s̃
′) ∈ C× U \Dϕ, the right hand side of the above equality equals

∑

s1:Z(s1,s̃
′) singular

sum of Milnor numbers of singular points on Z(s1,s̃′)

by [4, Theorem 1.1, 1.2].
Now we show that Bϕ(s̃

′) is isomorphic to Pϕ(s̃
′).

We show the bijectivity of the mapping d : Pϕ(s̃
′) → Bϕ(s̃

′). To see the
injectivity, we remark that the condition d(ω + dα + β ∧ dϕ(z, s1, s̃

′)) =
dω + dβ ∧ dϕ(z, s1, s̃

′) = 0, α, β ∈ Ωn−1 in Bϕ(s̃
′), entails the existence of

α′ ∈ Ωn−1 such that dω = dα′ ∧ dϕ(z, s1, s̃
′), this in turn together with the

de Rham lemma entails ω = α′ ∧ dϕ(z, s1, s̃
′) + dβ ′ for some β ′ ∈ Ωn−1

To see the surjectivity, it is enough to check that for every γ ∈ Ωn the
equation dω = γ is solvable. Q.E.D.

Let us introduce a module for s̃′ = (s̃2, · · · , s̃m) ∈ U ,

Qϕ(s̃
′) :=

Ωn
Cn

dzϕ(z, s1, s̃′) ∧ Ωn−1
Cn

∼=
C[z]

(dzϕ(z, s1, s̃′))C[z]
, (2.7)
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that is a free C[s1] module of rank µ because it is isomorphic to

⊕{s1:Z(s1,s̃
′) singular} ⊕z:singular points on Z(s1,s̃

′)
C

µ(z),

with µ(z) : the Milnor number of the singular point z ∈ Z(s1,s̃′). Let us denote
its basis by

{g1dz, · · · , gµdz}, (2.8)

such that the polynomials {g1(z), · · · , gµ(z)} consist a basis of the RHS of
(2.7) as a free C[s1] module.

According to [4, p.218, lines 5-6] the following is a locally trivial fibration,

Z(s1,s′) → (s1, s
′) ∈ C× U \Dϕ,

by the definition (2.5), (2.6).This yields the next statement.

Corollary 2.3. We can choose a basis {ω1, · · · , ωµ} of Pϕ(s̃
′) independent

of s̃′ ∈ U.

Due to the construction of U , we can consider the ring OU of holomorphic
functions on U. By the analytic continuation with respect to the parameter
s′ ∈ U, we see the following.

Lemma 2.4. The modules Bϕ(s
′), Pϕ(s

′), Qϕ(s
′) are free C[s1]⊗OU modules

of rank µ.

As the deformation polynomials e1, · · · , eµ arise from the special form of
Ψ(x, t, z) we are obliged to impose the following assumption.

Assumption II We assume that we can adopt ei(z) of (1.5), (1.6) as gi(z)
in (2.8) i = 1, · · · , µ and they serve as a basis of Qϕ(s

′) as a free C[s1]⊗OU

module.

For the sake of simplicity, let us denote bymod(dz(ϕ(z, 0)+
∑m

j=2 sjej(z)))
the residue class modulo the ideal (dz(ϕ(z, 0) +

∑m
j=2 sjej(z)))C[z, s1]⊗ OU

in C[z, s1] ⊗ OU . By virtue of the freeness of Qϕ(s
′), this residue class is

uniquely determined. Our assumption (1.5), (1.6) together with the Weier-
strass preparation theorem gives us a decomposition as follows,

(ϕ(z, 0) +

m
∑

j=2

sjej(z)) ·
∂ϕ(z, s)

∂si

≡

µ
∑

ℓ=1

σℓ
i (s

′)
∂ϕ(z, s)

∂sℓ
mod(dz(ϕ(z, 0) +

m
∑

j=2

sjej(z))), 1 ≤ i ≤ µ (2.9)
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∂ϕ(z, s)

∂si
≡

µ
∑

ℓ=1

σℓ
i (s

′)
∂ϕ(z, s)

∂sℓ
mod(dz(ϕ(z, 0) +

m
∑

j=2

sjej(z))),

µ+ 1 ≤ i ≤ m, (2.10)

with σℓ
i (s

′) ∈ OU . In fact, according to an argument used in [5, Theorem
A4], [16, Proposition 2] (both treat liftable vector fields in local case but
they apply to our situation), the following vector fields are tangent to the
discriminant Dϕ,

~vi := (s1 + σi
i(s

′))
∂

∂si
+

µ
∑

ℓ=1,ℓ 6=i

σℓ
i (s

′)
∂ϕ(z, s)

∂sℓ
, 1 ≤ i ≤ µ (2.11)

Here we recall the Assumption I, (i) that allows us to adopt (s1, s2, · · · , sν),
ν ≥ µ as the local coordinates of C× U .

