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COVERING NUMBERS FOR GRAPHS AND

HYPERGRAPHS

BÉLA BOLLOBÁS1 AND ALEX SCOTT

Abstract. The covering number of a hypergraph H is the largest
integer k such that the edges of H can be partitioned into k classes
such that every vertex is incident with edges from every class. We
prove a number of results on covering numbers, and state some
open problems.

1. Introduction

Given a hypergraph H , we say that a set of edges E ′ ⊂ E(H) is a
covering class if every vertex ofH is incident with at least one edge from
E ′. The covering number of a hypergraph H is the largest integer k
such that the edges of H can be partitioned into k covering classes. For
k, r ≥ 1, we define f(r, k) to be the smallest integer d such that every
r-uniform hypergraph H with minimal degree at least d has covering
number at least k. We will write fm(r, k) for the corresponding problem
where we allow multiple edges.
Covering numbers for graphs (i.e. for r = 2) have been studied by

a number of authors starting with Gupta [6] in the 1970s (see Section
3 for further discussion). There is also a substantial literature on the
analogous problems for splitting covers of topological spaces, and for
splitting covers by geometric objects (see, for instance, Tsaban [14] and
Elekes, Mátrai and Soukup [2]). However, the hypergraph problem has
received very little attention.
It is trivial that f(r, k) ≤ fm(r, k), and it is easy to see that fm(r, k) ≤

rk: if H is an r-uniform multigraph with minimal degree at least rk,
then an application of Hall’s theorem allows us to assign pairwise dis-
joint sets of k edges to every vertex, which is clearly enough to obtain
the required colouring. It is also easy to see that, for any fixed odd
r and a positive density of values of k, f(r, k) ≥ 2k(r − 1)/r: given
an integer d < 2k(r − 1)/r, fix a set S of r vertices, and consider a
d-regular, r-uniform hypergraph in which every edge is either disjoint
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from S or meets it in exactly r − 1 vertices. Any covering set must
use at least two edges to cover S, so the covering number is at most
|S|d/2(r − 1) < k, giving a lower bound on f(r, k) whenever such a
hypergraph exists.
The aim of this paper is to give better bounds on f(r, k). We begin

in Section 2 by defining a “levelling” operation that replaces a general
hypergraph with a regular one; this allows us to connect the problem
to hypergraph colouring. In Section 3, we consider the problem for
graphs, giving a short proof of Gupta’s bound for f(2, k) and resolving
the analogous problem for multigraphs; this answers a question of Xu
and Liu [15]. In Section 4, we turn to hypergraphs: we determine
f(r, k) to within a constant factor for all r and k; while in Section 5
we determine f(r, k) explicitly for a couple of small values of r and k.
We conclude in Section 6 with some open questions.

2. Levelling

In this section, we define a useful “levelling” construction that will
allow us to replace a general hypergraph with a regular one. Given a
hypergraph H0 = (V0, E0) in which all edges have size at most r and all
vertices have degree at least d, we say that an r-uniform hypergraph
H1 = (V1, E1) is an (r, d)-levelling of H0 (or, more simply, a d-levelling
when r is obvious from context) if the following conditions are satisfied:

(1) V0 ⊂ V1

(2) There is an injective function f : E0 → E1 such that:
(a) for every e ∈ E0 we have f(e) ∩ V0 ⊂ e; and
(b) every edge of E1 that meets V0 is the image of some edge

in E0

(3) H1 is d-regular.

It is easy to show that every H has an (r, d)-levelling: first delete
vertices from the edges of H (possibly creating multiple edges or empty
edges) until we obtain H ′ in which every vertex has degree d. Now take
d copies of H ′, say H ′

1, . . . , H
′
d. For each edge e ∈ E(H ′) we add r−|e|

new vertices, and extend the d copies of e in the H ′
i by adding the new

vertices to those edges. The result is a d-levelling of H .

