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SPECTRAL TRIPLES AND GIBBS MEASURES FOR

EXPANDING MAPS ON CANTOR SETS

RICHARD SHARP

Abstract. Let T : Λ → Λ be an expanding map on a Cantor set. For each
suitably normalized Hölder continuous potential, we construct a spectral triple
from which one may recover the associated Gibbs measure as a noncommutative
measure.

1. Introduction

In the 1990s, Connes introduced the concept of a spectral triple as a fundamental
object in noncommutative geometry [7, 8, 9, 23], giving a “space-free” description
of many geometric phenonmena. The notion is very flexible and appropriate choices
allow one to recover the volume measure and metric on a Riemannian spin manifold
[7, 8] and also, for example, the Hausdorff measure on certain fractal sets [7, 12,
13, 14]. In the fractal case, the starting point is Connes’s construction of a spectral
triple for a Cantor subset of the real line, from which (using ideas of Lapidus and
Pomerance [16]) the Minkowski content may be recovered. For simple self-similar
sets, the Hausdorff measure may also be obtained and Guido and Isola generalize
these ideas to certain fractal subsets of Rn. (See [5, 6] for other approaches and [18]
for a more general construction valid for any compact metric space.) Furthermore,
Falconer and Samuel [11] have modified this construction to describe multifractal
phenomena.

The purpose of this paper is to show that, for a class of expanding maps, certain
important measures, called Gibbs measures, which arise in the ergodic theory of
hyperbolic dynamical systems, may be obtained as noncommutative measures from
an appropriate spectral triple. Specifically, our dynamical systems will be expanding
maps conjugate to a subshift of finite type (not necessarily a full shift), so that, in
particular, the (maximal) invariant set is a Cantor set. After this paper was written,
we learned that Samuel had obtained a very similar result in his thesis [21]. We will
give a little more detail on his work following Theorem 2.1 below.

We shall we shall now fix some notation. Let Λ be a compact subset of a smooth
Riemannian manifold M and let T : Λ → Λ be a C1 expanding map which is
topologically conjugate to a mixing one-sided subshift of finite type σ : Σ+

A → Σ+
A.

(See section 3 below for precise definitions.) In particular, Λ is a Cantor set. The
purpose of this condition is to ensure that so-called “locally constant” functions on
Λ are contained in C(Λ,C).

Let MT denote the set of T -invariant probability measures on Λ. This is a large
set but we may single out the so-called Gibbs measures (or equilibrium measures)
associated to Hölder continuous potentials as being of particular importance. These
are defined as follows. Let ψ : Λ → Λ be a Hölder continuous function. Then the
Gibbs measure for ψ is the unique µ ∈ MT for which

hT (µ) +

∫

ψ dµ = sup
m∈MT

(

hT (m) +

∫

ψ dm

)

,

Key words and phrases. spectral triple, Dixmier trace, expanding map, Gibbs measure, Cantor
set.
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where hT (m) denotes the entropy of T with respect to m. A general feature of
hyperbolic dynamical systems is that averages of weighted local local data (e.g.
sums of observables over sets of orbits) give global information (e.g. the average of
an observable with respect to an invariant measure) [2, 19, 22] and Gibbs measures
may be obtained in this way. (Very roughly, weighting by the exponentials of
sums of an observable ψ gives the Gibbs measure for ψ.) However, this local to
global property also motivates the definition of a Dirac operator, adapted from
those in [11, 12, 13, 14], and allows us to obtain a noncommutative integral from
its spectrum. In Theorem 2.1 below, we show that this noncommutative integral
agrees up to an explicit factor with the integral with respect the Gibbs measure.
We begin by defining a spectral triple [7, 23].

Definition 1.1. A spectral triple is a triple (H,A,D), where

(i) H is a Hilbert space;
(ii) A is a C∗-algebra equipped with a faithful representation π : A → B(H)

(the bounded linear operators on H);
(iii) D is an essentially self-adjoint unbounded linear operator on H with com-

pact resolvent and such that {f ∈ A : ‖[D, π(f)]‖ < +∞} is dense in
A, where [D, π(f)] : H → H is the commutator operator [D, π(f)](ξ) =
Dπ(f)(ξ)− π(f)D(ξ). This D is called a Dirac operator.

