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Abstract

We prove rates of convergence in the statistical sense for kernel-based least squares
regression using a conjugate gradient algorithm, where regularization against overfit-
ting is obtained by early stopping. This method is directly related to Kernel Partial
Least Squares, a regression method that combines supervised dimensionality reduction
with least squares projection. The rates depend on two key quantities: first, on the
regularity of the target regression function and second, on the intrinsic dimensionality
of the data mapped into the kernel space. Lower bounds on attainable rates depend-
ing on these two quantities were established in earlier literature, and we obtain upper
bounds for the considered method that match these lower bounds (up to a log factor)
if the true regression function belongs to the reproducing kernel Hilbert space. If this
assumption is not fulfilled, we obtain similar convergence rates provided additional
unlabeled data are available. The order of the learning rates match state-of-the-art
results that were recently obtained for least squares support vector machines and for
linear regularization operators.

1 Introduction

The contribution of this paper is the learning theoretical analysis of kernel-based least
squares regression in combination with conjugate gradient techniques. The goal is to esti-
mate a regression function f ∗ based on random noisy observations. We have an i.i.d. sample
of n observations (Xi, Yi) ∈ X × R from an unknown distribution P (X, Y ) that follows the
model

Y = f ∗(X) + ε ,
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where ε is a noise variable whose distribution can possibly depend on X , but satisfies
E [ε|X ] = 0. We assume that the true regression function f ∗ belongs to the space L2(PX)
of square-integrable functions. Following the kernelization principle, we implicitly map the
data into a reproducing kernel Hilbert space H with a kernel k. We denote by Kn =
1
n
(k(Xi, Xj)) ∈ R

n×n the normalized kernel matrix and by Y = (Y1, . . . , Yn)
⊤ ∈ R

n the
n-vector of response observations. The task is to find coefficients α such that the function
defined by the normalized kernel expansion

fα(X) =
1

n

n∑

i=1

αik(Xi, X)

is an adequate estimator of the true regression function f ∗. The closeness of the estimator
fα to the target f ∗ is measured via the L2(PX) distance,

‖fα − f ∗‖22 = EX∼PX

[
(fα(X)− f ∗(X))2

]

= EXY

[
(fα(X)− Y )2

]
− EXY

[
(f ∗(X)− Y )2

]
,

The last equality recalls that this criterion is the same as the excess generalization error for
the squared error loss ℓ(f, x, y) = (f(x)− y)2.

In empirical risk minimization, we use the training data empirical distribution as a proxy
for the generating distribution, and minimize the training squared error. This gives rise to
the linear equation

Knα = Y with α ∈ R
n . (1)

Assuming Kn invertible, the solution of the above equation is given by α = K−1
n Y, which

yields a function in H interpolating perfectly the training data but having poor generaliza-
tion error. It is well-known that to avoid overfitting, some form of regularization is needed.
There is a considerable variety of possible approaches (see e.g. [12] for an overview). Perhaps
the most well-known one is

α = (Kn + λI)−1Y, (2)

known alternatively as kernel ridge regression, least squares support vector machine, or
Tikhonov’s regularization. A powerful generalization of this is to consider

α = Fλ(Kn)Y, (3)

where Fλ : R+ → R+ is a fixed function depending on a parameter λ. The notation Fλ(Kn)
is to be interpreted as Fλ applied to each eigenvalue of Kn in its eigen decomposition.
Intuitively, Fλ should be a “regularized” version of the inverse function F (x) = x−1. This
type of regularization, which we refer to as linear regularization methods, is directly inspired
from the theory of inverse problems. Popular examples include as particular cases kernel
Ridge Regression, Principal components regression and L2-Boosting. Their application in
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a learning context has been studied extensively [2, 3, 6, 7, 14]. Results obtained in this
framework will serve as a comparison yardstick in the sequel.

In this paper, we study conjugate gradient (CG) techniques in combination with early
stopping for the regularization of the kernel based learning problem (1). The principle of CG
techniques is to restrict the learning problem onto a nested set of data-dependent subspaces,
the so-called Krylov subspaces, defined as

Km(Y, Kn) = span
{
Y, KnY, . . . , Km−1

n Y
}
. (4)

Denote by 〈., .〉 the usual euclidean scalar product on R
n rescaled by the factor n−1. We

define the Kn-norm as ‖α‖2Kn
= 〈α,Knα〉 . The CG solution after m iterations is formally

defined as
αm = arg min

α∈Km(Y,Kn)
‖Y −Knα‖Kn

; (5)

and the number m of CG iterations is the model parameter. To simplify notation we define
fm := fαm

. In the learning context considered here, regularization corresponds to early
stopping. Conjugate gradients have the appealing property that the optimization criterion
(5) can be computed by a simple iterative algorithm that constructs basis vectors d1, . . . , dm
of Km(Y, Kn) by using only forward multiplication of vectors by the matrix Kn. Algorithm
1 displays the computation of the CG kernel coefficients αm defined by (5).

Algorithm 1 Kernel Conjugate Gradient regression

Input kernel matrix Kn, response vector Y, maximum number of iterations m
Initialization: α0 = 0n; r1 = Y; d1 = Y
for i = 1, . . . , m do
di = di/‖Kndi‖Kn

(normalization of the basis vector)
γi = 〈Y, Kndi〉Kn

(step size)
αi = αi−1 + γidi (update)
ri+1 = ri −Knγidi (residuals)
di+1 = ri+1 − 〈Kndi, ri+1〉Kn

/‖ri+1‖2Kn
(new basis vector)

end for
Return: CG kernel coefficients αm, CG function fm =

∑n
i=1 αi,mk(Xi, ·)

The CG approach is also inspired by the theory of inverse problems, but it is not covered
by the framework of linear operators defined in (3): As we restrict the learning problem
onto the Krylov space Km(Y, Kn) , the CG coefficients αm are of the form αm = qm(Kn)Y
with qm a polynomial of degree ≤ m − 1. However, the polynomial qm is not fixed but
depends on Y as well, making the CG method nonlinear in the sense that the coefficients
αm depend on Y in a nonlinear fashion.

We remark that in machine learning, conjugate gradient techniques are often used as
fast solvers for operator equations, e.g. to obtain the solution for the regularized equation
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(2). We stress that in this paper, we study conjugate gradients as a regularization approach
for kernel based learning, where the regularity is ensured via early stopping. This approach
is not new. As mentioned in the abstract, the algorithm that we study is closely related
to Kernel Partial Least Squares [21]. The latter method also restricts the learning problem
onto the Krylov subspace Km(Y, Kn), but it minimizes the euclidean distance ‖Y −Knα‖
instead of the distance ‖Y−Knα‖Kn

defined above1. Kernel Partial Least Squares has shown
competitive performance in benchmark experiences (see e.g [21, 22]). Moreover, a similar
conjugate gradient approach for non-definite kernels has been proposed and empirically
evaluated by Ong et al [19]. The focus of the current paper is therefore not to stress the
usefulness of CG methods in practical applications (and we refer to the above mentioned
references) but to examine its theoretical convergence properties. In particular, we establish
the existence of early stopping rules that lead to optimal convergence rates. We summarize
our main results in the next session.

