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A HAM SANDWICH ANALOGUE FOR QUATERNIONIC

MEASURES AND FINITE SUBGROUPS OF S3

STEVEN SIMON

Abstract. A “ham sandwich” theorem is established for n quater-

nionic Borel measures on quaternionic space H
n. For each finite sub-

group G of S3, it is shown that there is a quaternionic hyperplane H

and a corresponding tiling of H
n into |G| fundamental regions which

are rotationally symmetric about H with respect to G, and satisfy the

condition that for each of the n measures, the “G average” of the mea-

sures of these regions is zero. If each quaternionic measure is a 4-tuple

of finite Borel measures on R
4n, the original ham sandwich theorem on

R
4n is recovered when G = Z2. The theorem applies to ⌊n

4
⌋ finite Borel

measures on R
n, and when G is the quaternion group Q8 this gives a

decomposition of Rn into 2 rings of 4 cubical “wedges” each, such that

the measure any two opposite wedges is equal for each finite measure.

1. Introduction

The familiar ham sandwich theorem states that given n finite Borel mea-
sures µ1, . . . , µn on R

n, there exists a hyperplane H = {x ∈ R
n | x · a = b}

(a 6= 0, b ∈ R) bisecting each measure: µi(S
+) = µi(S

−) = 1
2µi(R

n) for each
i, where S+ = {x | x · a ≥ 0} and S− = {x | x · a ≤ b} are the half-spaces
corresponding to H. Equivalently, one can say that for the group Z2 = {±1},
the “Z2 average” µi(S

+)−µi(S
−) of the measures of the half-spaces is zero

for each measure µi. Thus there is a simultaneous Z2 symmetry (equality)
of the measures of the two half-spaces, which corresponds to the Z2 sym-
metry on each pair of half-spaces given by the free and transitive action of
reflection about each pair’s common hyperplane.

Similarly, the Zm ham sandwich theorem for complex measures [9] states
that given n complex valued Borel measures µ1, . . . , µn on C

n (see, e.g.,
[6] and [9]) and any integer m ≥ 2, there exists a complex hyperplane
(with respect to the standard hermitian inner product on C

n) H= {z ∈
C
n |< z,a >= b} (a 6= 0, b ∈ C) and m corresponding regular “ 1

m
” sectors

S0, . . . ,Sm−1, Sk = {z |< z,a >= b + reiθ; r ≥ 0, θ ∈ [2πk
m
, 2π(k+1)

m
]}, whose

“Zm average”
∑m−1

k=0 ζ
−k
m µi(Sk) ∈ C is zero for each complex measure µi,

ζm = e
2πi
m . Again, the theorem shows a simultaneous Zm symmetry of the

measures of these regular sectors, which corresponds to the Zm symmetry
on each set of regular 1

m
sectors given by the free and transitive action
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which rotates the sectors by multiples of 2π
m

about their common complex
hyperplane H.

In both theorems, one needs to assume that the measures are “proper”.
In the real case, this means that the measure of any hyperplane is zero, and
in the complex case this means that any “real hyperplane” (one that is a
hyperplane in R

2n under the canonical identification with C
n) is a null set.

Note that Z2 is the the 0-dimensional sphere S0 ⊆ R, and the only finite
subgroups of S1 ⊆ C are precisely the subgroups Zm = {ζkm | 0 ≤ k < m}.

We will find analogous results for n proper, quaternionic valued Borel
measures (see section 6) µ1, . . . , µn on quaternionic space Hn and finite sub-
groups of the unit sphere S3 ⊆ H. For each finite subgroup G ≤ S3 and each
quaternionic hyperplane H (section 4), we partition H

n into |G| fundamental
regions Rg, g ∈ G, which are symmetric about their common quaternionic
hyperplane H via a free and transitive rotational G-action. When G is cyclic,
these regions are regular 1

m
sectors corresponding to a codimension 2 real

affine space (complex hyperplane); for non-cyclic G, the regions are “polyhe-
dral wedges”, the sum of the codimension 4 affine space H and a cone in its
orthogonal complement H⊥ on rotationally isometric uniform 3-dimensional
polyhedra depending on the group G.