We shall define spectral triples associated to Hölder continuous potentials on
Λ, adapting the constructions of Connes [7], Guido and Isola [12, 13, 14]) and
Falconer and Samuel [11]. As above, let σ : Σ+

A → Σ+
A be the subshift of finite type

topologically conjugate to the expanding map T : Λ → Λ, where the symbol set
is {1, . . . , k} and A is a zero-one transition matrix. (See section 3 for a complete
definition.) We shall write p : Σ+

A → Λ for the conjugating homeomorphism. In
the interests of readability, we will systematically abuse notation by writing f(x)
instead of f(p(x)), whenever f ∈ C(Λ,C) and x ∈ Σ+

A.
An ordered n-tuple (w1, . . . , wn), with wm ∈ {1, . . . , k}, m = 1, . . . , n, is called

an allowed word of length n if A(wm, wm+1) = 1 for m = 1, . . . , n − 1. Let Wn

denote the set of allowed words of length n and let

W ∗ =

∞
⋃

n=1

Wn.

For w = (w1, . . . , wn) ∈Wn, we write

[w] = {x = (xn)
∞
n=1 ∈ Σ+

A : xm = wm, m = 1, . . . , n}

and t(w) = wn. For w ∈Wn and x ∈ Σ+
A then wx will denote the sequence defined

by

(wx)m =

{

wm if 1 6 m 6 n

xm−n if m > n+ 1.

Clearly, wx ∈ Σ+
A if and only if A(t(w), x1) = 1. For each j ∈ {1, . . . , k}, choose a

sequence xj ∈ Σ+
A and distinct sequences yj , zj ∈ Σ+

A such that jxj , jyj, jzj ∈ Σ+
A.

Now we can define a spectral triple associated to a continuous potential φ : Λ →
R. Our Hilbert space will be

H = ℓ2(W ∗)⊕ ℓ2(W ∗) ⊂
⊕

w∈W∗

C⊕ C,

where we write a typical element as

ξ =
⊕

w∈W∗

(

ξ1(w)
ξ2(w)

)
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and our C∗-algebra will be A = C(Λ,C). We define a ∗-representation π : A →
B(H) by setting π(f) to be the multiplication operator

π(f)

(

⊕

w∈W∗

(

ξ1(w)
ξ2(w)

)

)

=
⊕

w∈W∗

(

f
(

wyt(w)
)

ξ1(w)

f
(

wzt(w)
)

ξ2(w)

)

,

We define Dφ : H → H by

Dφ

(

⊕

w∈W∗

(

ξ1(w)
ξ2(w)

)

)

=

∞
⊕

n=1

⊕

w∈Wn

eφ
n(wxt(w))

(

0 1
1 0

)(

ξ1(w)
ξ2(w)

)

=

∞
⊕

n=1

⊕

w∈Wn

eφ
n(wxt(w))

(

ξ2(w)
ξ1(w)

)

,

where φn := φ+ φ ◦ T + · · ·+ φ ◦ T n−1. We have the following theorem.

Theorem 1.2. For any continuous function φ : Λ → R, (H,A,Dφ) is a spectral
triple.

The main result of the paper is that, when φ is Hölder continuous and is suit-
ably normalized, we may recover the Gibbs measure for −φ from the operators
π(f)|Dφ|−1 via a singular trace. (The choice of sign is for notational convenience.)
In the next section, we introduce the ideas needed to explain this statement and
then state our main theorem. In section 3, we discuss some material on expanding
maps, subshifts of finite type and transfer operators. In section 4, we prove Theorem
1.2. In section 5, we complete the paper by proving our result on noncommutative
measures and Gibbs measures, Theorem 2.1.

2. Singular traces and noncommutative measures

In order to state our main result, we need to briefly discuss the theory of singular
traces of compact operators. For more details, see [1] or [13]. Let B(H) denote the
algebra of bounded linear operators on a Hilbert space H and let K(H) denote
the ideal of compact operators. A singular trace on a two-sided ideal I ⊂ K(H) is
a positive linear functional τ : I → R such that τ is unitary invariant (the trace
property) and vanishes on finite rank operators.