2 Main results

For the presentation of our convergence results, we require suitable assumptions on the
learning problem. We first assume that the kernel space H is separable and that the kernel
function is measurable. (This assumption is satisfied for all practical situations that we
know of.) Furthermore, for all results, we make the (relatively standard) assumption that
the kernel is bounded:

k(x, x) ≤ κ for all x ∈ X . (6)

We consider – depending on the result – one of the following assumptions on the noise:

(Bounded) (Bounded Y ): |Y | ≤ M almost surely.

(Bernstein) (Bernstein condition): E [εp|X ] ≤ (1/2)p!Mp almost surely, for all integers
p ≥ 2.

The second assumption is weaker than the first. In particular, the first assumption implies
that not only the noise, but also the target function f ∗ is bounded in supremum norm, while
the second assumption does not put any additional restriction on the target function.

The regularity of the target function f ∗ is measured in terms of a source condition as
follows. The kernel integral operator is given by

K : L2(PX) → L2(PX), g 7→
∫

k(., x)g(x)dP (x) .

The source condition for the parameter r ≥ 0 is defined by:

SC(r) : f ∗ = Kru with ‖u‖ ≤ κ−rρ.

1This is generalized to a CG-l algorithm (l ∈ N≥0) by replacing the Kn-norm in (5) with the norm
defined by K

l
n. Corresponding fast iterative algorithms to compute the solution exist for all l (see e.g. [13]).
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It is a known fact (see, e.g., [10]) that if r ≥ 1/2, then f ∗ coincides almost surely with a
function belonging to Hk. Therefore, we refer to r ≥ 1/2 as the “inner case” and to r < 1/2
as the “outer case”.

The regularity of the kernel operator K with respect to the marginal distribution PX is
measured in terms of the intrinsic dimensionality parameter, defined by the condition

ID(s) : tr(K(K + λI)−1) ≤ D2(κ−1λ)−s for all λ ∈ (0, 1].

It is known that the best attainable rates of convergence, as a function of the number of
examples n, is determined by the parameters r and s. It was shown in [11] that the minimax
learning rate given these two parameters is lower bounded by O(n−2r/(2r+s)).

We now expose our main results in different situations. In all the cases considered, the
early stopping rule takes the form of a so-called discrepancy stopping rule: For some
sequence of thresholds Λm to be specified (and possibly depending on the data), define the
(data-dependent) stopping iteration m̂ as the first iteration m for which

∥∥∥(fm(X1), . . . , fm(Xn))
⊤ −Y

∥∥∥
Kn

< Λm . (7)

(Only in the first result below, the threshold Λm actually depends on the iteration m and
on the data.)

2.1 Inner case without knowledge on intrinsic dimension

The inner case corresponds to r ≥ 1/2, i.e. the target function f ∗ lies in H almost surely.
For some constants τ > 1 and 1 > γ > 0, we consider the discrepancy stopping rule with
the threshold sequence

Λm = 4τ

√
κ log(2γ−1)

n

(√
κ ‖αm‖Kn

+M
√

log(2γ−1)
)
. (8)

For technical reasons, we consider a slight variation of the rule in that we stop at step m̂−1
instead of m̂ if qm̂(0) ≥ 4κ

√
log(2γ−1)/n, where qm is the iteration polynomial such that

αm = qm(Kn)Y. Denote m̃ the resulting stopping step. We obtain the following result.

Theorem 2.1. Suppose that Y is bounded (Bounded), and that the source condition SC(r)
holds for r ≥ 1/2. With probability 1 − 2γ , the estimator fm̃ obtained by the (modified)
discrepancy stopping rule (8) satisfies

‖fm̃ − f ∗‖22 ≤ c(r, τ)(M + ρ)2
(
log2 γ−1

n

) 2r
2r+1

.

We present the proof in Section 4.
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2.2 Optimal rates in inner case

We now introduce a stopping rule yielding order-optimal convergence rates as a function of
the two parameters r and s in the “inner” case (r ≥ 1/2, which is equivalent to saying that
the target function belongs to H almost surely). For some constant τ ′ > 3/2 and 1 > γ > 0,
we consider the discrepancy stopping rule with the fixed threshold

Λm ≡ Λ = τ ′M
√
κ

(
4D√
n
log

6

γ

) 2r+1
2r+s

. (9)

for which we obtain the following:

Theorem 2.2. Suppose that the noise fulfills the Bernstein assumption (Bernstein), that
the source condition SC(r) holds for r ≥ 1/2, and that ID(s) holds. With probability 1−3γ ,
the estimator fm̂ obtained by the discrepancy stopping rule (9) satisfies

‖fm̂ − f ∗‖22 ≤ c(r, τ ′)(M + ρ)2
(
16D2

n
log2

6

γ

) 2r
2r+s

.

Due to space limitations, the proof is presented in the supplementary material.

2.3 Optimal rates in outer case, given additional unlabeled data

We now turn to the “outer” case. In this case, we make the additional assumption that un-
labeled data is available. Assume that we have ñ i.i.d. observations X1, . . . , Xñ, out of which
only the first n are labeled. We define a new response vector Ỹ = ñ

n
(Y1, . . . , Yn, 0, . . . , 0) ∈

R
ñ and run the CG algorithm 1 on X1, . . . , Xñ and Ỹ. We use the same threshold (9)

as in the previous section for the stopping rule, except that the factor M is replaced by
max(M, ρ).

Theorem 2.3. Suppose assumptions (Bounded), SC(r) and ID(s), with r + s ≥ 1
2
.

Assume unlabeled data is available with

ñ

n
≥
(
16D2

n
log2

6

γ

)− (1−2r)+
2r+s

.

Then with probability 1 − 3γ , the estimator fm̂ obtained by the discrepancy stopping rule
defined above satisfies

‖fm̂ − f ∗‖22 ≤ c(r, τ ′)(M + ρ)2
(
16D2

n
log2

6

γ

) 2r
2r+s

.

A sketch of the proof can be found in the supplementary material.
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3 Discussion and comparison to other results

For the inner case – i.e. f ∗ ∈ H almost surely – we provide two different consistent stopping
criteria. The first one (Section 2.1) is oblivious to the intrinsic dimension parameter s, and
the obtained bound corresponds to the “worst case” with respect to this parameter (that is,
s = 1). However, an interesting feature of stopping rule (8) is that the rule itself does not
depend on the a priori knowledge of the regularity parameter r, while the achieved learning
rate does (and with the optimal dependence in r when s = 1). Hence, Theorem 2.1 implies
that the obtained rule is automatically adaptive with respect to the regularity of the target
function. This contrasts with the results obtained in [2] for linear regularization schemes of
the form (3), (also in the case s = 1) for which the choice of the regularization parameter λ
leading to optimal learning rates required the knowledge or r beforehand.

When taking into account also the intrinsic dimensionality parameter s, Theorem 2.2
provides the order-optimal convergence rate in the inner case (up to a log factor). A notice-
able difference to Theorem 2.1 however, is that the stopping rule is no longer adaptive, that
is, it depends on the a priori knowledge of parameters r and s. We observe that previously
obtained results for linear regularization schemes of the form (2) in [7] and of the form (3) in
[6], also rely on the a priori knowledge of r and s to determine the appropriate regularization
parameter λ.