~vi := −
∂

∂si
+

µ
∑

ℓ=1

σℓ
i (s

′)
∂

∂sℓ
, µ+ 1 ≤ i ≤ ν, (2.12)

We remark here that the importance of the liftable vector field in the
studies of Aµ singularity discriminant has been pointed out by [1, §3].

Evidently they are linearly independent over C[s1] ⊗ OU because of the
presence of the term s1

∂
∂si

for every 1 ≤ i ≤ µ and − ∂
∂si

for µ + 1 ≤ i ≤ ν.
Therefore they form a C[s1]⊗OU free module of rank ν. Let us introduce the
following matrix of which the i−th row corresponds to the vector ~vi.

Σ(s) :=







































s1 + σ1
1(s

′) σ2
1(s

′) · · · σµ
1 (s

′) 0 · · · 0 0

σ1
2(s

′) s1 + σ2
2(s

′) · · · σµ
2 (s

′) 0 · · · 0 0

...
...

. . .
...

...
...

...
...

σ1
µ(s

′) σ2
µ(s

′) · · · s1 + σµ
µ(s

′) 0 · · · 0 0

σ1
µ+1(s

′) σ2
µ+1(s

′) · · · σµ
µ+1(s

′) −1 · · · 0 0

...
... · · ·

...
...

. . .
...

...

σ1
ν−1(s

′) σ2
ν−1(s

′) · · · σµ
ν−1(s

′) 0 · · · −1 0

σ1
ν(s

′) σ2
ν(s

′) · · · σµ
ν (s

′) 0 · · · 0 −1







































.

(2.13)
In fact the following µ×µ submatrix of Σ(s) contains the essential geometrical
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informations on Dϕ.

Σ̃(s) :=















s1 + σ1
1(s

′) σ2
1(s

′) · · · σµ
1 (s

′)

σ1
2(s

′) s1 + σ2
2(s

′) · · · σµ
2 (s

′)

...
...

. . .
...

σ1
µ(s

′) σ2
µ(s

′) · · · s1 + σµ
µ(s

′)















. (2.14)

Theorem 2.5. 1) The algebra DerC×U(log Dϕ) of tangent fields to Dϕ as a
free C[s1]⊗OU is generated by the vectors vi, 1 ≤ i ≤ ν of (2.11), (2.12).

2) The discriminantal loci Dϕ is given by the equation

Dϕ = {s ∈ C× U : det Σ̃(s) = 0}.

3) The preimage of Dϕ by the mapping ι contains the wave front BW =
∪t∈CWt ⊂ Cn+1 i.e. BW ⊂ ι−1(Dϕ).

Proof The tangency of vector fields ~vi’s to Dϕ and their independence
over C[s1]⊗OU have already been shown.

We shall follow the argument by [10, Theorem 3.1]. First we shall prove
2). By virtue of the tangency of ~vi’s to Dϕ and the equality,

~v1 ∧ · · · ∧ ~vν = det Σ(s)∂s1 ∧ · · · ∧ ∂sν ,

the function det Σ(s) shall vanish on Dϕ. The statement on Qϕ(s
′) of the

Lemma 2.4 tells us that

♯{s ∈ C× U : s1 = const ∩Dϕ} = µ,

in taking the multiplicity into account.
From (2.13), (2.14) we see that

±det Σ(s) = det Σ̃(s) = sµ1 + d1(s
′)sµ−1

1 + · · ·+ dµ(s
′),

with di(s
′) ∈ OU , 1 ≤ i ≤ µ. Thus the determinant det Σ̃(s) that turns

out to be a Weierstrass polynomial in s1, shall be divided by the defining
equation of Dϕ which turns out to be also a Weierstrass polynomial in s1 of
degree µ. This proves 2).

Now we shall show that every vector ~v tangent to Dϕ admits a decompo-
sition like

~v =
ν

∑

i=1

ai(s)~vi,
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for some ai(s) ∈ C[s1]⊗OU . For every i the following expression shall vanish
on Dϕ, because of the tangency of all vectors taking part in it,

~v1 ∧ · · · ∧ ~vi−1 ∧ ~v ∧ ~vi+1 ∧ · · · ∧ ~vν .

Therefore there exists ai(s) ∈ C[s1] ⊗ OU such that the above expression
equals to ai(s)detΣ(s)∂s1 ∧ · · · ∧ ∂sm . This means that the vector ~v −

∑ν
i=1

ai(s) ~vi defines a zero vector at every s 6∈ Dϕ, as the vectors ~v1, · · · , ~vν form
a frame outside Dϕ. By the continuity argument on holomorphic functions,
we see that the decomposition holds everywhere on C× U.

The statement 3) follows from Lemma 1.1, (1.4) and the definition (1.7)
of ι. Q.E.D.

3 Gauss-Manin system for a tame

polynomial

In this section, we willl show that the above matrix Σ̃(s), (2.14) can be
obtained as the coefficient of the Gauss-Manin system defined for a tame
polynomial ϕ(z, s).