The most important singular traces are the so-called Dixmier traces [10]. These
are defined on an ideal I = L1,∞(H), the Dixmier ideal, given by

L1,∞(H) =

{

A ∈ K(H) : lim sup
n→+∞

1

logn

n
∑

k=1

ak < +∞
}

,

where {an}∞n=1 denote the eigenvalues of |A| :=
√
A∗A, written in decreasing order.

Then a Dixmier trace is a singular trace τω on L1,∞(H) defined, for a positive
operator A, by

τω(A) = ω- lim
1

logn

n
∑

k=1

ak,

where this is a generalized limit corresponding to a state ω on l∞, and extended to
L1,∞(H) by linearity. If the limit

lim
n→+∞

1

logn

n
∑

k=1

ak

exists then we say that A is measurable and call the value of the limit the noncom-
mutative integral of A. (There are more general definitions of the Dixmier trace –
see, for example, Chapter IV, §2.β of [7], [17] or Chapter 5 of [23]. Correspondingly,
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there are more general definitions of measurability. It is shown in [17] that these
are equivalent to the definition given here.)

Consider the spectral triple (H,A,Dφ) defined in the previous section. We will
now suppose that φ : Λ → R is Hölder continuous. We say that −φ is normalized if

∑

Ty=x

e−φ(y) = 1,

for all x ∈ Λ. (As we shall see in section 3, any real-valued Hölder continuous
function may be normalized by adding a constant and a function of the form u◦T−u,
with u ∈ C(Λ,R), and this operation does not change the Gibbs measure.) Then,
for f ∈ C(Λ,C), the operator π(f)|Dφ|−1 is given by the formula

π(f)|Dφ|−1

(

⊕

w∈W∗

(

ξ1(w)
ξ2(w)

)

)

=

∞
⊕

n=1

⊕

w∈Wn

e−φ
n(wxt(w))

(

f
(

wyt(w)
)

ξ1(w)
f
(

wzt(w)
)

ξ2(w)

)

.

Theorem 2.1. Suppose that φ : Λ → R is a Hölder continuous function and that
−φ is normalized. Then, for any f ∈ C(Λ,C),

(i) π(f)|Dφ|−1 ∈ L1,∞(H);
(ii) π(f)|Dφ|−1 is measurable and

τω(π(f)|Dφ|−1) = cφ

∫

f dµ,

where µ is the Gibbs measure for −φ and where

cφ =
2

∫

φdµ

k
∑

j=1

∑

Tx=xj

e−φ(x)χj(x),

with χj the indicator function of the set p([j]).

Remark 2.2. As we noted in the introduction, a result similar to Theorem 2.1
has been obtained by Samuel [21]. A significant difference is that he requires the
potential φ to be non-arithmetic, i.e., that the sums of φ around periodic orbits
do not all lie in a single discrete subgroup of R. This restriction is needed for the
renewal theory approach he uses. Thus, for example, his results do not cover the
measure of maximal entropy. A particularly attractive feature of his work is that he
is able to explicity calculate the Dixmier trace associated to the constant function
1, i.e. τω(|Dφ|−1), is equal to the reciprocal of the entropy of µ and he identifies
this as a noncommutative volume.

3. Expanding maps and subshifts of finite type

We begin the section by defining subshifts of finite type. Let A be a k×k matrix
whose entries are all either zero or one. We define the (one-sided) shift space

Σ+
A =

{

(xn)
∞
n=1 ∈

∞
∏

n=1

{1, . . . , k} : A(xn, xn+1) = 1 for all n > 1

}

and the (one-sided) subshift of finite type σ : Σ+
A → Σ+

A by (σx)n = xn+1. We give

{1, . . . , k} the discrete topology,
∏∞
n=1{1, . . . , k} the product topology and Σ+

A the
subspace topology. A compatible metric is given by

d((xn)
∞
n=1, (yn)

∞
n=1) =

∞
∑

n=1

1− δxnyn

2n
,

where δij is the Kronecker symbol.
We say that the matrix A is irreducible if, for each (i, j), there exists n(i, j) > 1

such that An(i,j)(i, j) > 0 and aperiodic if there exists n > 1 such that, for each
(i, j), An(i, j) > 0. The latter statement is equivalent to σ : Σ+

A → Σ+
A being
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topologically mixing (i.e. that there exists n > 1 such that for any two non-empty
open sets U, V ⊂ Σ+

A, σ
−m(U) ∩ V 6= ∅, for all m > n).