The outer case – when the target function does not lie in the reproducing Kernel Hilbert
space H – is more challenging and to some extent less well understood. The fact that
additional assumptions are made is not a particular artefact of CG methods, but also ap-
pears in the studies of other regularization techniques. Here we follow the semi-supervised
approach that is proposed in e.g. [6] (to study linear regularization of the form (3)) and
assume that we have sufficient additional unlabeled data in order to ensure learning rates
that are optimal as a function of the number of labeled data. We remark that other forms
of additional requirements can be found in the recent literature in order to reach optimal
rates. For regularized M-estimation schemes studied in [23], availability of unlabeled data
is not required, but a condition is imposed of the form ‖f‖∞ ≤ C ‖f‖pH ‖f‖1−p

2 for all f ∈ H
and some p ∈ (0, 1]. In [15], assumptions on the supremum norm of the eigenfunctions of
the kernel integral operator are made (see [23] for an in-depth discussion on this type of
assumptions).

Finally, as explained in the introduction, the term ’conjugate gradients’ comprises a
class of methods that approximate the solution of linear equations on Krylov subspaces.
In the context of learning, our approach is most closely linked to Partial Least Squares
(PLS) [24] and its kernel extension [21]. While PLS has proven to be successful in a wide
range of applications and is considered one of the standard approaches in chemometrics,
there are only few studies of its theoretical properties. In [9, 16], consistency properties
are provided for linear PLS under the assumption that the target function f ∗ depends
on a finite known number of orthogonal latent components. These findings were recently
extended to the nonlinear case and without the assumption of a latent components model
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[4], but all results come without optimal rates of convergence. For the slightly different CG
approach studied by Ong et al [19], bounds on the difference between the empirical risks of
the CG approximation and of the target function are derived in [18], but no bounds on the
generalization error were derived.

4 Proofs

Convergence rates for regularization methods of the type (2) or (3) have been studied by
casting kernel learning methods into the framework of inverse problems (see [11]). We use
this framework for the present results as well, and recapitulate here some important facts.

We first define the empirical evaluation operator Tn as follows:

Tn : g ∈ H 7→ Tng := (g(X1), . . . , g(Xn))
⊤ ∈ R

n

and the empirical integral operator T ∗
n as:

T ∗
n : u = (u1, . . . , un) ∈ R

n 7→ T ∗
nu :=

1

n

n∑

i=1

uik(Xi, ·) ∈ H.

Using the reproducing property of the kernel, it can be readily checked that Tn and T ∗
n are

adjoint operators, i.e. they satisfy 〈T ∗
nu, g〉H = 〈u, Tng〉, for all u ∈ R

n, g ∈ H . Furthermore,
Kn = TnT

∗
n , and therefore ‖α‖Kn

= ‖fα‖H. Based on these facts, equation (5) can be
rewritten as

fm = arg min
f∈Km(T ∗

nY,Sn)
‖T ∗

nY − Snf‖H , (10)

where Sn = T ∗
nTn is a self-adjoint operator of H, called empirical covariance operator. This

definition corresponds to that of the “usual” conjugate gradient algorithm formally applied
to the so-called normal equation (in H)

Snfα = T ∗
nY ,

which is obtained from (1) by left multiplication by T ∗
n . The advantage of this reformulation

is that it can be interpreted as a “perturbation” of a population, noiseless version (of the
equation and of the algorithm), wherein Y is replaced by the target function f ∗ and the
empirical operator T ∗

n , Tn are respectively replaced by their population analogues, the kernel
integral operator

T ∗ : g ∈ L2(PX) 7→ T ∗g :=

∫
k(., x)g(x)dPX(x) = E [k(X, ·)g(X)] ∈ H ,

and the change-of-space operator

T : g ∈ H 7→ g ∈ L2(PX) .
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The latter maps a function to itself but between two Hilbert spaces which differ with respect
to their geometry – the inner product of H being defined by the kernel function k, while the
inner product of L2(PX) depends on the data generating distribution (this operator is well
defined: since the kernel is bounded, all functions in H are bounded and therefore square
integrable under any distribution PX).

The following results, taken from [2] (Propositions 21 and 22) quantify more precisely
that the empirical covariance operator Sn = T ∗

nTn and the empirical integral operator applied
to the data, T ∗

nY, are close to the population covariance operator S = T ∗T and to the kernel
integral operator applied to the noiseless target function, T ∗f ∗ respectively.

Proposition 4.1. Provided that condition (6) is true, the following holds:

P

[
‖Sn − S‖HS ≤ 4κ√

n

√
log

2

γ

]
≥ 1− γ , (11)

where ‖.‖HS denotes the Hilbert-Schmidt norm. If the representation f ∗ = Tf ∗
H holds, and

under assumption (Bernstein), we have the following:

P

[
‖T ∗

nY − Sf ∗
H‖ ≤ 4M

√
κ√

n
log

2

γ

]
≥ 1− γ . (12)

We note that f ∗ = Tf ∗
H implies that the target function f ∗ coincides with a function f ∗

H
belonging to H (remember that T is just the change-of-space operator). Hence, the second
result (12) is valid for the case with r ≥ 1/2, but it is not true in general for r < 1/2 .

4.1 Nemirovskii’s result on conjugate gradient regularization rates

We recall a sharp result due to Nemirovskii [17] establishing convergence rates for conjugate
gradient methods in a deterministic context. We present the result in an abstract context,
then show how, combined with the previous section, it leads to a proof of Theorem 2.1.
Consider the linear equation

Az∗ = b ,

where A is a bounded linear operator over a Hilbert space H . Assume that the above
equation has a solution and denote z∗ its minimal norm solution; assume further that a
self-adjoint operator Ā, and an element b̄ ∈ H are known such that

∥∥A− Ā
∥∥ ≤ δ ;

∥∥b− b̄
∥∥ ≤ ε , (13)

(with δ and ε known positive numbers). Consider the CG algorithm based on the noisy
operator Ā and data b̄, giving the output at step m

zm = ArgMin
z∈Km(Ā,b̄)

∥∥Āz − b̄
∥∥2 . (14)
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The discrepancy principle stopping rule is defined as follows. Consider a fixed constant
τ > 1 and define

m̄ = min
{
m ≥ 0 :

∥∥Āzm − b̄
∥∥ < τ(δ ‖zm‖+ ε)

}
.

We output the solution obtained at step max(0, m̄ − 1) . Consider a minor variation of of
this rule:

m̂ =

{
m̄ if qm̄(0) < ηδ−1

max(0, m̄− 1) otherwise,

where qm̄ is the degree m − 1 polynomial such that zm̄ = qm̄(Ā)b̄ , and η is an arbitrary
positive constant such that η < 1/τ . Nemirovskii established the following theorem:

Theorem 4.2. Assume that (a) max(‖A‖ ,
∥∥Ā
∥∥) ≤ L; and that (b) z∗ = Aµu∗ with ‖u∗‖ ≤

R for some µ > 0. Then for any θ ∈ [0, 1] , provided that m̂ < ∞ it holds that

∥∥Aθ (zm̂ − z∗)
∥∥2 ≤ c(µ, τ, η)R

2(1−θ)
1+µ (ε+ δRLµ)2(θ+µ)/(1+µ) .

4.2 Proof of Theorem 2.1

We apply Nemirovskii’s result in our setting (assuming r ≥ 1
2
): By identifying the approxi-

mate operator and data as Ā = Sn and b̄ = T ∗
nY, we see that the CG algorithm considered

by Nemirovskii (14) is exactly (10), more precisely with the identification zm = fm.
For the population version, we identify A = S, and z∗ = f ∗

H (remember that provided
r ≥ 1

2
in the source condition, then there exists f ∗

H ∈ H such that f ∗ = Tf ∗
H).