According to Lemma 2.4, every ω ∈ Pϕ(s
′) admits a unique decomposi-

tion as follows,

ω =

µ
∑

i=1

ai(s)ωi, s ∈ C× U. (3.1)

A generalisation of Theorem 0.2 of [9] tells us that the following equivalence
holds for every holomorphic n− 1 form ω,

∀s ∈ C× U, ω|Zs = 0 in Hn−1(Zs) ⇔ ω = 0 in Pϕ(s
′). (3.2)

The above statement (3.2) for every n ≥ 2 was given by Corollary 10.2 of
[14] after an argument quite different from that in [9] §2.

This theorem yields a corollary that ensures us the following equality for
every vanishing cycle δ(s) ∈ Hn−1(Zs),

∫

δ(s)

ω =

µ
∑

i=1

ai(s)

∫

δ(s)

ωi, s ∈ C× U, (3.3)

for some ai(s) ∈ C[s1]⊗OU , 1 ≤ i ≤ µ. To show this along with the argument
by [9], we simply need to replace his Lemma 2.2 by [8, Corollary 0.7].

Here we remark that for the basis of {e1(z)dz, · · · , eµ(z)dz} of Qϕ(s̃
′) we

can choose the basis {ω1, · · · , ωµ} of Pϕ(s̃
′) such that

dωi = ei(z)dz + dzϕ(z, s) ∧ ǫi, (3.4)
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for some ǫi ∈ Ωn−1. That is to say, for every ω ∈ Ωn−1 we can find the
following two types of decomposition

ω =

µ
∑

i=1

ci(s
′)dωi + dzϕ(z, s) ∧ dξ,

=

µ
∑

i=1

ci(s
′)(ei(z)dz + dzϕ(z, s) ∧ ǫi) + dzϕ(z, s) ∧ η, (3.5)

for some ci(s
′) ∈ OU , ξ ∈ Ωn−2⊗OU , η ∈ Ωn−1⊗OU . This is a reformulation

of Lemma 2.4.
As E.Brieskorn [3] showed, the following equality holds if we understand

it as the property of the holomorphic sections in the cohomology bundle
Hn−1(Zs) defined as the Leray’s residue ω/dzϕ(z, s) for ω ∈ Ωn,

(
∂

∂s1
)−1dη = dzϕ(z, s) ∧ η.

This yields that

(
∂

∂s1
)−1Bϕ(s̃

′) = dzϕ(z, s) ∧ Ωn−1/dzϕ(z, s) ∧ dΩ
n−2,

Qϕ(s̃
′) = Bϕ(s̃

′)/(
∂

∂s1
)−1Bϕ(s̃

′),

and we see that {e1(z)dz, · · · , eµ(z)dz} is a basis of Bϕ(s̃
′) as an OU [(

∂
∂s1

)−1]
module.

For ωi’s chosen in (3.4) we have a decomposition in Qϕ(s̃
′) as follows,

(ϕ(z, s)− s1)dωi =

µ
∑

ℓ=1

σℓ
i (s

′)dωℓ + dzϕ(z, s) ∧ ηi, 1 ≤ i ≤ µ (3.6)

ηi ∈ Ωn−1⊗OU .We see that (3.6) is equivalent to (2.9) in view of (3.5). This
relation immediately entails the following equality for every δ(s) ∈ Hn−1(Zs),

s1
∂

∂s1

∫

δ(s)

ωi +

µ
∑

ℓ=1

σℓ
i (s

′)
∂

∂s1

∫

δ(s)

ωℓ +

∫

δ(s)

ηi = 0, (3.7)

in view of the fact
∫

δ(s)
ϕ(z, s) dωi

dzϕ(z,s)
= 0 and the Leray’s residue theorem

∂

∂s1

∫

δ(s)

ωi =

∫

δ(s)

dωi

dzϕ(z, s)
.
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After (3.3), every
∫

δ(s)
ηi admits an unique decomposition

∫

δ(s)

ηi =

µ
∑

j=1

bji (s)

∫

δ(s)

ωj, s ∈ C× U, (3.8)

for some bji (s) ∈ C[s1]×OU , 1 ≤ i, j ≤ µ.
Let us consider a vector of fibre integrals

IQ :=t (

∫

δ(s)

ω1, · · · ,

∫

δ(s)

ωµ). (3.9)

In summary we get
Theorem 3.1. 1) For a vector IQ, (3.7) we have the following Gauss-Manin
system

Σ̃ ·
∂

∂s1
IQ +B(s)IQ = 0, (3.10)

where B(s) =
(

bji (s)
)

1≤i,j≤µ
for functions determined in (3.8).

2) The discriminantal loci Dϕ of the tame polynomial ϕ(z, s), s ∈ C× U
has an expression,

Dϕ = {s ∈ C× U : det Σ̃(s) = 0},

that corresponds to the singular loci of the system (3.10).