Let M be a compact connected smooth Riemannian manifold and suppose that
Λ ⊂ U ⊂ M with Λ compact and U open. Let T : U → M be a C1 map. Suppose
that

(i) there exists λ > 1 such that ‖DTx‖ > λ for all x ∈ U ;
(ii) Λ =

⋂∞
n=0 T

−nU ;
(iii) T is topologically mixing.

If T satisfies (i), (ii) and (iii) then we refer to T : Λ → Λ as an expanding map and
we can find a mixing one-sided subshift of finite type σ : Σ+

A → Σ+
A and a Hölder

continuous map p : Σ+
A → Λ which semi-conjugates T and σ. Furthermore, the map

is “nearly” a homeomorphism. Here, however, we impose the additional condition
that p is, in fact, a homeomorphism and assume that

(iv) T : Λ → Λ is topologically conjugate to a mixing one-sided subshift of finite
type σ : Σ+

A → Σ+
A.

In particular, (iv) implies that Λ is a Cantor set.
Assumption (iv) gives Λ a natural grading. In particular, for each n > 1, we may

write Λ as a disjoint union

Λ =
⋃

w∈Wn

p([w]).

We will say that a function f : Λ → C is locally constant if, for some n > 1, f is
constant on each set p([w]), w ∈Wn. We shall write LC(Λ) for the set of all locally
constant functions on Λ. Clearly, LC(Λ) a uniformly dense subalgebra of C(Λ,C).

We shall also consider some larger subalgebras of C(Λ,C). For α > 0, we shall
let Cα(Λ,C) denote the space of α-Hölder continuous functions on Λ, i.e., the set
of functions g : Λ → C satisfying

|g|α := sup
x 6=y

|g(x)− g(y)|
d(x, y)α

< +∞.

This is a Banach space with respect to the norm ‖ · ‖α = ‖ · ‖∞ + | · |α. Clearly, for
any α > 0,

LC(Λ) ⊂ Cα(Λ,C) ⊂ C(Λ,C).

4. Gibbs states and transfer operators

In this section we shall discuss some of the ergodic theory associate to the map
T : Λ → Λ. The main references are [4] and [19], where this theory is developed for
subshifts of finite type. The symbolic dynamics described in the preceding section
allows the results to be immediately transfered to expanding maps. As above, we
shall write MT for the space of T -invariant probability measures. Given m ∈ MT ,
we write hT (m) > 0 for the entropy of T as a measure preserving transformation of
(Λ,m) (see [24] for the definition). For a continuous function ψ : Λ → R, we define
its pressure P (ψ) by

P (ψ) = sup
m∈MT

(

hT (m) +

∫

ψ dm

)

.

If ψ is Hölder continuous, then there is a unique probability measure µ, called the
Gibbs measure (or equilibrium measure) for ψ, for which this supremum is realized
[2, 4, 19].

Given ψ ∈ C(Λ,R), we define the transfer operator Lψ : C(Λ,C) → C(Λ,C) by

Lψg(x) =
∑

Ty=x

eψ(y)g(y).
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A key element of our approach will be to relate the eigenvalue asymptotics of our
Dirac operators to the spectral properties of transfer operators. For this approach
to work, we shall need to find a space of which Lψ acts quasi-compactly.

If ψ ∈ Cα(Λ,R) then Lψ : Cα(Λ,C) → Cα(Λ,C). The basic spectral properties
of Lψ on this space are contained in the following result, which is Ruelle’s general-
ization of the classical Perron-Frobenius Theorem for non-negative matrices).

Proposition 4.1. [2, 4, 19, 20] If ψ ∈ Cα(Λ,R) then Lψ : Cα(Λ,C) → Cα(Λ,C)

has a simple eigenvalue equal to eP (ψ) with the rest of the spectrum contained in a
disk {z ∈ C : |z| 6 θeP (ψ)}, for some 0 < θ < 1. Furthermore, there exist

(i) a strictly positive eigenfunction h ∈ Cα(Λ,R) such that Lψh = eP (ψ)h; and

(ii) an eigenmeasure ν ∈ C(Λ,R)∗ such that L∗
ψν = eP (ψ)ν.