Proposition 1. If H1 is a d-levelling of H0 and E(H1) can be split

into k covering classes then E(H0) can be split into k covering classes.

Proof. Just use the function f from the definition of d-levelling to in-
duce a colouring of E(H0). �

The d-levelling construction shows that we lose nothing by allowing
vertices of large degree or smaller edges. For k, r ≥ 1, let f≤(r, k) be
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the smallest integer d such that for every hypergraph H with minimal
degree at least d and no edges of size greater than r there is a partition
E(H) = E1∪· · ·∪Ek such that every Ei is a covering class; let f=(r, k)
be the minimum for d-regular r-uniform hypergraphs.

Lemma 2. For k, r ≥ 1, f(r, k) = f=(r, k) = f≤(r, k).

It is easily seen that the same inequalities hold for the corresponding
quantities for multigraphs.
Levelling also allows us to consider the dual problem. Indeed, for

giving bounds on f(r, k), Lemma 2 shows that it is enough to consider
regular hypergraphs. So let H = (V,E) be a d-regular, r-uniform
hypergraph, and let H∗ = (E, V ) be the dual hypergraph, with vertex
set E and edges V , and the same edge-vertex incidence relation. Note
that H∗ is r-regular and d-uniform. An edge cover of H corresponds to
a transversal of H∗, so a k-covering of H corresponds to a k-colouring
of H∗ in which every edge has a vertex of every colour. Thus f(r, k) is
the smallest d such that every d-uniform, r-regular hypergraph has a
k-colouring in which every edge has a vertex of every colour.
For k = 2, this is the famous Property B or hypergraph 2-colouring,

which has been extensively studied (see, for instance, [3, 4, 1, 10]). We
will make explicit use of this connection in Section 5.

3. Graphs

The covering number for graphs has been examined by a number of
authors. For a multigraph G, and x ∈ V (G), let m(x) be the maximum
multiplicity of any edge incident with x. Gupta [6] announced the
theorem that the covering number of G is at least

min
x∈V (G)

d(x)−m(x). (1)

More generally, Gupta stated that if W is an independent set, then (1)
can be weakened: G has covering number at least k, provided d(x) ≥ k
for all x ∈ W and d(x) +m(x) ≥ k for all x 6∈ W . A proof of Gupta’s
theorem was given by Fournier [5], as a consequence of a more general
result on colourings of multigraphs. See also Hilton and de Werra [8],
Hilton [7] and Schrijver [12] for related results and questions. The
problem for infinite graphs and multigraphs has been considered by
Elekes, Mátrai and Soukup [2].
It follows immediately from Gupta’s Theorem that for graphs (m(x) =

1 for all x) we have
f(2, k) ≤ k + 1. (2)

For completeness, we give a short proof of this fact.
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Lemma 3. For k ≥ 2, f(2, k) = k + 1.

Proof. Suppose G is a graph with δ(G) ≥ k + 1. Let H be a (k + 1)-
levelling of G. It is enough for the upper bound to show that E(H)
can be partitioned into k covering classes.
Now H is (k + 1)-regular, so by Vizing’s Theorem it has a proper

(k + 2)-edge-colouring, with colours [k + 2] = {1, . . . , k + 2}. Consider
the edge set E ′ consisting of edges with colour k + 1 or k + 2. Every
vertex of H is incident with 1 or 2 edges from E ′, so E ′ is a union of
paths and cycles. Orient E ′ so that all paths and cycles are directed.
Now every vertex v of H is missing exactly one colour c(v) from [k+2].
If c(v) ∈ {k + 1, k + 2} then v sees all colours in [k]; otherwise, v
has degree 2 in E ′, so has an inedge which we recolour with colour
c(v) (which may produce a colouring that is not proper). We obtain a
colouring in which every vertex sees all colours in [k].
For the lower bound, when k is even we consider Kk+1. When k is

odd we consider any graph that has all vertices of degree k, except for
one of degree k + 1, and (necessarily) an odd number of vertices. In
both cases, there is no perfect matching and counting edges shows that
the edges cannot be split into k covering classes. �

For multigraphs, the argument above will not work, as the multi-
graph analogue of Vizing’s Theorem gives only χ′(G) ≤ 3∆(G)/2, and
direct application of Gupta’s Theorem similarly gives a relatively weak
bound. The problem of determining lower bounds for the cover number
of a multigraph with minimal degree δ was also investigated by Xu and
Liu [15]. They gave sharp bounds for the cases δ = 2, 3, 4, 5, and asked
for a lower bound for general δ. We prove the following.