Remark 3.1. To see that the two statements on Dϕ do not mean a simple
coincidence, one may consult [16, Theorem 2.3] and find a description of
the Gauss-Manin system for Leray’s residues by means of the tangent vector
fields to the discriminant loci.

4 Free and almost free wave fronts

Now we recall that the freeness of DerC×U(log Dϕ) as a C[s1] ⊗ OU

module, proven in the Theorem 2.5, means that Dϕ defines a free divisor (in
the sense of K.Saito) in the neighbourhood of every point s ∈ Dϕ. We define
the logarithmic tangent space T log

s Dϕ to Dϕ at s:

T log
s Dϕ = {~v(s) : ~v(s) ∈ DerC×U(log Dϕ)s} (4.1)

We follow the presentation on the free and almost free divisors by D.Mond
[13] and J.N.Damon [6]. To discuss when the big wave front BW becomes a
free divisor, we need to make use of the notion of algebraic transversaliy. We
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recall here the Assumption I, (ii) on the image of the mapping ι that entails
the following inclusion relation,

dx,tι(T(x,t)C
n+2) ⊂ Tι(x,t)(C× U),

for (x, t) in the neighbourhood of (x0, t0).
Definition 4.1. The mapping ι is algebraically transverse to Dϕ at (x0, t0) ∈
Cn+2 if and only if

dx,tι(T(x0,t0)C
n+2) + T log

ι(x0,t0)
Dϕ = Tι(x0,t0)(C× U). (4.2)

Lemma 4.1. ( [13] Jacobian criterion for freeness) The divisor ι−1(Dϕ) is
free if and only if ι is algebraically transverse to Dϕ.

To state a criterion of the freeness of ι−1(Dϕ), we need the following
m× (ν + n+ 2) matrix T (x, t).

T (x, t) =































































































s1 + σ1
1(s

′(x, t)) · · · σ
µ

1
(s′(x, t)) 0 · · · 0 · · · 0

σ1
2(s

′(x, t)) · · · σ
µ

2
(s′(x, t)) 0 · · · 0 · · · 0

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

. · · ·

.

.

.

σ1
µ(s′(x, t)) · · · s1 + σµ

µ(s′(x, t)) 0 · · · 0 · · · 0

σ1
µ+1(s

′(x, t)) · · · σ
µ

µ+1
(s′(x, t)) −1 · · · 0 · · · 0

.

.

. · · ·

.

.

.

.

.

.
.
.
.

.

.

. · · ·

.

.

.

σ1
ν (s′(x, t)) · · · σµ

ν (s′(x, t)) 0 · · · −1 · · · 0

s1(x, t)x1
· · · sµ(x, t)x1

sµ+1(x, t)x1
· · · sν (x, t)x1

· · · sm(x, t)x1

s1(x, t)x2
· · · sµ(x, t)x2

sµ+1(x, t)x2
· · · sν (x, t)x2

· · · sm(x, t)x2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

s1(x, t)xn+1
· · · sµ(x, t)xn+1

sµ+1(x, t)xn+1
· · · sν (x, t)xn+1

· · · sm(x, t)xn+1

s1(x, t)t · · · sµ(x, t)t sµ+1(x, t)t · · · sν (x, t)t · · · sm(x, t)t































































































.

(4.3)

The first ν rows of the T (x, t) correspond to those of Σ(ι(x, t)) while the
(ν + i)−th row corresponds to ∂

∂xi
ι(x, t), 1 ≤ i ≤ n + 1 and the last row to

∂
∂t
ι(x, t) for ι(x, t) of (1.7).
The Lemma 4.1 yields immediately the following statement in view of

the Theorem 2.5.

Proposition 4.2. The divisor ι−1(Dϕ) is free in the neighbourhood of (x, t)
if and only if rank T (x, t) ≥ ν.
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Remark 4.1. It is well known that the discriminant of a K− versal de-
formation of a hypersurface singularity defines a free divisor (K. Saito, E.
Looijenga). Therefore, the cases for which the K− versality has been proven
in [12], n = 2 give rise to free wave fronts.

After Theorem 2.5, in the neighbourhood of each of its point s, the
hypersurface Dϕ defines a germ of free divisor.

Definition 4.2. The germ of hypersurface ι−1(Dϕ) at (x0, t0) ∈ Cn+2 is an
almost free divisor based on the germ of free divisor Dϕ at ι(x0, t0) ∈ C× U
if there is a map i0 : ι−1(Dϕ) → Dϕ which is algebraically transverse to Dϕ

except at (x0, t0) such that ι−1(Dϕ) = i−1
0 (Dϕ).

In view of this definition, we get a criterion so that ι−1(Dϕ) be an almost
free divisor.