Condition (a) of Nemirovskii’s theorem 4.2 is satisfied with L = κ by the boundedness of
the kernel. Condition (b) is satisfied with µ = r− 1/2 ≥ 0 and R = κ−rρ, as implied by the
source condition SC(r). Finally, the concentration result 4.1 ensures that the approximation

conditions (13) are satisfied with probability 1−2γ , more precisely with δ = 4κ√
n

√
log 2

γ
and

ε = 4M
√
κ√

n
log 2

γ
. (Here we replaced γ in (11) and (12) by γ/2, so that the two conditions

are satisfied simultaneously, by the union bound). The operator norm is upper bounded
by the Hilbert-Schmidt norm, so that the deviation inequality for the operators is actually
stronger than what is needed.

We consider the discrepancy principle stopping rule associated to these parameters, the
choice η = 1/(2τ), and θ = 1

2
, thus obtaining the result, since

∥∥∥A 1
2 (zm̂ − z∗)

∥∥∥
2

=
∥∥∥S 1

2 (fm̂ − f ∗
H)
∥∥∥
2

H
= ‖fm̂ − f ∗

H‖22 .
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4.3 Notes on the proof of Theorems 2.2 and 2.3

The above proof shows that an application of Nemirovskii’s fundamental result for CG
regularization of inverse problems under deterministic noise (on the data and the operator)
allows us to obtain our first result. One key ingredient is the concentration property 4.1
which allows to bound deviations in a quasi-deterministic manner.

To prove the sharper results of Theorems 2.2 and 2.3, such a direct approach does not
work unfortunately, and a complete rework and extension of the proof is necessary. The proof
of Theorem 2.2 is presented in the supplementary material to the paper. In a nutshell, the
concentration result 4.1 is too coarse to prove the optimal rates of convergence taking into
account the intrinsic dimension parameter. Instead of that result, we have to consider the

deviations from the mean in a “warped” norm, i.e. of the form
∥∥∥(S + λI)−

1
2 (T ∗

nY − T ∗f ∗)
∥∥∥

for the data, and
∥∥∥(S + λI)−

1
2 (Sn − S)

∥∥∥
HS

for the operator (with an appropriate choice of

λ > 0) respectively. Deviations of this form were introduced and used in [6, 7] to obtain
sharp rates in the framework of Tikhonov’s regularization (2) and of the more general linear
regularization schemes of the form (3). Bounds on deviations of this form can be obtained
via a Bernstein-type concentration inequality for Hilbert-space valued random variables.

On the one hand, the results concerning linear regularization schemes of the form (3)
do not apply to the nonlinear CG regularization. On the other hand, Nemirovskii’s result
does not apply to deviations controlled in the warped norm. Moreover, the “outer” case
introduces additional technical difficulties. Therefore, the proofs for Theorems 2.2 and 2.3,
while still following the overall fundamental structure and ideas introduced by Nemirovskii,
are significantly different in that context. As mentioned above, we present the complete
proof of Theorem 2.2 in the supplementary material and a sketch of the proof of Theorem
2.3.

5 Conclusion

In this work, we derived early stopping rules for kernel Conjugate Gradient regression that
provide optimal learning rates to the true target function. Depending on the situation that
we study, the rates are adaptive with respect to the regularity of the target function in some
cases. The proofs of our results rely most importantly on ideas introduced by Nemirovskii
[17] and further developed by Hanke [13] for CG methods in the deterministic case, and
moreover on ideas inspired by [6, 7].

Certainly, in practice, as for a large majority of learning algorithms, cross-validation
remains the standard approach for model selection. The motivation of this work is however
mainly theoretical, and our overall goal is to show that from the learning theoretical point
of view, CG regularization stands on equal footing with other well-studied regularization
methods such as kernel ridge regression or more general linear regularization methods (which
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includes between many others L2 boosting). We also note that theoretically well-grounded
model selection rules can generally help cross-validation in practice by providing a well-
calibrated parametrization of regularizer functions, or, as is the case here, of thresholds
used in the stopping rule.

One crucial property used in the proofs is that the proposed CG regularization schemes
can be conveniently cast in the reproducing kernel Hilbert space H as displayed in e.g (10).
This reformulation is not possible for Kernel Partial Least Squares: It is also a CG type
method, but uses the standard Euclidean norm instead of theKn-norm used here. This point
is the main technical justification on why we focus on (5) rather than kernel PLS. Obtaining
optimal convergence rates also valid for Kernel PLS is an important future direction and
should build on the present work.

Another important direction for future efforts is the derivation of stopping rules that
do not depend on the confidence parameter γ. Currently, this dependence prevents us to
go from convergence in high probability to convergence in expectation, which would be de-
sirable. Perhaps more importantly, it would be of interest to find a stopping rule that is
adaptive to both parameters r (target function regularity) and s (intrinsic dimension param-
eter) without their a priori knowledge. We recall that our first stopping rule is adaptive to r
but at the price of being worst-case in s. In the literature on linear regularization methods,
the optimal choice of regularization parameter is also non-adaptive, be it when considering
optimal rates with respect to r only [2] or to both r and s [6]. An approach to alleviate this
problem is to use a hold-out sample for model selection; this was studied theoretically in [8]
for linear regularization methods (see also [5] for an account of the properties of hold-out
in a general setup). We strongly believe that the hold-out method will yield theoretically
founded adaptive model selection for CG as well. However, hold-out is typically regarded
as inelegant in that it requires to throw away part of the data for estimation. It would be
of more interest to study model selection methods that are based on using the whole data
in the estimation phase. The application of Lepskii’s method is a possible step towards this
direction.
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A Supplementary Material

A.1 Notation

We follow the notation used in the main part, in particular the operators Tn, T
∗
n , T, T

∗

defined in Section 4.1, and we recall that Sn := T ∗
nTn; S = T ∗T ; Kn = TnT

∗
n ; and K = TT ∗.

We denote by (ξi)i≥1 the possibly finite sequence in [0, κ] of nonzero eigenvalues of S
and K , and by (ξj,n)1≤j≤n the n-sequence of eigenvalues of Sn and Kn respectively (in each
case in decreasing order and with multiplicity). Finally, (Fu)u≥0 denotes the spectral family
of the operator Sn , i.e. Fu is the orthogonal projector on the subspace of H spanned by
eigenvectors of Sn corresponding to eigenvalues strictly less than u.
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It is useful to consider the spectral integral representation: If (ei,n)1≤i≤n denotes the
orthogonal eigensystem of Sn associated to the non-zero eigenvalues (λi,n)1≤i≤n , for any
integrable function h on [0, κ], we set

∫ κ

0

h(u)d ‖Fu,nT
∗
nY‖2 := 〈T ∗

nY, h(Sn)T
∗
nY〉 =

n∑

i=1

h(λi,n) 〈T ∗
nY, ei,n〉2 .

By its definition, the output of the m-th iteration of the CG algorithm can be put under
the form fm = qm(Sn)T

∗
nY , where qm ∈ Pm−1 , the set of real polynomials of degree less

than m− 1 . A crucial role is played by the residual polynomial

pm(x) = 1− xqm(x) ∈ P0
m ,

where P0
m is the set of real polynomials of degree less than m and having constant term

equal to 1. In particular T ∗
nY − Snfm = pm(Sn)T

∗
nY. Furthermore, the definition of the

CG algorithm implies that the sequence (pm)m≥0 are orthogonal polynomials for the scalar
product [., .](1), where for i ≥ 0 we define

[p, q](i) :=
〈
p(Sn)T

∗
nY, Si

nq(Sn)T
∗
nY
〉
=

∫ κ

0

p(u)q(u)uid ‖Fu,nT
∗
nY‖2 .