If ν is chosen to be a probability measure and the eigenfunction h is chosen so that
∫

h dν = 1 then µ = hν is the Gibbs measure for ψ.

Corollary 4.2. There exists λψ < eP (ψ) such that, for any f ∈ Cα(Λ,C), we have

Lnψf =

(∫

f dν

)

henP (ψ) +O(λnψ).

Proof. We recall the following basic fact from spectral theory (see, for example, [3]
or [15]). Let L : B → B be a bounded linear operator on a Banach space B with
spectrum spec(L) = Σ ⊂ C. If Σ can be decomposed into two disjoint non-empty
sets Σ1 and Σ2 and if γ is a simple closed curve which is disjoint from Σ and which
has Σ1 in its interior and Σ2 in its exterior then Π : B → B defined by

Π =
1

2πi

∫

γ

(z − L)−1 dz,

is a projection (i.e. ‖Π‖ = 1 and Π2 = Π). Moreover, B = B1 ⊕ B2, where
B1 = Π1(B) and B2 = (I − Π)(B) are closed and L-invariant subspaces with
spec(L|B1) = Σ1 and spec(L|B2) = Σ2.

Now condsider the operator Lψ : Cα(Λ,C) → Cα(Λ,C). By Theorem 4.1, we

may decompose its spectrum into Σ1 = {eP (ψ)} and a disjoint set Σ2. Thus, we
may decompose the operator Lψ as a sum

Lnψ = LnψΠ+ Lnψ(I −Π) = enP (ψ)ν(·)h+ Lnψ(I −Π),

where Π1 = ν(·)h is the projection onto the eigenspace spanned by eP (ψ). Further-
more, since eP (ψ) is strictly maximal in modulus, we have

lim
n→+∞

‖Lnψ(I −Π)‖1/n = sup{|z| : z ∈ Σ2} < eP (ψ).

Choosing λψ slightly larger than limn→+∞ ‖Lnψ(I−Π)‖1/n completes the proof. �

Corollary 4.3. The quantities eP (ψ), h and ν in Theorem 4.1 all depend analyti-
cally on ψ.

Proof. First we note that Lψ depends analytically on ψ. The result is then a

standard consequence of the fact that eP (ψ) is an isolated simple eigenvalue for Lψ
[3, 15]. �

Recall that we defined a function −φ to be normalized if, for all x ∈ Λ,
∑

Ty=x

e−φ(y) = 1.

In particular, this condition implies that−φ is strictly negative. We may rewrite this
condition in terms of transfer operators as L−φ1 = 1. The following consequence of
Theoreom 4.1 shows that, given a Hölder continuous function, we may find another
which is normalized and which had the same Gibbs measure.
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Corollary 4.4. Suppose that ψ, h, ν, µ are as in Theorem 4.1. Then

−φ := ψ + log h− log h ◦ T − P (ψ) ∈ Cα(Λ,R)

is normalized, L∗
−φµ = µ and µ is the Gibbs state −φ.

Proof. Since h > 0, −φ is well-defined. For any m ∈ MT ,

hT (m) +

∫

−φdm = hT (m) +

∫

ψ dm− P (ψ),

so it follows that P (−φ) = 0 and that µ is the Gibbs measure for −φ. We also have

L−φ1(x) =
∑

Ty=x

e−φ(y) =
∑

Ty=x

eψ(y)+log h(y)−logh(Ty)−P (ψ)

=
e−P (ψ)

h(x)

∑

Ty=x

eψ(y)h(y) =
e−P (ψ)

h(x)
Lψh(x)

=
e−P (ψ)

h(x)
eP (ψ)h(x) = 1,

so −φ is normalized. By Theorem 4.1, L∗
−φµ = µ. �

To prove Theorem 2.1, we shall need to consider a family of transfer operators
L−tφ, for t ∈ R. By Theorem 4.1, these will have a maximal eigenvalue equal to

eP (−tφ). We end the section with a result on the regularity and derivative of the
function t 7→ P (−tφ).