Proposition 4.3. The germ of hypersurface ι−1(Dϕ) at (x0, t0) ∈ C
n+2 is an

almost free divisor based on the germ of free divisor Dϕ at ι(x0, t0) ∈ C× U
if the following inequality holds at an isolated point (x0, t0) ∈ ι−1(Dϕ),

rank T (x0, t0) < ν, (4.4)

while at other points (x, t) 6= (x0, t0) in the neighbourhood of (x0, t0) , the
inequality rank T (x, t) ≥ ν holds.

As we shall see in the Example 5.1 below, it is quite difficult to verify that
the condition (4.4) is satisfied at an isolated point. We can give a sufficient
condition on the violation of algebraic transversality condition at an isolated
point as follows.

Proposition 4.4. Assume that (4.4) holds at the focal point (x0, t0). For a
mapping ι with rank dx,tι(x0, t0) = n + 1, if the following inequality (4.5)
is satisfied only for (ξ, τ) = (0, 0), (x0, t0)is an isolated algebraically non-
transverasal point.

T (x0, t0) + τ
∂T

∂t
(x0, t0) +

n
∑

j=1

ξj
∂T

∂xj
(x0, t0) < ν. (4.5)

The proof follows directly from the lower semi-continuous property of the
rank T (x, t).
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5 Examples

1. Wave propagation on the plane
Let us consider the following initial wave front on the plane Y := {(z, u) ∈

C2; az2+z4+u = 0}, z = i.e. F (z) = az2+z4 for some real non-zero constant
a. In this case our phase function has the following expression

Ψ(x, t, z) = (x1 + az2 + z4 + (x2 − z)(2az + 4z3))2 − t2(1 + (2az + 4z3)2),

= −t2 + x22 + 4ax1x2z + (−4a2t2 + 4a2x21 − 2ax2)z
2

(−4a2x1 + 8x1x2)z
3 + (a2 − 16at2 + 16ax21 − 6x2)z

4

−20ax1z
5 + (6a− 16t2 + 16x21)z

6 − 24x1z
7 + 9z8. (5.1)

It is easy to see that (x1, x2, t) = (0,− 1
2a
, 1
2a
) is a focal point with a singular

point (z, u) = (0, 0) and the Milnor number µ(0) = 3 (A3 singularity i.e. the
swallow tail) if a 6= 1 and µ(0) = 5 (A5 singularity) if a = 1,

Ψ(0,−
1

2a
,
1

2a
, z) = (−(1/a) + a2)z4 + (−(4/a2) + 6a)z6 + 9z8. (5.2)

The quotient ring (1.5) for this Ψ(0,− 1
2a
, 1
2a
, z) has dimension µ = 7.

Especially we can choose ei = zi−1, i = 1, · · · , 7 as the basis of (2.8). Now,
in view of (5.1) we introduce an additional deformation polynomial e8 = z7,
together with entries of the mapping ι (1.7),

s1 = −t2+x22, s2 = 4ax1x2, s3 = −4a2t2+4a2x21−2ax2, s4 = −4a2x1+8x1x2,

s5 = a2−16at2+16ax21−6x2, s6 = −20ax1, s7 = 6a−16t2+16x21, s8 = −24x1.
(5.3)

ϕ(z, s) = 9z8 +

8
∑

i=1

siz
i−1.

In this case, the constructible set U of the Assumption I,(i) coincides with
C7.

At the focal point (x, t) = (0,− 1
2a
, 1
2a
) the matrix ι∗(Σ)(0,− 1

2a
, 1
2a
) has

the following form with rank 5 if a 6= 1 and rank 3 if a = 1.















































0 0 0 0 (−1 + a3)/(2a) 0 −(1/a2) + (3a)/2 0

0 0 0 A1 0 A2 0 0

0 0 0 0 A1 0 A2 0

0 0 0 A3 0 A4 0 0

0 0 0 0 A3 0 A4 0

0 0 0 A5 0 A6 0 0

0 0 0 0 A5 0 A6 0

0 0 0 4(−1 + a3)/a 0 6(−(4/a2) + 6a) 0 72
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(5.4)

where A1 = −(2−5a3+3a6)
36a3

, A2 = −(4−6a3+3a6)
12a4

, A3 = −4+10a3−9a6+3a9

216a5
, A4 =

(−2+a3)2(−2+3a3)
72a6

, A5 = − (−2+a3)2(2−5a3+3a6)
1296a7

, A6 = −16−56a3+68a6−30a9+3a12

432a8
. We

see that A1 = A3 = A5 = 0 for a = 1.
Thus together with the data

dx,tι(0,−1/2a, 1/2a) (5.5)

=









0 −2 0 −(4/a)− 4a2 0 −20a 0 −24

0 −(1/a) 0 −2a 0 −6 0 0

−(1/a) 0 −4a 0 −16 0 −(16/a) 0









we conclude that rank T (0,− 1
2a
, 1
2a
) = 8 = ν if a 6= 1. Therefore after

Proposition 4.2, the germ of the big wave front BW defines a free divisor in
the neighbourhood of the focal point (0,−1/2a, 1/2a) for a 6= 1.