This can be shown as follows: pm is the orthogonal projection, of the origin onto the affine
space P0

m = 1 + xPm−1 with the scalar product [., .](0), , where xPm−1 denotes (with some
abuse of notation) the set of polynomials of degree less thanm with constant coefficient equal
to zero. Thus 0 = [pm, xq](0) = [pm, q](1) for any q ∈ Pm−1 . From the theory of orthogonal
polynomials, it results that for any m ≤ mfinal := # {i : 1 ≤ i ≤ n, ξi,n 〈T ∗

nY, ei,n〉 6= 0} ,
the polynomial pm has exactly m distinct roots belonging to [0, κ] , which we denote by
(xk,m)1≤k≤m (in increasing order). Finally, we use the notation c(a, b) to denote a function
depending on the stated parameters only, and whose exact value can change from line to
line.

A.2 Preparation of the proof

We follow the general architecture of Nemirovskii’s proof to establish rates. We recall that
since we assume r ≥ 1/2, the representation f ∗ = Tf ∗

H holds. The main difference to
Nemirovskii’s original result is that (similar to the approach of [6, 7]) we use deviation
bounds in a “warped” norm rather than in the standard norm. More precisely, we consider
the following type of assumptions:

B1(λ)
∥∥∥(S + λI)−

1
2 (T ∗

nY − Snf
∗
H)
∥∥∥ ≤ δ(λ) ,
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B2(λ)
∥∥(S + λI)(Sn + λI)−1

∥∥ ≤ Υ2 , with Υ ≥ 1

(this implies in particular
∥∥∥(S + λI)

1
2 (Sn + λI)−

1
2

∥∥∥ ≤ Υ via (34) below) ,

B3 ‖S − Sn‖ ≤ κ∆.

In the rest of this section we set µ = r − 1/2. Under the source condition assumption
SC(r), for r ≥ 1

2
the representation f ∗ = Kru can be rewritten

f ∗ = (TT ∗)ru = T (T ∗T )r−
1
2 (T ∗T )−

1
2T ∗u = TSµ(T ∗T )−

1
2T ∗u,

by identification we therefore have the source condition for fH given by fH = Sµw with
w = (T ∗T )−

1
2T ∗u, and ‖w‖H ≤ ‖u‖, since (T ∗T )−

1
2T ∗ is a restricted isometry from L2(PX)

into H.
We define the shortcut notation

Zµ(λ) =

{
λµ for µ ≤ 1 ,

κµ∆ for µ > 1.
(15)

We start with preliminary technical lemmas, before turning to the proof of Theorem 2.2.

Lemma A.1. For any λ > 0 , if assumptions SC(r), B1(λ), B2(λ) and B3 hold, then for
any iteration step 1 ≤ m ≤ mfinal

‖T ∗
n(Tnfm −Y)‖ ≤c(µ)Υ2

(
|p′m(0)|−(µ+1)

+ Zµ(λ) |p′m(0)|−1
)
κ−µ− 1

2ρ

+
(
|p′m(0)|−

1
2 + λ

1
2

)
Υδ(λ) . (16)

Proof. Recall that (xk,m)1≤k≤m denote the m roots of the polynomial pm ; define further the
function ϕm on the interval [0, x1,m] as

ϕm(x) = pm(x)

(
x1,m

x1,m − x

) 1
2

Following the idea introduced by Nemirovski, it can be shown that

‖T ∗
n(Tnfm −Y)‖ = ‖pm(Sn)T

∗
nY‖

≤
∥∥Fx1,mϕm(Sn)T

∗
nY
∥∥

≤
∥∥Fx1,mϕm(Sn)Snf

∗
H
∥∥+

∥∥Fx1,mϕm(Sn)(T
∗
nY − Snf

∗
H)
∥∥ := (I) + (II).

Above, the first inequality (lemma 3.7. in [13]) is the crucial point, and relies fundamentally
on the fact that (pm) is an orthogonal polynomial sequence.
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We start with controlling the second term:

(II) =
∥∥Fx1,mϕm(Sn)(T

∗
nY − Snf

∗
H)
∥∥

=
∥∥∥Fx1,mϕm(Sn)(S + λI)

1
2 (S + λI)−

1
2 (T ∗

nY − Snf
∗
H)
∥∥∥

≤
∥∥∥Fx1,mϕm(Sn)(Sn + λI)

1
2

∥∥∥Υδ(λ)

≤
(

sup
x∈[0,x1,m]

x
1
2ϕm(x) + λ

1
2 sup
x∈[0,x1,m]

ϕm(x)

)
Υδ(λ)

≤
(
|p′m(0)|−

1
2 + λ

1
2

)
Υδ(λ) ,

where the last line used the inequality (see (3.10) in [13])

sup
x∈[0,x1,m]

xνϕ2
m(x) ≤ νν |p′m(0)|−ν

, (17)

for any ν ≥ 0 (using the convention 00 = 1), which we applied above for ν = 0, 1 . For the
first term, we use assumption SC(r); first consider the case µ > 1:

(I) =
∥∥Fx1,mϕm(Sn)Snf

∗
H
∥∥ =

∥∥Fx1,mϕm(Sn)SnS
µw
∥∥

≤
(∥∥Fx1,mϕm(Sn)S

µ+1
n

∥∥+
∥∥Fx1,mϕm(Sn)Sn

∥∥ ‖Sµ − Sµ
n‖
)
κ−µ− 1

2ρ

≤ c(µ)
(
|p′m(0)|−(µ+1)

+ κµ∆ |p′m(0)|−1
)
κ−µ− 1

2ρ ,

where we applied (17) with ν = 2(µ+ 1), ν = 2 and (33).

For the case µ ≤ 1, using (34) and arguments similar to the previous case:

(I) =
∥∥Fx1,mϕm(Sn)Snf

∗
H
∥∥

=
∥∥Fx1,mϕm(Sn)SnS

µw
∥∥

≤
∥∥Fx1,mϕm(Sn)Sn(Sn + λI)µ

∥∥ ∥∥(Sn + λI)−µ(S + λI)µ
∥∥ ∥∥(S + λ)−µSµ

∥∥κ−µ− 1
2ρ

≤ c(µ)Υ2
(
|p′m(0)|−(µ+1)

+ λµ |p′m(0)|−1
)
κ−µ− 1

2ρ .