Theorem 4. For k ≥ 1,

fm(2, k) =

⌊

4k + 1

3

⌋

.

Proof. We write k = 3t + i, where i ∈ {0, 1, 2}. Note that we are
claiming fm(2, k) equals 4t if i = 0, 4t+ 1 if i = 1, and 4t+ 3 if i = 2.
For the lower bound, consider a copy of K3. If i = 0 we give two

edges multiplicity 2t and one multiplicity 2t − 1 for a total weight of
6t−1; if i = 1, we give all three edges multiplicity 2t for a total weight
of 6t; and if i = 2, we give all edges weight 2t+ 1 for a total weight of
6t + 3. Since each cover uses at least two edges, and the total weight
is less than 2k is each case, there are not k disjoint vertex-coverings.
Now for the upper bound. Let G be a multigraph with δ(G) ≥ d =

⌊(4k + 1)/3⌋. We may assume G is d-regular, or replace it with a d-
levelling of G. Now let V (G) = V0 ∪ V1 be a partition with e(V0, V1)
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maximal. Note that every vertex has at least ⌈d/2⌉ edges on the other
side.
Let B be the bipartite graph with vertex classes V0, V1. We colour

the edges of B with colours {1, . . . , k} such that every vertex sees at
least min{k, dB(c)} colours. This is a standard result (see, for instance,
Schrijver [12]), but we sketch a proof for completeness: if B is k-regular
then the result follows easily from Hall’s Theorem; otherwise, for each
vertex v of degree greater than k, we replace v by one or more vertices of
degree k and a vertex of degree at most k (thus splitting it into several
vertices). The resulting bipartite multigraph has all degrees at most k
and so has a proper k-edge-colouring (again using Hall); reuniting the
split vertices gives the required colouring of B.
We let H = G[V0], and orient H so that every vertex v has outdegree

at least ⌊dH(v)/2⌋. Now consider v ∈ V0 and suppose |Γ(v)∩V1| = d−j,
so j ≤ ⌊d/2⌋. If d − j ≥ k then v is already adjacent to edges of all
colours. Otherwise, v is adjacent to d − j colours; since dH(v) = j,
the vertex v has outdegree at least ⌊j/2⌋ in the orientation of H . Now
d − j + ⌊j/2⌋ = d − ⌈j/2⌉, so if d − ⌈j/2⌉ ≥ k then we can use the
outedges in H to fill in the missing colours at v.
If k = 3t then d = 4t, so j ≤ 2t and ⌈j/2⌉ ≤ t, giving d − ⌈j/2⌉ ≥

4t − t = k. If k = 3t + 1 then d = 4t + 1, so j ≤ 2t and ⌈j/2⌉ ≤ t,
giving d − ⌈j/2⌉ ≥ 4t + 1 − t = k. If k = 3t + 2 then d = 4t + 3, so
j ≤ 2t+1 and ⌈j/2⌉ ≤ t+1, giving d−⌈j/2⌉ ≥ (4t+3)− (t+1) = k.
We are done. �

Inverting this bound gives an optimal bound for k in terms of δ: if
G is a multigraph with minimal degree δ ≥ 1 then the cover number
of G is at least

⌊

3δ + 1

4

⌋

.

This answers the question of Xu and Liu [15], by giving an optimal
bound for all δ.