In the case a = 1, rank ι∗(Σ)(0,−1/2, 1/2) = rank ι∗(Σ̃)(0,−1/2, 1/2)+
1 = 3 and

rank T (0,−1/2, 1/2) = 6 < 8. (5.6)

That is to say the mapping ι is not algebraically transverse at the focal
point (0,−1/2, 1/2). Now we shall see that the focal point (0,−1/2, 1/2) is
an isolated point after the following reasoning.

At first we remark that (5.4), (5.5) entail the following relation.

spanC{v1(ι(0,−1/2, 1/2)), · · · , v8(ι(0,−1/2, 1/2))}

∩spanC{
∂ι

∂t
,
∂ι

∂x1
,
∂ι

∂x2
}(0,−1/2,1/2) = {0}.

This means that the integral variety germ of the vectof fields {v1(s), · · · ,
v8(s)}(i.e. the A5 singularity stratum of Dϕ,ι(0,−1/2,1/2)) and the image ι(C3,
(0, −1/2, 1/2)) intersect transversally (in the usual sense) at the point
ι(0,−1/2, 1/2). This does not ensure the isolation of the algebraic non-
transversality. We still need to show that no A4 singularity stratum on the
wave front is adjacent to the focal point.

First proof of the isolated property of the focal point
If Ψ(x, t, z) had a A4 singularity point in the neighbourhood of the focal

point (0,−1/2, 1/2) with A5 singularity, the rank of T (x, t) would be 7 (< 8)
there. At such a A4 singularity point, the condition of Proposition 4.3 is
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not satisfied. In this situation, the algebraic transversality would be violated
on a non-discrete set adjacent to the focal point. If we show that the A4

singularity stratum of Dϕ is not contained in the image ι( C3, (0, −1/2, 1/2)
) \ ι(0,−1/2, 1/2) ⊂ C × U , it would mean that no A4 singularity appears
on the wave front. Consequently it proves that rankT (x, t) ≥ 8 for every
(x, t) 6= (0,−1/2, 1/2).

A deformation of the polynomial (5.2) with Ak (k ≥ 4) singularity near
the origin can be given by

(z + w1)
5(q1 + q2z + q3z

2 + 9z3),

for (w1, q1, q2, q3) ≈ (0, 0, 2, 0). In other words, the union of Ak singularity
(k ≥ 4) strata in C× U has the following 4-parameter representation,

(s1, · · · , s8) =

(q1w
5
1, 5q1w

4
1+q2w

5
1, 10q1w

3
1+5q2w

4
1+q3w

5
1, 10q1w

2
1+10q2w

3
1+5q3w

4
1+9w5

1, 5q1w1+

10q2w
2
1+10q3w

3
1+45w4

1 , q1+5q2w1+10q3w
2
1+90w3

1 , q2+5q3w1+90w2
1 , q3+45w1).

Four vectors below span the tangent to this union set at the point (w1, q1,
q2, q3) = (0, 0, 2, 0),

(0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1),

(0, 0, 0, 0, 0, 10, 0, 45).

This three dimensional tangent space and spanC{
∂ι
∂t
, ∂ι
∂x1
, ∂ι
∂x2

}(0,−1/2,1/2) have
a common vector subspace {0}. This yields that the union of Ak singu-
larity (k ≥ 4) strata and ι(C3, (0,−1/2, 1/2)) intersect only at the point
ι(0,−1/2, 1/2). Hence Ak (k ≥ 4) does not appear in ι(C3, (0,−1/2, 1/2)) \
ι( 0, −1/2, 1/2 ).

Second proof of the isolated property of the focal point
We verify the isolated algebraically non-transversal property at (0, −1/2,

1/2) by means of Proposition 4.4. In this case the LHS of (4.5) becomes

T (0,−
1

2
,
1

2
) + τ

∂T

∂t
(0,−

1

2
,
1

2
) + ξ1

∂T

∂x1
(0,−

1

2
,
1

2
) + ξ2

∂T

∂x2
(0,−

1

2
,
1

2
), (5.6)

Among the above matrices T (0,−1
2
, 1
2
)is already given by (5.4), (5.5). Other

derivatives are calculated as follows,
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∂T