Lemma A.2. For any λ > 0 , if assumptions SC(r), B1(λ), B2(λ) and B3 hold, then for
any iteration step 1 ≤ m ≤ mfinal, for any ε ∈ (0, x1,m):

‖T (fm − f ∗
H)‖ ≤Υ

(
3
(
1 + λ

(
|p′m(0)|+ ε−1

))
Υδ(λ) + c(µ)Υ2

(
ε

1
2 + λ

1
2

)
(εµ + Zµ(λ)) κ

−µ− 1
2ρ

+
√
2

(
1 +

λ
1
2

ε
1
2

)
ε−

1
2 ‖T ∗

n(Tnfm −Y)‖
)

If m = 0, the above inequality is valid for any ε > 0.
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Proof. Set f̄m = qm(Sn)Snf
∗
H . This is the element in H that we obtain by applying the

mth-iteration CG polynomial qm to the noiseless data. We have

‖T (fm − f ∗
H)‖ =

∥∥∥S 1
2 (fm − f ∗

H)
∥∥∥ ≤ Υ

∥∥∥(Sn + λI)
1
2 (fm − f ∗

H)
∥∥∥

≤ Υ

(∥∥∥Fε(Sn + λI)
1
2 (fm − f̄m)

∥∥∥+
∥∥∥Fε(Sn + λI)

1
2 (f̄m − f ∗

H)
∥∥∥

+
∥∥∥F⊥

ε (Sn + λI)
1
2 (fm − f ∗

H)
∥∥∥
)

:= Υ((I) + (II) + (III)) ,

where we denote F⊥
ε := (I − Fε). First summand:

(I) =
∥∥∥Fε(Sn + λI)

1
2 (fm − f̄m)

∥∥∥ =
∥∥∥Fε(Sn + λI)

1
2 qm(Sn)(S + λI)

1
2 (S + λI)−

1
2 (T ∗

nY − Snf
∗
H)
∥∥∥

≤ Υ
∥∥∥Fε(Sn + λI)

1
2 qm(Sn)(Sn + λI)

1
2

∥∥∥ δ(λ)

≤ Υδ(λ)

(
sup
x∈[0,ε]

xqm(x) + λ sup
x∈[0,ε]

qm(x)

)

≤ Υδ(λ) (1 + λ |p′m(0)|) .

The last inequality is obtained by the following argument: if m ≥ 1, since ε ≤ x1,m, pm is
convex in [0, ε] , we have

qm(x) =
1− pm(x)

x
≤ |p′m(0)| for x ∈ [0, ε] ;

and also xqm(x) = 1 − pm(x) ≤ 1 for x ∈ [0, ε] . If m = 0, we have p0 ≡ 1 and qm ≡ 0, so
that the above is also trivially satisfied for any x.

Second summand: first subcase, µ > 1, using (33), and the fact that |pm| (x) ≤ 1 for
x ∈ [0, ε]:

(II) =
∥∥∥Fε(Sn + λI)

1
2 (f̄m − f ∗

H)
∥∥∥

=
∥∥∥Fε(Sn + λI)

1
2pm(Sn)S

µw
∥∥∥

≤
(∥∥∥Fε(Sn + λI)

1
2pm(Sn)S

µ
n

∥∥∥+
∥∥∥Fε(Sn + λI)

1
2pm(Sn)

∥∥∥ c(µ)κµ∆

)
κ−µ− 1

2ρ

≤
(
εµ+

1
2 + λ

1
2 εµ + c(µ)κµ

(
ε

1
2 + λ

1
2

)
∆
)
κ−µ− 1

2ρ

≤ c(µ)
(
ε

1
2 + λ

1
2

)
(εµ + κµ∆)κ−µ− 1

2ρ .
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Bounding the second summand: second subcase, µ ≤ 1:

(II) =
∥∥∥Fε(Sn + λI)

1
2pm(Sn)S

µw
∥∥∥ ≤

∥∥∥Fε(Sn + λI)µ+
1
2pm(Sn)

∥∥∥Υ2κ−µ− 1
2ρ

≤ c(µ)(ε+ λ)µ+
1
2Υ2κ−µ− 1

2ρ .

Third summand:

(III) =
∥∥∥F⊥

ε (Sn + λI)
1
2 (fm − f ∗

H)
∥∥∥ ≤

∥∥∥F⊥
ε S

1
2
n (fm − f ∗

H)
∥∥∥+ λ

1
2

∥∥F⊥
ε (fm − f ∗

H)
∥∥

≤
(
(ε+ λ)

1
2

ε
1
2

+ λ
1
2
(ε+ λ)

1
2

ε

)∥∥∥F⊥
ε (Sn + λI)−

1
2Sn(fm − f ∗

H)
∥∥∥

≤
(
1 +

λ
1
2

ε
1
2

)(
1 +

λ

ε

) 1
2 ∥∥∥F⊥

ε (Sn + λI)−
1
2Sn(fm − f ∗

H)
∥∥∥

≤
(
1 +

λ
1
2

ε
1
2

)(
1 +

λ

ε

) 1
2 (∥∥∥F⊥

ε (Sn + λI)−
1
2T ∗

n(Tnfm −Y)
∥∥∥+

∥∥∥(Sn + λI)−
1
2 (T ∗

nY − Snf
∗
H)
∥∥∥
)

≤
(
1 +

λ
1
2

ε
1
2

)
ε−

1
2 ‖T ∗

n(Tnfm −Y)‖+
√
2Υ

(
1 +

λ

ε

)∥∥∥(S + λI)−
1
2 (T ∗

nY − Snf
∗
H)
∥∥∥

≤
(
1 +

λ
1
2

ε
1
2

)
ε−

1
2 ‖T ∗

n(Tnfm −Y)‖+
√
2Υ

(
1 +

λ

ε

)
δ(λ) .

We now consider the sequence of polynomials that are orthogonal with respect to the
scalar product [., .](2), which we denote by p

(2)
m , and its roots by x

(2)
m .

Lemma A.3. For any λ > 0 , if assumptions SC(r), B1(λ), B2(λ) and B3 hold, then for
any iteration step 1 ≤ m ≤ mfinal, for any ε ∈ (0, x1,m−1):

[pm−1, pm−1]
1
2

(0) = ‖pm−1(Sn)T
∗
nY‖

≤ Υ(ε+ λ)
1
2 δ(λ) + c(µ)Υ2ε (εµ + Zµ(λ))κ

−µ− 1
2ρ+ ε−

1
2

[
p
(2)
m−1, p

(2)
m−1

] 1
2

(1)
.

(18)

Proof. By the optimality property defining our CG algorithm,

‖pm−1(Sn)T
∗
nY‖ ≤

∥∥∥p(2)m−1(Sn)T
∗
nY
∥∥∥ ≤

∥∥∥Fεp
(2)
m−1(Sn)T

∗
nY
∥∥∥+

∥∥∥F⊥
ε p

(2)
m−1(Sn)T

∗
nY
∥∥∥

≤ ‖FεT
∗
nY‖+ ε−

1
2

∥∥∥p(2)m−1(Sn)S
1
2
n T

∗
nY
∥∥∥ = ‖FεT

∗
nY‖+ ε−

1
2

[
p
(2)
m−1, p

(2)
m−1

] 1
2

(1)
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For the last inequality, we have used the fact that |p(2)m−1|(x) ≤ 1 for x ∈ [0, x
(2)
m−1] , along

with the assumption 0 < ε < x1,m−1 ≤ x
(2)
1,m−1 ; the latter inequality is due to interlacing

properties of the roots of orthogonal polynomials for [., .](i) and [., .](i+1) (see [13], Cor 2.7).
We now bound

‖FεT
∗
nY‖ ≤ ‖Fε(T

∗
nY − Snf

∗
H)‖+ ‖FεSnS

µw‖
≤
∥∥∥Fε(Sn + λI)

1
2

∥∥∥
∥∥∥(Sn + λI)−

1
2 (T ∗

nY − Snf
∗
H)
∥∥∥+ ‖FεSnS

µw‖

≤ Υ(ε+ λ)
1
2 δ(λ) + ‖FεSnS

µw‖ ;

for the second term, we divide as usual into two cases: for µ > 1:

‖FεSnS
µw‖ ≤

∥∥FεS
µ+1
n w

∥∥+ ‖FεSn(S
µ
n − Sµ)w‖ ≤ εc(µ) (εµ + κµ∆) κ−µ− 1

2ρ ,

and for µ ≤ 1:

‖FεSnS
µw‖ ≤ ‖FεSn(Sn + λI)µ‖Υ2κ−µ− 1

2ρ ≤ ε(εµ + λµ)Υ2κ−µ− 1
2ρ .