4. Hypergraphs

While coverings of graphs have been extensively studied, much less
is known about covering hypergraphs. Indeed, Elekes, Mátrai and
Soukup leave this as an explicit open problem (Problem 8.2 in [2]).
The aim of this section is to give bounds on f(r, k) and fm(r, k). In
particular, we determine f(r, k) and fm(r, k) to within a constant factor
for all r and k.
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Theorem 5. There are constants C > c > 0 such that, for r, k ≥ 2,

ck log r ≤ f(r, k) ≤ fm(r, k) ≤ Ck log r.

The lower bound can be found below at (7) and the upper bound in
Theorem 6. The lower bound follows by explicit construction. The up-
per bound follows by a fairly straightforward application of the Lovász
Local Lemma. In light of the connection with hypergraph colouring
noted in Section 2, this is not surprising; however the fact that k can
be much larger than r requires some additional argument.
We turn first to the lower bound. We will give two explicit con-

structions that give lower bounds. The first construction, based on
projective spaces, works for k ≥ r; the second, using subsets of the
cube, works for all k and r. Both give bounds of form Ω(k log r).
For k ≥ r, we have the following construction. For q a prime power

and d ≥ 1, let P (t, q) be the projective space of dimension t over Fq

which has (qt+1−1)/(q−1) points. Let H(t, q) be the hypergraph with
vertex set P (t, q) and edges consisting of all 1-codimensional subspaces
of P (t, q). Thus every edge in H(t, q) has r(t, q) = (qt − 1)/(q − 1)
points. The number of s-dimensional subspaces going through any
vertex of P (t, q) is

∏n
i=n−s+1(q

i − 1)
∏s

i=1(q
i − 1)

,

so in particular the number of 1-codimensional subspaces through any
point is d(t, q) = (qt−1)/(q−1). Note that d(t, q) = r(t, q), and H(t, q)
has

|H(t, q)| ·
d(t, q)

r(t, q)
=

qt+1 − 1

q − 1

edges. Now at least t + 1 edges are needed to cover the vertices of
P (t, q), and so the edges of H(t, q) can be split into no more than

qt+1 − 1

(q − 1)(t+ 1)
≤

qd(t, q)

t+ 1

coverings.
Now fix q = 3. For t ≥ 1, we get r = d = (3t−1)/2, and the covering

number is at most 3d/(t+1). Setting k = ⌊3d/(t+1)⌋+1, we see that
there is a constant c1 > 0 such that for these values of r and k (and all
t),

f(r, k) ≥ c1k log r.

We can extend this example to general r and k ≥ r as follows. Note
first that, given an r-uniform hypergraph H we can easily generate an
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(r + 1)-uniform example by creating a new vertex v and adding v to
every edge of H : we shall refer to this as extending H by v. Thus

f(r + 1, k) ≥ f(r, k). (3)

We would like to be able to extend constructions giving lower bounds
for f(r, k) to obtain constructions giving lower bounds for f(r, sk). One
situation where we will be able to do this is the following: suppose
H is an r-uniform hypergraph with minimum degree at least d, and
S ⊂ V (H) is such that no cover of S uses fewer than T edges. Let
us write d(S) for the number of edges of H incident with S. Then
clearly the covering number of H is at most d(S)/T , and so f(r, k) > d
for k > e(H)/T . Now for s ≥ 2, we can consider the multigraph
obtained by taking s copies of each edge of H : by the same argument,
the covering number of this multigraph is at most

sd(S)/T,

and so fm(r, k) > sd for k > se(H)/T .
A slight modification of this argument allows us to construct an