∂t
(0,−1/2, 1/2) =



































































−1 0 −3 0 −8 0 −4 0

0 0 0 −(23/9) 0 −(20/3) 0 0

0 0 −(17/18) 0 −(23/9) 0 −(20/3) 0

0 −(1/108) 0 −(55/54) 0 −(14/9) 0 0

0 0 −(1/108) 0 −(55/54) 0 −(14/9) 0

0 1/648 0 1/324 0 −(20/27) 0 0

0 0 1/648 0 1/324 0 −(20/27) 0

0 −8 0 −64 0 −96 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

−2 0 −8 0 −32 0 −32 0



































































∂T

∂x1
(0,−1/2, 1/2) =



































































0 −(7/4) 0 −5 0 −7 0 0

0 0 0 0 −(155/36) 0 −(35/6) 0

0 1/72 0 −(19/12) 0 −(10/3) 0 0

−(1/432) 0 −(1/72) 0 −(367/216) 0 −(127/36) 0

0 −(1/432) 0 −(1/72) 0 −(10/9) 0 0

1/2592 0 1/432 0 7/1296 0 −(233/216) 0

0 1/2592 0 1/432 0 5/27 0 0

−2 −4 −12 −24 0 0 0 0

0 0 8 0 32 0 32 0

0 4 0 8 0 0 0 0

0 0 0 0 0 0 0 0



































































∂T

∂x2
(0,−1/2, 1/2) =











































































−1 0 −(3/2) 0 −3 0 0 0

0 0 0 −(4/3) 0 −3 0 0

0 0 −(35/36) 0 −(4/3) 0 −3 0

0 −(1/216) 0 −1 0 −(5/6) 0 0

0 0 −(1/216) 0 −1 0 −(5/6) 0

0 1/1296 0 0 0 −(31/36) 0 0

0 0 1/1296 0 0 0 −(31/36) 0

0 −8 −12 −64 −100 −96 −168 0

0 4 0 8 0 0 0 0

2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
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t=1/2, real wave fronts
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t=0.55, ℑz= 1/4
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Figures showing successive degeneration of wave fronts. The first two
figures show real wave fronts at the moments t = 2/3, 1/2.

The following three figures show real sections of the complex wave fronts
at the moments t = 0.55, 0.53, 0.501 that started from the initial front with
corresponding to fixed ℑz values. One can verify that in the neighbourhood
of a A3 focal point no trefoil shaped figure appears. The wave front remains
to be more or less a parabola shape figure.
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Now we shall show that 8× 11 matrix of (5.6) attains the maximal rank
8 except at (C3, 0) ∋ (ξ1, ξ2, τ) = (0, 0, 0). For this purpose, we select 8 × 8
minors without a common factor vanishing at (ξ1, ξ2, τ) = (0, 0, 0). Here
[i, j, k, ...] stands for a 8 × 8 minor corresponding to the i, j, k, ...-th rows of
(5.6).

[2, 3, 4, 5, 6, 9, 10, 11] = −(1/629856)(1 + 2τ)(−26375ξ41 + 2736000ξ61 + ... −

7587840ξ2τ
5)

[1, 2, 3, 4, 7, 9, 10, 11] = −(1/1259712)ξ1(1 + 2τ)(76350ξ21 − 164788000ξ41 + ... +

1221525504τ5)

[2, 3, 4, 7, 8, 9, 10, 11] = (1/104976)(1 + 2τ)(−22905ξ21 + ...+ 32102400τ6)

According to a calculation by SINGULAR [11], system of algebraic equa-
tions [2, 3, 4, 5, 6, 9, 10, 11] = [1, 2, 3, 4, 7, 9, 10, 11] = [2, 3, 4, 7, 8, 9, 10, 11] = 0
has (ξ1, ξ2, τ) = (0, 0, 0) as an isolated solution with multiplicity 12. This
means that the sufficient condition of Proposition 4.4 is satisfied. This means
that (0,−1/2, 1/2) is an isolated point on BW ⊂ ι−1(Dϕ) with the property
(5.6). Upshot is the almost freeness of the big wave front germ at the focal
point after Proposition 4.3.

In summary we gave two proofs to the statement.

Proposition 5.1. The germ of the big wave front BW at the focal point
(x1, x2, t) = (0,−1/2a, 1/2a) defines a free divisor if a 6= 1. If a = 1 it defines
an almost free divisor germ at the focal point (x1, x2, t) = (0,−1/2, 1/2).

2. Wave propagation in the 3 dimensional space
Now we consider the following initial wave front in the 3−dimensional

space, Y := {(z, u) ∈ C2 : −1
2
(k1z

2
1 + k2z

2
2) + u = 0}, i.e. F (z) = −1

2
(k1z

2
1 +

k2z
2
2) for 0 < k1 < k2. In this case our phase function has the following

expression

Ψ(x, t, z) = (−x3+k1x1z1+k2x2z2−1/2(k1z
2
1 +k2z

2
2))

2− t2(1+k21z
2
1 +k

2
2z

2
2),

= −t2 + x23 − k21x1z
3
1 + (k21z

4
1)/4− 2k2x3(x2 − z2)z2

−k22t
2z22 − k2x3z

2
2 + k22(x2 − z2)

2z22 + k22(x2 − z2)z
3
2 + (k22z

4
2)/4

+z21(−k
2
1t

2 + k21x
2
1 + k1x3 − k1k2(x2 − z2)z2 − 1/2k1k2z

2
2)