A.3 Proof of Theorem 2.2

We fix
λ∗ =

((
4D/

√
n
)
log (6/γ)

) 2
2µ+s+1 κ . (19)

and assume n is big enough to ensure λ∗ ≤ κ . Furthermore we denote λ̃∗ = κ−1λ∗ (this
normalization was introduced in [6]).

We rewrite equivalently the discrepancy stopping rule as follows: for some fixed τ > 0 ,

m̂ := min
{
0 ≥ m : ‖T ∗

n(Tnfm −Y)‖ ≤ (2 + τ)λ
1
2
∗ δ(λ∗)

}
, (20)

where

δ(λ∗) :=
3

4
Mλ̃

µ+ 1
2∗ . (21)

(Observe that the above τ > 0 is deduced from the constant τ ′ > 3/2 considered in the
main part of the paper via τ = 4

3
(τ − 3

2
).)

We first check B1(λ∗), B2(λ∗) and B3 are satisfied simultaneously with large proba-
bility, using for this concentration results which are recalled in Section A.5. Concerning
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B1(λ∗) , inequality (31) ensures that with probability 1− γ , we have

∥∥∥(S + λ∗I)
− 1

2 (T ∗
nY − Snf

∗
H)
∥∥∥ ≤ 2M

(√
N (λ∗)

n
+

2
√
κ√

λ∗n

)
log

6

γ

≤ 2M√
n
Dλ̃

− s
2∗

(
1 +

1

2D2

(
4D√
n
log

6

γ

)
λ̃

s−1
2∗

)
log

6

γ

≤ M

2
λ̃
µ+ 1

2
∗

(
1 +

1

2D2
λ̃µ+s
∗

)

≤ 3

4
Mλ̃

µ+ 1
2

∗ = δ(λ∗) , (22)

where we have used SC(r), (19) and the assumptions D ≥ 1 and λ̃∗ ≤ 1 . We now turn
to B2(λ∗) . Inequality (32) along with a repetition of the above reasoning yields that with
probability 1− γ: ∥∥∥(S + λ∗I)

− 1
2 (Sn − S)

∥∥∥
HS

≤
√
κ

M
δ(λ∗) ,

so that ∥∥∥(S + λ∗I)
− 1

2 (Sn − S)(S + λ∗I)
− 1

2

∥∥∥ ≤
√
κ

M
λ
− 1

2
∗ δ(λ∗) .

Observe that √
κ

M
λ
− 1

2
∗ δ(λ∗) =

3

4
λ̃µ
∗ ≤ 3

4
, (23)

so that with Lemma A.5, we obtain that B2(λ∗) is satisfied with Υ := 2 (with probability
1 − γ). Finally, equation (11) in the main paper implies that (B3) is also satified with
probability 1− γ, with

∆ :=
2√
n
log

1

γ
. (24)

To conclude, by the union bound, the event that B1(λ∗), B2(λ∗) and B3 satisfied simul-
taneously has probability larger than 1 − 3γ , and we assume for the rest of the proof that
we are on this event.

We will assume m̂ ≥ 1 for the remainder of the proof and postpone to the end the
(simpler) case m̂ = 0.

First step: upper bound on
∣∣p′m̂−1(0)

∣∣ . By definition of the stopping rule we have

‖T ∗
n(Tnfm̂−1 −Y)‖ > (2 + τ)λ

1
2
∗ δ(λ∗) . Now applying this together with the upper bound of

Lemma A.1 we get

τλ
1
2
∗ δ(λ∗) ≤ c(µ)

(∣∣p′m̂−1(0)
∣∣−(µ+1)

+ Zµ(λ∗)
∣∣p′m̂−1(0)

∣∣−1
)
κ−µ− 1

2ρ+ 2
∣∣p′m̂−1(0)

∣∣− 1
2 δ(λ∗)

≤ 3max
(
2
∣∣p′m̂−1(0)

∣∣− 1
2 δ(λ∗), c(µ)ρκ

−µ− 1
2

∣∣p′m̂−1(0)
∣∣−(µ+1)

, c(µ)ρκ−µ− 1
2Zµ(λ∗)

∣∣p′m̂−1(0)
∣∣−1
)
.
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We examine in succession the possibility that the maximum in the above expression is
attained for each of the terms which comprise it. If the first term attains the maximum,
this implies |p′m̂−1(0)| ≤ (9/τ 2)λ−1

∗ . If the second term attains the maximum, this entails

c(µ)ρκ−µ− 1
2

∣∣p′m̂−1(0)
∣∣−(µ+1) ≥ τλ

1
2
∗ δ(λ∗) ,

which using (21) yields:
∣∣p′m̂−1(0)

∣∣ ≤ c(µ, τ)
( ρ

M

) 1
µ+1

λ−1
∗ .

Finally, if the third term attains the maximum, we have

c(µ)ρZµ(λ∗)κ
−µ− 1

2

∣∣p′m̂−1(0)
∣∣−1 ≥ τλ

1
2∗ δ(λ∗) ,

which using (21) yields:

∣∣p′m̂−1(0)
∣∣ ≤ c(µ, τ)

ρ

M
λ−µ−1
∗ Zµ(λ∗) .

We now establish the inequality
Zµ(λ∗)λ

−µ
∗ ≤ 1 . (25)

The inequality is trivial if µ ≤ 1 given the definition of Zµ(λ∗) in (15). If µ > 1 holds, from

the definition (24), it holds that ∆ ≤ 1
2
λ̃

2µ+s+1
2

∗ , hence

Zµ(λ∗)λ
−µ
∗ = ∆λ̃−µ

∗ ≤ 1

2
λ̃

s+1
2

∗ ≤ 1

2
.

Gathering all three cases, we obtain that it always holds that

∣∣p′m̂−1(0)
∣∣ ≤ c(µ, τ)max

( ρ

M
, 1
)
λ−1
∗ . (26)

Second step: upper bound on |p′m̂(0)| . For this we use the result of the first step and
relate

∣∣p′m̂−1(0)
∣∣ to |p′m̂(0)| . It is a property of orthogonal polynomials (see Hanke, Corollary

2.6) that for any m ≥ 1

pm−1
′(0)− pm

′(0) =
[pm−1, pm−1](0) − [pm, pm](0)[

p
(2)
m−1, p

(2)
m−1

]
(1)

≤
[pm−1, pm−1](0)[
p
(2)
m−1, p

(2)
m−1

]
(1)

. (27)

To upper bound the above quantity, we apply Lemma A.3 whithe the choice λ = λ∗ and

ε = ε∗ := a(µ, τ)min

(
M

ρ
, 1

)
λ∗ ,
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where 0 < a(µ, τ) ≤ 1 should be chosen small enough in order to satisfy some constraints to
be specified below. The first constraint is the requirement ε∗ ∈ (0, x1,m−1) in order to apply
Lemma A.3. For this, it can be seen from (26) that a(µ, τ) can be chosen small enough to
ensure

ε∗ ≤
∣∣p′m−1(0)