Taking the measure µℓ(Rg) for each g, multiplying this on the left by
g−1 and summing over G, we obtain a “G average”

∑
g∈G g

−1µℓ(Rg) ∈ H

of the measures of the Rg. Left multiplication of G on H has a rotational
interpretation (see section 2), so the average can be seen as measuring a
type of rotational symmetry of the measures of the Rg. Similarly, one can
multiply the measures of the Rg on the right by g−1, thereby obtaining
another G average

∑
g∈G µℓ(Rg)g

−1, which again can be seen as a rotational
average of the measures of the regions.

It will be shown that for each G, there exists some quaternionic hyper-
plane and corresponding regions for which the “left” average above is zero
for each measure µℓ, thereby expressing a simultaneous quaternionic rota-
tional symmetry of the µℓ(Rg) for each µℓ, and likewise that there exists
some hyperplane and fundamental regions for which the “right” average is
zero for each measure. In [9], it was assumed that µℓ(C

n) 6= 0 for at least
one of the n complex measures, and we will make the analogous assumption
that µℓ(H

n) 6= 0 for some µℓ.

Theorem 1: Given a non-trivial finite subgroup G of S3 and n proper,
quaternionic Borel measures µ1, . . . , µn onH

n as above, there exists a quater-
nionic hyperplane and corresponding fundamental G-regions Rg, g ∈ G, sat-
isfying

∑
g∈G

g−1µℓ(Rg) = 0 (1)
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for each measure µℓ. Likewise, there is a quaternionic hyperplane and cor-
responding G-regions satisfying∑

g∈G
µℓ(Rg)g

−1 = 0 (2)

for each µℓ.

We begin by providing a self-contained discussion of the geometry of the
quaternions and the classification of finite subgroups of its unit sphere S3.
Corresponding to each subgroup, we find a canonical partition of H into
fundamental regions which allow us to to tile H

n into the desired regions
Rg.

2. Quaternions and Finite Subgroups of S3

Recall the Quaternions are the number system H = {a + bi + cj + dk |
a, b, c, d ∈ R}, where i, j, and k satisfy the relations i2 = j2 = k2 = −1, ij =
k, jk = i, ki = j, and ij = −ji, jk = −kj, ki = −ik. H is a non-commutative
ring, where addition is defined component-wise and multiplication is defined
by the distributive property and using the relations above. By analogy
with C, one can decompose each quaternion u = a + bi + cj + dk into real
and imaginary parts Re(u) = a and Im(u) = bi + cj + dk, and likewise
there is a notion of conjugates. To each u ∈ H, one defines its conjugate
ū = a − bi − cj − dk, so ū = Re(u) − Im(u), and it is clear that uv = v̄ū.

The conjugate affords the norm |u| =
√
uū =

√
a2 + b2 + c2 + d2 on H, so

that each u 6= 0 has u−1 = ū
|u|2 as its multiplicative inverse and H is a skew

field. Viewing each u ∈ H as a 4-tuple of real numbers, |u| is the Euclidian
norm on R

4 and the unit sphere S3 (also called the unit quaternions) is
precisely the set of elements of H of norm 1. The norm is multiplicative,
i.e., |uv| = |u||v| for each u, v ∈ H, and restricting multiplication in H to S3

shows that S3 is a group.
In what follows, it will be useful to describe unit quaternions in terms of

“polar coordinates” (see, e.g., [2] or [5]). To begin, the purely imaginary
quaternions may identified with R

3, with S2 the imaginary quaternions of
norm 1. For x ∈ S2, 1 = xx̄ = x(−x) and x2 = −1, so the quaternions {a+
bx | a, b ∈ R}, which we shall call the (1, x)-plane, form a field isomorphic
to C.

For each x ∈ S2 and θ ∈ [0, 2π), one defines the “Euler formula” eθx =
cos θ + sin θx. It is easily verified that each u ∈ S3 can be put in this form,
and this expression is unique when u 6= ±1. Just as in C, it follows that
multiplication on either the right or left by eθx rotates the (1, x)-plane by θ.
We now describe multiplication in H geometrically.