(r + 1)-uniform hypergraph (without repeated edges), which can be
used to obtain a bound on f(r+1, k). Given an r-uniform hypergraph
H with minimal degree at least d, we construct a (s, d)-expansionH(s,d)

of H as follows: for each edge e of H we delete e and replace it by s new
edges of size r+1, each obtained by adding a newly created vertex to e.
Let H ′ be the resulting hypergraph: H ′ is (r+1)-uniform, and the old
vertices now have degree at least sd, while the newly created vertices
all have degree 1. We now take a large number of copies of H ′ and add
edges among the vertices of degree 1 (in any canonical way) to create
an (r + 1)-uniform hypergraph H(s,d) in which all vertices have degree
at least sd. Let S be the vertices of H ′ corresponding to vertices of H .
If no cover of H has fewer than T edges, then the covering number of
H(s,d) is at most

dH(s,d)(S)/T = sdH(S)/T. (4)

Now if we start with H = H(t, 3) and consider H(s,d), we see that,
for s ≥ 1 and r, k as above,

f(r + 1, ks) = Ω(ks log r) (5)

uniformly in s ≥ 1 (and t). Since k(t+1, 3)/k(t, 3) and r(t+1, 3)/r(t, 3)
are both at most 3, it follows from (3) and (5) that

f(r, k) = Ω(k log r) (6)

uniformly in r and k ≥ r.
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For a more general construction (for all r and k), we proceed as
follows. Let d ≥ 1, and let X = {A ⊂ [d] : |A| ≥ d/2}. For i = 1, . . . , d,
let Fi = {A ∈ X : i ∈ A}, and let H be the hypergraph with vertex
set X and edge set {Fi : i ∈ [d]}. Note that every vertex in H has
degree at least ⌈d/2⌉ (since a vertex A ∈ X is covered |A| times); on
the other hand, no set {Fi : i ∈ B} of at most d/2 edges covers X ,
as [d] \ B ∈ X remains uncovered. Therefore, H has no edge-splitting
into two vertex-covers.
Now H has edges of size r = 2d+O(1) and minimal degree ⌈d/2⌉ =

Ω(log r). It follows that we obtain a sequence r1 < r2 < · · · with
ri = 2i+O(1) and sup(ri+1/ri) < ∞ such that f(ri, 2) = Ω(log ri). It
follows from (3) that, for r ≥ 2,

f(r, 2) = Ω(log r).

But now we can argue as in (4). It follows that, for k ≥ r ≥ 2,

f(r, k) = Ω(k log r). (7)

From the other side, we have the following result (note that the case
r = 2 is covered by Theorem 4).

Theorem 6. For some c > 0 and every r ≥ 3 and k ≥ 2,

fm(r, k) ≤ k log r + ck log log r. (8)

Proof. Recall (from the Introduction) that it follows easily from Hall’s
Theorem that fm(r, k) ≤ rk for every r and k. The error term in
(8) therefore allows us to assume r > R for any fixed R. We set
M = log2 r/ log log r and α = α(r) = 5 log log r/ log r. We will consider
k and r in two ranges.

Case 1: k ≤ M : Let d = ⌈(1 + α)k log r⌉. We show that f(k, r) ≤
d. Given an r-uniform hypergraph H0 with minimal degree at least
d, we first find an (r, d)-levelling H1 of H0. By Proposition 1 it is
sufficient to show that E(H1) can be partitioned into k covering sets.
Let c : E(H1) → [k] be a random k-colouring, where each edge is
coloured independently and uniformly at random. We will apply the
Lovász Local Lemma to show that, with positive probability, every
colour class is a covering set.
For each vertex v of H1, let Av be the event that v is not incident

with a vertex of every colour. Then

p := P(Av) ≤ k(1− 1/k)d ≤ ke−d/k ≤ k/r1+α.

Now let G be the graph with vertex set V (H1) and edges between
every pair of vertices that belong to a common edge of H1. Then
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∆(G) ≤ d(r − 1) < 2kr log r, and G is a dependency graph for the
events Av, so the Lovász Local Lemma gives our result immediately,
as, for sufficiently large r,

ep(∆ + 1) ≤
ek

r1+α
· 2kr log r ≤

6k2 log r

rα
≤

6M2 log r

log5 r
< 1,

since rα = (log r)5.