∣∣−1 ≤ x1,m−1 ,

the last inequality is an easy consequence of the fact that pm−1 has exactly (m− 1) positive
real roots and pm−1(0) = 1 . We now turn to upper bound the following quantity appearing
on the RHS of (18):

Υ(ε∗ + λ∗)
1
2 δ(λ∗) + c(µ)Υ2ε∗ (ε

µ
∗ + Zµ(λ∗))κ

−µ− 1
2ρ

≤ 2(a(µ, τ) + 1)λ
1
2
∗ δ(λ∗) + c(µ)a(µ, τ)min (ρ,M) λ∗λ̃

µ
∗κ

− 1
2ρ

≤ (c(µ)a(µ, τ) + 2)λ
1
2
∗ δ(λ∗) ,

(28)

where we have used the definition (21) for δ(λ∗) and inequality Zµ(λ∗) ≤ λµ
∗ , see (25) . Now,

we chose a(µ, τ) so that the factor in the last display satisfies c(µ)a(µ, τ) ≤ τ
2
. Remember

that the definition of the stopping rule entails

[pm−1, pm−1]
1
2

(0) = ‖T ∗
n(Tnfm̂−1 −Y)‖ > (2 + τ)λ

1
2
∗ δ(λ∗) > (2 + τ)λ

1
2
∗ δ(λ∗) , (29)

Now combining (18), (29) and (28), we obtain

(
1− τ + 1

2

τ + 2

)
[pm−1, pm−1]

1
2

(0) ≤ ε
− 1

2
∗

[
p
(2)
m−1, p

(2)
m−1

] 1
2

(1)
;

using this inequality in relation with (27) and (26), we obtain

|p′m̂(0)| ≤
∣∣p′m̂−1(0)

∣∣+ c(τ)ε−1
∗ ≤ c(µ, τ)max

( ρ

M
, 1
)
λ−1
∗ .

Final step. We apply Lemma A.2 (with λ = λ∗ and ε = ε∗), together with the bound
on |p′m̂(0)| just obtained, and the inequality (by definition of the stopping rule)

‖T ∗
n(Tnfm̂ −Y)‖ ≤ (2 + τ)λ

1
2
∗ δ(λ∗) ,

obtaining, using again (25):

‖fm̂ − f ∗‖2 = ‖T (fm̂ − f ∗
H)‖

≤ c(µ, τ)
(
δ(λ∗)max

( ρ

M
, 1
)
+min(ρ,M)λ̃

µ+ 1
2

∗

)
≤ c(µ, τ)(M + ρ)λ̃

µ+ 1
2

∗ .

If m̂ = 0, we can apply directly Lemma A.2 as above without requiring the two previous
steps, since in this case p′0(0) = 0, so that we obtain the same final bound.
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A.4 Sketch of the proof of Theorem 2.3

For the proof of Theorem 2.3, the condition B1(λ) is replaced by

B1’(λ)
∥∥∥(S + λI)−

1
2 (T ∗

nY − T ∗f ∗)
∥∥∥ ≤ δ(λ) .

We check that B1’(λ∗), B2(λ∗) and B3 are satisfied in the setting of Theorem 2.3. To

check B1’(λ∗), we use (30) instead of (31). Since the easily checked relation T ∗
nY = T ∗

ñỸ
holds, the upper bound obtained here has the same form as for Theorem 2.2, therefore we
can use the same value δ(λ∗) for condition B1’(λ∗) as in the previous section, given by (22).
Notice however that we must now use the condition µ + s = r + s − 1

2
≥ 0 to ensure that

the chain of inequalities leading to (22) is valid.
For condition B2(λ∗), we can apply the deviation inequality (32) but with n replaced

by ñ, since we make use of all the unlabeled data. Using the fact that n
ñ
≤ λ̃

−(1−2r)+
∗ and

some elementary algebra leads to B2(λ∗) being satisfied with Υ := 2.
Finally condition B3 is satisfied with ∆ given by (24) with n replaced by ñ.
Once these conditions are established, intermediate results similar in structure to Lem-

mas A.1, A.2 and A.3 can be derived, but where B1(λ) is replaced by B1’(λ). The details
are omitted here.

A.5 More technical lemmas

In this section we collect some technical lemmas which underpin the main results. These
are taken from previous sources and are recalled here for completeness. The main statistical
tool is the following deviation inequality:

Lemma A.4. Let λ be a positive number. Under assumption (Bounded), the following
holds:

P

[∥∥∥(S + λI)−
1
2 (T ∗

nY − T ∗f ∗)
∥∥∥ ≤ 2M

(√
N (λ)

n
+

2
√
κ√

λn

)
log

6

γ

]
≥ 1− γ . (30)

If the representation f ∗ = Tf ∗
H holds and under assumption (Bernstein), we have the

following:

P

[∥∥∥(S + λI)−
1
2 (T ∗

nY − Snf
∗
H)
∥∥∥ ≤ 2M

(√
N (λ)

n
+

2
√
κ√

λn

)
log

6

γ

]
≥ 1− γ . (31)

Finally, the following holds:

P

[∥∥∥(S + λI)−
1
2 (Sn − S)

∥∥∥
HS

≤ 2
√
κ

(√
N (λ)

n
+

2
√
κ√

λn

)
log

6

γ

]
≥ 1− γ , (32)

where we recall that ‖.‖HS denotes the Hilbert-Schmidt norm.
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The proof can be found in [7], and is based on a Bernstein-type inequality for random
variables taking values in a Hilbert space, as established in [20, 25].

Inequality (32) can be fruitfully combined with the following:

Lemma A.5. Assume there exists η > 0 such that the following inequality holds:

∥∥∥(S + λ)−
1
2 (Sn − S)(S + λ)−

1
2

∥∥∥ < 1− η ,

then ∥∥∥(S + λ)
1
2 (Sn + λ)−

1
2

∥∥∥ ≤ 1√
η
.

Proof. First we have

∥∥∥(S + λ)
1
2 (Sn + λ)−

1
2

∥∥∥ =
∥∥∥(S + λ)

1
2 (Sn + λ)−1(S + λ)

1
2

∥∥∥
1
2

;

then simple algebraic manipulation shows

(S + λ)
1
2 (Sn + λ)−1(S + λ)

1
2 =

(
I − (S + λ)

1
2 (S − Sn)

−1(S + λ)
1
2

)−1

.

Finally, using the inequality ‖(I − A)−1‖ =
∥∥∑

k≥0A
k
∥∥ ≤ (1 − ‖A‖)−1 for ‖A‖ < 1 yields

the conclusion.

We make use of the following operator inequalities:

Lemma A.6. Let A,B be two positive, self-adjoint operators with max(‖A‖ , ‖B‖) ≤ C .
Then for any r ≥ 0 , putting ζ = (r − 1)+ , the following inequality holds:

‖Ar − Br‖ ≤ (ζ + 1)Cζ ‖A−B‖r−ζ . (33)

Proof. Follows from the fact that the power function x 7→ xr is operator monotone for r ≤ 1
and Lipschitz with constant rCr−1 on [0, C] if r > 1.

Lemma A.7 ([1], Theorem IX.2.1-2). Let A,B be to self-adjoint, positive operators. Then
for any s ∈ [0, 1]:

‖AsBs‖ ≤ ‖AB‖s . (34)

Note: this result is stated for positive matrices in [1], but it is easy to check that the
proof applies as well to positive operators on a Hilbert space.
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