Lemma 4.5. The function t 7→ P (−tφ) is real-analytic and strictly decreasing.
Furthermore,

dP (−tφ)
dt

∣

∣

∣

∣

t=1

= −
∫

φdµ,

where µ is the Gibbs measure for −φ.

5. Proof of Theorem 1.2

In this section we proof that the (H,A,Dφ) we have constructed is a spectral
triple. The key point is that the locally constant functions give a dense subalgebra
of C(Λ,C) on which ‖[Dφ, π(f)]‖ is finite.

Proof of Theorem 1.2. Suppose that f1, f2 ∈ C(Λ,C) and that π(f1) = π(f2).
Then, in particular, by definition, for each w ∈ W ∗, f1(wy

t(w)) = f2(wy
t(w)).

The set {wyt(w) : w ∈W ∗} is dense in Σ+
A and thus the set p({wyt(w) : w ∈ W ∗})

is dense in Λ. Hence f1 = f2 and π : C(Λ,C) → B(H) is faithful.
It is clear from its definition that Dφ is self-adjoint. The eigenvalues of Dφ are

the numbers
∞
⋃

n=1

{eφn(wxt(w)) : w ∈ Wn}

(counted with the appropriate multiplicity). In particular, 0 is not an eigenvalue.
Thus, the resolvent of Dφ is compact provided D−1

φ is compact and it is clear that

D−1
φ , defined by

D−1
φ

(

⊕

w∈W∗

(

ξ1(w)
ξ2(w)

)

)

=

∞
⊕

n=1

⊕

w∈W∗

e−φ
n(wxt(w))

(

0 1
1 0

)(

ξ1(w)
ξ2(w)

)
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is a compact operator. For f ∈ C(Λ,C),

[Dφ, π(f)]

(

⊕

w∈W∗

(

ξ1(w)
ξ2(w)

)

)

=
⊕

w∈W∗

(f(wyt(w))− f(wzt(w)))eφ
n(wxt(w))

(

0 −1
1 0

)(

ξ1(w)
ξ2(w)

)

=
⊕

w∈W∗

(f(wyt(w))− f(wzt(w)))eφ
n(wxt(w))

(

−ξ2(w)
ξ1(w)

)

.

Let A0 = LC(Λ), the subalgebra of locally constant functions on Λ. Recall that A0

is dense in A. If f ∈ A0 then there exists N > 1 such that

f(wyt(w)) = f(wzt(w)) for all w ∈
∞
⋃

n=N+1

Wn.

Then
∥

∥

∥

∥

∥

[D, π(f)]

(

⊕

w∈W∗

(

ξ1(w)
ξ2(w)

)

)∥

∥

∥

∥

∥

2

2

=

∞
∑

n=1

∑

w∈Wn

(f(wyt(w))− f(wzt(w)))2e2φ
n(wxt(w))((−ξ2(w))2 + ξ1(w)

2)

6 2‖f‖∞e2N‖φ‖∞

N
∑

n=1

∑

w∈Wn

((−ξ2(w))2 + ξ1(w)
2)

6 2‖f‖∞e2N‖φ‖∞‖ξ‖22.
Hence ‖[D, π(f)]‖ < +∞. �

6. Proof of Theorem 2.1

We will use the following version of the Hardy-Littlewood Tauberian Theorem.
(See [7], Chapter IV, §2.β, Proposition 4.)

Lemma 6.1. Suppose that A ∈ K(H) is a postive operator with eigenvalues {an}∞n=1

(arranged in decreasing order) and that A ∈ L1,∞(H). Write

ζ(t) =
∞
∑

n=1

atn.

Then

lim
t→1+

(t− 1)ζ(t) = L,

if and only if

lim
n→+∞

1

logn

n
∑

k=1

ak = L.