Case 2: k > M : Let d = ⌈(1+λα)k log r⌉, where λ is a large constant.
Let H0 be an r-uniform hypergraph with minimal degree at least d. As
before, we first find a (r, d)-levelling H1 of H0. We now repeatedly (and
recursively) use the Lovász Local Lemma to split our problem into two
subproblems, until we obtain problems small enough to apply Case 1.
Let Λ = 4

√

d log(rd), and consider a random 2-colouring of E(H1)
with colours red and blue, with each edge independently given each
colour with probability 1/2. For each vertex v, Chernoff’s Inequality
implies that the number of red edges incident with v is at least d/2−Λ
with failure probability at most exp(−Λ2/2d). Let Av be the event
that v is incident with at least d/2 − Λ edges of each colour. We can
define a dependency graph G as above, with maximum degree at most
(r−1)d. Since exp(−Λ2/2d) < 1/4rd, it follows from the Lovász Local
Lemma that there is some colouring such that every vertex is incident
with at least d/2 − Λ edges of each colour. We now split [k] into two
sets of size ⌊k/2⌋ and ⌈k/2⌉, and assign one set to each colour: this
gives two subproblems.
We now repeat the argument, recursively splitting each problem into

two subproblems. Let d0 = d and, for i ≥ 0, di+1 = di − 4
√

di log(rdi);
let I be minimal such that k/2I < 2M/3, and let D = D/2I . Then,
for i ≤ I, at the ith stage we have 2i subproblems where in each case
we have an r-uniform hypergraph of minimal degree at least di, and
want to split into (at most) ⌈k/2i⌉ disjoint coverings. If i < I, we take
a di-levelling of each, split each subproblem into two as above, and
repeat.
At the ith stage we have

di ≥
d

2i

i−1
∏

j=0

(

1− 4

√

log(rdj)

dj

)

≥
d

2i

(

1−

i−1
∑

j=0

4

√

log(rdj)

dj

)

.
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Now di+1/di > 3/2 for each j and
√

log(rx)/x is decreasing in x, so
provided di ≥ M , we have

i−1
∑

j=0

4
√

log(rdi)/di = O(
√

logM/M) = O(log log r/ log r) = O(α).

Since ki−1 > M/4 for each i, it follows by induction that di > M for
each i, and so di > (1− α)d/2i for each i. Thus we have

dI/kI ≥ (d/k)(1−O(α))(1 + λα) log r ≥ (1 + α) log r,

provided r is large enough. We can now apply the argument from Case
1 to each subproblem. �

Finally, we note that any bounds on f(r, k) or fm(r, k) extend im-
mediately to the infinite case. Indeed, given any positive integer d, and
an infinite r-uniform hypergraph H , we can construct an (r, d)-levelling
by well-ordering the edges and then proceeding as before; bounds on
the covering number then extend easily to the infinite case by a com-
pactness argument.

5. Small numbers

For r = 2, we know from Gupta’s theorem (or Lemma 3 above)
that f(2, k) = k + 1. For r ≥ 3, determining f(r, k) exactly appears
considerably more difficult. In this section we determine values for
f(r, k) in a couple of small cases.
We use explicitly the connection with hypergraph 2-colouring noted

in section 2. Hypergraph 2-colouring for small values of k and r has
been considered by several authors, including McDiarmid [9].

Lemma 7. f(3, 2) = 4.

Proof. The Fano plane shows that 3-regular, 3-uniform hypergraphs
need not be 2-colourable, and its dual therefore shows that f(3, 2) >
3. On the other hand, Seymour [11] showed that a minimal non-2-
colourable hypergraph G = (V,E) must have |E| ≥ |V |, and so every
3-regular, 4-uniform hypergraph is 2-colourable: it follows by duality
that f(3, 2) ≤ 4. �

Lemma 8. f(4, 2) = 4.