+z1(−2k1x1x3 + 2k1k2x1(x2 − z2)z2 + k1k2x1z
2
2) (5.7)

It is easy to see that the point (x1, x2, x3, t) = (0, 0, 1/k1, 1/k1) is a focal
point with a singular point (z, u) = (0, 0) and the Milnor number µ(0) = 3.
We have the following tame polynomial,

Ψ(0, 0, 1/k1, 1/k1, z) = (k41z
4
1 + 4k1k2z

2
2 − 4k22z

2
2 + 2k31k2z

2
1z

2
2 + k21k

2
2z

4
2)/4k

2
1.
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As a matter of fact, the polynomial Ψ(0, 0, 1/k1, 1/k1, z) satisfies the criterion
on the presence of A3 singularity at the origin mentioned in [12], Theorem
2.2, (2). The situation is the same at another focal point (x1, x2, x3, t) =
(0, 0, 1/k2, 1/k2). The quotient ring (1.5) for this Ψ(0, 0, 1/k1, 1/k1, z) has
dimension µ = 5.

We can choose

{e1, e2, e3, e4, e5} = {1, z1, z
2
1 , z2, z

2
2}

as the basis (2.8). In view of (5.7), we introduce additional deformation mono-
mials e6 = z1 ∗ z2,e7 = z32 , e8 = z31 , e9 = z21 ∗ z2, e10 = z1 ∗ z

2
2 together with

the entries of the mapping ι,

s1 = −t2 + x23, s2 = −2k1x1x3, s3 = −k21t
2 + k21x

2
1 + k1x3, s4 = −2k2x2x3

s5 = −k22t
2 + k22x

2
2 + k2x3, s6 = 2k1k2x1x2

s7 = −k22x2, s8 = −k21x1, s9 = −k1k2x2, s10 = −k1k2x1.

By direct calculation with the aid of SINGULAR [11], we can verify

dimC

C[z]

dz(Ψ(0, 0, 1/k1, 1/k1, z) +
∑6

i=1 siei)C[z]
= 5,

while

dimC

C[z]

dz(Ψ(0, 0, 1/k1, 1/k1, z) +
∑6

i=1 siei + sjej)C[z]
= 7,

for j = 7, 8, 9, 10. If s ∈ C10 satisfies the condition

s7 ∗ z2
3+ s8 ∗ z

3
1 + s9 ∗ z

2
1 ∗ z2+ s10 ∗ z1 ∗ z

2
2 = (αz1+βz2)(k1z

2
1 + k2z

2
2), (5.8)

for some (α, β) ∈ C2, ϕ(z, s) has the same singularity at the infinity (A1+A1)
for every such s. In fact our Ψ(x, t, z) is exactly of this form with (α, β) =
(−k1x1,−k2x2). This means that for s ∈ C10 under the condition (5.8), the
global total Milnor number µ is equal to 5.

Additionally we remark here that for Ψ(0, 0, 1/k1, 1/k1, z) +
∑6

i=1 siei +
sjej ,j = 7, 8, 9, 10 the jump (= 2) of Milnor number infinity takes place as
sj → 0. This illustrates the upper semi-continuity of the Milnor number at
infinity.

In summary, we can choose a constructible set

U = {s′ ∈ C
9; k1s7 − k2s9 = 0, k1s10 − k2s8 = 0}
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with dimension 7 for which Lemma 2.1 applies. This implies that the As-
sumption I,(i) is satisfied with ν = 8.

The above discussion proves that the image of the mapping ι(C4) ⊂ C
10

is contained in a constructible set C×U where the value of the matrix Σ(s)
is well-defined at each point s ∈ C× U . Therefore

dimC

C[z]

dz(Ψ(x, t, z))C[z]
= 5,

for every (x, t) ∈ C4. This means that the Assumption I,(ii) is satisfied.
At the focal point (x1, x2, x3, t) = (0, 0, 1/k1, 1/k1) the matrix ι∗(Σ) has

the following form with rank 3





































0 0 0 0 −k2(k1 − k2)/2k
2
1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 (k1 − k2)
2/k41 0 0 0 0

0 0 0 0 (k1 − k2)
2/k41 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 −1





































Together with the data

dx,tι(0, 0, 1/k1, 1/k1) =















0 −2 0 0 0 0 0 −k21 0 −k1k2

0 0 0 −2k2/k1 0 0 −k22 0 −k1k2 0

2/k1 0 k1 0 k2 0 0 0 0 0

−2/k1 0 −2k1 0 −2k22/k1 0 0 0 0 0















we see that the rank T (0, 0, 1/k1, 1/k1) = 8 ≥ ν = 8. By virtue of the
Proposition 4.3, we have the following.

Proposition 5.2. The wave front contained in the discriminantal loci of
(5.7) defines a free divisor germ in the neighbourhood of the focal point
(0, 0, 1/k1, 1/k1).
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