We will suppose for the moment that f ∈ Cα(Λ,R) and that f > 0, so that
π(f)|Dφ|−1 is a positive operator. The eigenvalues of π(f)|Dφ|−1 are the numbers

∞
⋃

n=1

{f(wyt(w))e−φ
n(wxt(w)), f(wzt(w))e−φ

n(wxt(w)) : w ∈ Wn}

(counted with multiplicity). We define a spectral zeta function

ζf (t) =

∞
∑

n=1

∑

w∈Wn

(

(

f(wyt(w))e−φ
n(wxt(w))

)t

+
(

f(wzt(w))e−φ
n(wxt(w))

)t
)
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and we also write

ζf,x(t) =

∞
∑

n=1

∑

w∈Wn

(

f(wxt(w))e−φ
n(wxt(w))

)t

,

ζf,y(t) =

∞
∑

n=1

∑

w∈Wn

(

f(wyt(w))e−φ
n(wxt(w))

)t

, and

ζf,z(t) =

∞
∑

n=1

∑

w∈Wn

(

f(wzt(w))e−φ
n(wxt(w))

)t

.

In order to study these functions, it will be convenient to introduce another one
which is easier to express in terms of transfer operators. Hence we define

ηf (s) =

∞
∑

n=1

∑

w∈Wn

f(wxt(w))e−sφ
n(wxt(w)).

Lemma 6.2. For f ∈ Cα(Λ,R) with f > 0, ηf (t) converges for t > 1 and

lim
t→1+

(t− 1)ηf (t) =

(
∫

f dµ
∫

φdµ

)





k
∑

j=1

(L−φχj)(x
(j))



 .

Proof. Provided ηf (t) converges, we may use the definitions of x(j) and L−tφ to
write

ηf (t) =

∞
∑

n=1

∑

w∈Wn

f(wxt(w))e−tφ
n(wxt(w))

=

∞
∑

n=1

k
∑

j=1

Ln−tφ(χj ◦ T n−1f)(xj)

=

∞
∑

n=1

k
∑

j=1

L−tφ(χjL
n−1
−tφ f)(x

j).

By Theorem 4.1 and Lemma 4.5, for t > 1, L−tφ has spectral radius eP (−tφ) < 1.
Thus, using the spectral radius formula, it is easy to see that ηf (t) converges.
Furthermore, by Corollary 4.2, we have

ηf (t) =

∞
∑

n=0

k
∑

j=1

(∫

f dνt

)

enP (−tφ) (L−tφ(χjht)) (x
j) +

∞
∑

n=0

qn(t)

=

(∫

f dνt

) ∞
∑

n=0

enP (−tφ)





k
∑

j=1

(L−tφ(χjht)) (x
j)



+

∞
∑

n=1

qn(t)

=

(∫

f dνt

)

∑k
j=1 (L−tφ(χjht)) (x

j)

1− eP (−tφ)
+

∞
∑

n=1

qn(t),

where ht and νt are the eigenfunction and eigenmeasure for L−tφ given by Theorem

4.1 and where qn(t) = O(λn−tφ) (with λ−tφ < eP (−tφ)). Since

(i) t 7→ eP (−tφ), t 7→ ht and t 7→ νt are all analytic;
(ii) eP (−φ) = 1, h1 = 1 and ν1 = µ; and
(iii)

deP (−tφ)

dt

∣

∣

∣

∣

t=1

= −
∫

φdµ;
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we see that

ηf (t) =

(
∫

f dµ
∫

φdµ

)





k
∑

j=1

(L−φχj)(x
j)





1

t− 1
+ a(t),

where a(t) is finite for t > 1. �

Remark 6.3. In fact, one can show (using the type of methods described in [19, 22])
that, considered as a function of a complex variable s, ηf (s) is analytic for Re(s) > 1,
has a simple pole at s = 1 and, provided the sums of φ around periodic orbits do
not all lie in a discrete subgroup of R, apart from this pole, ηf (s) has an analytic
extension to a neighbourhood of Re(s) > 1.

Lemma 6.4. For f ∈ Cα(Λ,R) with f > 0, ζf,y(t) and ζf,z(t) converge for t > 1.
Furthermore, we have

lim
t→1+

(t− 1)ζf,y(t) = lim
t→1+

(t− 1)ζf,z(t) = lim
t→1+

(t− 1)ηf (t).