Proof. The lower bound f(4, 2) ≥ 4 follows by monotonicity. On the
other hand, Thomassen ([13]; see also [9]) showed that every 4-regular,
4-uniform hypergaph is 2-colourable; it follows by duality that f(4, 2) ≤
4. �



COVERING NUMBERS FOR GRAPHS AND HYPERGRAPHS 11

It turns out that we can also determine the corresponding quantities
for multigraphs. Recall that, for graphs, we know from section 3 that f
and fm may take different values. However, for the special case k = 2,
it makes no difference if we allow repeated edges.

Lemma 9. For r ≥ 1, f(r, 2) = fm(r, 2).

Proof. Let H be a multihypergraph with minimal degree at least d =
f(2, k). If any edge is repeated, we give one copy colour red and and
other copy colour blue. Note that all vertices belonging to repeated
edges are now covered in both colours. Let V1 be the set of all vertices
that are not yet covered. Let H1 be the hypergraph with vertex set
V ′ and one edge e ∩ V1 for each edge of H that meets V1. If H1 has
repeated edges, we repeat the process (colouring red and blue, and
restricting to a smaller vertex set of uncovered vertices) to obtain H2.
Repeating, we eventually obtain a hypergraph Hk with no repeated
edges. Note that Hk has minimal degree at least d, so let H ′ be a
(r, d)-levelling of Hk. Then H ′ is a simple d-regular hypergraph and so
the edges can be split into k covers, as d = f(2, k). It follows that the
edges of Hk and therefore also of H can be split into k covers, and so
fm(2, k) = f(2, k). �

We immediately have the following corollary to Lemmas 7 and 8.

Corollary 10. fm(3, 2) = fm(4, 2) = 4.

It would be interesting to determine f or fm exactly for other pairs
(r, k) with r ≥ 3.

6. Conclusion

The quantities f(r, k) and fm(r, k) are not in general the same. In-
deed, for graphs, we have seen in section 3 that fm(2, k)−f(2, k) ∼ k/3,
so in general f and fm take different values. However, for the special
case k = 2, Lemma 9 shows that f and fm are identical. It would be
interesting to know more generally how the two parameters differ. For
instance, is it true that for every r ≥ 3, we have fm(r, k)−f(r, k) → ∞
as k → ∞? Or could it be the case that fm(r, k) = f(r, k) for suffi-
ciently large r and k (or for fixed r ≥ 3 and sufficiently large k)?
It is also natural to consider multicoloured versions of the problem.

In order to simplify the formulation, we first reformulate the definition
of fm(r, k) in as follows: let G(r, d) be the collection of bipartite graphs
G = G(A,B;E) with vertex partition (A,B) such that every vertex
in A has degree at least d and every vertex in B has degree at most
r. Then fm(r, k) is the smallest d such that, for every graph in G(r, d)
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there is a partition of B into k sets, each of which covers A (i.e. every
vertex in A has a neighbour in each of the sets).
We define multicolour versions of this as follows. For r, k, t ≥ 1, let

G1(r, d, t) be the collection of bipartite graphs G = G(A,B;E) with
vertex partition (A,B) and edge-colouring c : E → [t] such that every
vertex in A is incident with at least d edges in every colour and every
vertex in B has degree at most r. Let G2(r, d, t) be the collection
of bipartite graphs G = G(A,B;E) with vertex partition (A,B) and
edge-colouring c : E → [t] such that every vertex in A is incident with
at least d edges in every colour and every vertex in B is incident with
at most r edges in each colour.
For integers r, k, t ≥ 1, let g(r, k, t) be the smallest integer such

that for every (coloured) graph G = G(A,B;E) in G1(r, d, t) there
is a partition of B into k sets, such that every vertex of A sends an
edge of every colour to every set; similarly let h(r, k, t) be the same
for G2(r, d, t). It would be interesting to determine bounds on g and
h. Closely related to the case r = t = 2 is the following question.
Given k ≥ 2, what is the smallest d such that every directed graph
with minimal indegree and outdegree at least d has an edge-partition
into k sets, each of which is the edge set of a spanning digraph with no
sources or sinks?
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