Proof. First we shall show that it suffices to consider ζf,x(t). Note that, for t > 1,

|ζf,x(t)− ζf,y(t)| 6
∞
∑

n=1

∑

w∈Wn

∣

∣

∣f(wxt(w))t − f(wyt(w))t
∣

∣

∣ e−tφ
n(wxt(w))

6 t‖f‖t−1
∞

∞
∑

n=1

∑

w∈Wn

|f(wxt(w))− f(wyt(w))|e−tφn(wxt(w)).

Let {wm}∞m=1 be any enumeration of W ∗. Then

lim
m→+∞

d((wmx
t(w), wmy

t(w)) = 0,

so that, since f is continuous,

lim
m→+∞

f(wmx
t(w))− f(wmy

t(w)) = 0.

Thus, since each set Wn is finite, given ǫ > 0, there exists N > 1 such that if
w ∈Wn and n > N then |f(wxt(w))− f(wyt(w))| < ǫ. Thus,

|ζf,x(t)− ζf,y(t)| 6 2t‖f‖t∞(N − 1) + ǫt‖f‖t−1
∞

(

∞
∑

n=N

∑

w∈Wn

e−tφ
n(wxt(w))

)

6 2t‖f‖t∞(N − 1) + ǫt‖f‖t−1
∞ η1(t).

Hence, ζf,y(t) converges provided ζf,x(t) converges and we have the estimate

lim
t→1+

(t− 1)(ζf,x(t)− ζf,y(t)) 6 ǫ lim
t→1+

(t− 1)η1(t)

= ǫ

(

1
∫

φdµ

)





k
∑

j=1

(L−φχj)(x
j)



 .

Since ǫ > 0 is arbitrary, this shows that limt→1+(t−1)ζf,x(t) = limt→1+(t−1)ζf,y(t).
A similar argument for ζf,z(t) completes the proof of the claim.

To complete the proof, we notice that, as t→ 1+, we have

f(wxt(w))t − f(wxt(w)) = f(wxt(w))
(

f(wxt(w))t−1 − 1
)

= f(wxt(w))(t− 1 +O((t− 1)2)).

Thus

ζf,x(t)− ηf (t) = (t− 1 +O((t − 1)2))ηf (t),
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so that ζf,x(t) converges for t > 1 and

lim
t→1+

(t− 1)ζf,x(t) = lim
t→1+

(t− 1)ηf (t),

as required. �

Proof of Theorem 2.1. We need to show that, whenever f ∈ C(Λ,R) with f > 0,
we have

lim
n→+∞

1

log n

n
∑

k=1

ak(f) = cφ

∫

f dµ,

where {ak(f)}∞k=1 are the eigenvalues of π(f)|Dφ|−1, counted with multiplicity and
written in decreasing order, and where

cφ =
2

∫

φdµ

k
∑

j=1

∑

Tx=xj

e−φ(x)χj(x) =
2

∫

φdµ

k
∑

j=1

(L−φχj)(x
j).

First, suppose that f ∈ Cα(Λ,R) and that f > 0. Lemma 6.2 and Lemma 6.4
show that ζf (t) converges for t > 1 and diverges for t = 1. Thus π(f)|D|−1 ∈
L1,∞(H). It follows immediately from Lemma 6.1 and Lemma 6.4 that

lim
n→+∞

1

logn

n
∑

k=1

ak(f) = lim
t→1+

(t− 1)ζf (t) = cφ

∫

f dµ.

Now suppose f ∈ C(Λ,R) and f > 0. Given ǫ > 0, we may choose g1, g2 ∈
Cα(Λ,C) such that 0 6 g1 6 f 6 g2 and

∫

f dµ− ǫ 6

∫

g1 dµ 6

∫

g2 dµ 6

∫

f dµ+ ǫ.

Then we have

cφ

(∫

f dµ− ǫ

)

6 cφ

∫

g1 dµ = lim
t→1+

(t− 1)ζg1(t)

6 lim inf
t→1+

(t− 1)ζf (t) 6 lim sup
t→1+

(t− 1)ζf (t)

6 lim
t→1+

(t− 1)ζg2(t) = cφ

∫

g2 dµ

6 cφ

(∫

f dµ− ǫ

)

.

Since ǫ > 0 is arbitrary, the required convergence result holds for f . �
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