For each u = eθx ∈ S3, let ru : H −→ H be the right multiplication map
(“left screw”) sending each v ∈ H to vu. Viewing H as R4, ru is the rotation
of R4 which rotates the (1, x)-plane by θ and rotates the plane orthogonal
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to it by −θ: For each x⊥ ∈ S2 orthogonal in R
3 to x, xx⊥ ∈ S2 is the

usual cross-product in R
3, hence is orthogonal in R

3 to both x and x⊥, so
the plane generated by x⊥ and xx⊥ is orthogonal in R

4 to the (1, x)-plane.
As xx⊥ = −x⊥x, x⊥eθx = e−θxx⊥, so multiplication on the right by eθx

rotates the (x⊥, xx⊥)-plane by −θ (see, e.g., [5]). In a similar fashion, the
left multiplication map (“right screw”) lu rotates both the (1, x)-plane and
its orthogonal complement by θ.

In order to study the finite subgroups of S3, we will need to examine the
2-fold covering group homomorphism of the special orthogonal group SO(3)
by S3. By linear algebra, each element of SO(3) is a rotation of R3 by some
angle θ about some point x ∈ S2 (equivalently, a rotation about −x by −θ),
and the pair ±(x, θ) representing a rotation is unique when the rotation is
not the identity.

For each u ∈ S3, the conjugation map ϕu : H −→ H given by ϕu(v) =
uvu−1 is the composition lu ◦ ru−1 . Hence for u = eθx, the above discussion
shows that ϕu fixes the (1, x)-plane and rotates its orthogonal complement
by 2θ. Restricting ϕu to R

3, ϕu ∈ SO(3) is the rotation of R3 about x by
2θ (see, e.g., [5]).

By the properties of conjugation, the map ϕ : S3 −→ SO(3), u 7→ ϕu, is a

homomorphism, which is 2 to 1 because u = eθx and −u = e(θ+π)x define the
same element of SO(3). By the characterization of ϕu, kerϕ = {±1}, and
ϕ is surjective by the characterization of SO(3), so S3/{±1} ∼= SO(3) by
the first isomorphism theorem. In fact, ϕ is a smooth covering map, which
shows that S3 is the universal cover Spin(3) of SO(3), and that real projec-
tive space RP 3 = S3/{±1} and SO(3) are diffeomorphic smooth manifolds.

Using the double cover ϕ, one can classify the finite subgroups of S3 as
the pullbacks of those of SO(3). It is a very classical result that the only fi-
nite subgroups of latter are of the following isomorphism type (see, e.g., [1]):

1) The cyclic groups Cm, consisting of the rotational symmetries of the
regular m-gon [j, ζmj, . . . , ζ

m−1
m j] in the (j, k) plane of R

3, i.e., rotations
through i by multiples of 2π

m
.

2) The Dihedral groups Dm, consisting of all the 2m symmetries of the
regular m-gon above: the rotations Cm, as well as rotations by π about each
of the m lines ℓ in the (j, k)-plane bisecting the m-gon.

3) The rotational symmetries of the 5 Platonic Solids:

a) The tetrahedral group T , the 12 rotational symmetries of the regular
tetrahedron [ 1√

3
(i+ j + k), 1√

3
(−i− j + k), 1√

3
(−i+ j − k), 1√

3
(i− j − k)]:

rotations by multiples of 2π
3 about its vertices, and by π through the center
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of pairs of opposite edges (i.e., through i, j and k). D2 consists of these last
three rotations and the identity, so it is an index 3 subgroup of T .

b) The octahedral group O, the 24 rotational symmetries of the regu-
lar octahedron [±i,±j,±k], and equivalently of its normalized dual cube
[ 1√

3
(±i ± j ± k)]: rotations by multiples of π

2 through each pair of oppo-

site vertices of the octahedron, by multiples of 2π
3 about pairs of opposite

vertices of the cube, and by π through opposite pairs of edges. The tetra-
hedron above is contained in this cube, and looking at the elements listed
shows that T is an index 2 subgroup of O.

c) The icosahedral group I, the 60 rotational symmetries of the regular
icosahedron [ 1√

2+τ
(±τi ± j), 1√

2+τ
(±τj ± k), 1√

2+τ
(±i ± τk)], and equiva-

lently of its normalized dual dodecahedron [ 1√
3
(±i± j±k), 1√

3
(±τ−1i± τj),

1√
3
(±τ−1j ± τk), 1√

3
(±τi ± τ−1k)] (see, e.g., [3]), where τ = 1+

√
5

2 is the

golden ratio: rotations by multiples of 2π
5 about pairs of opposite vertices of

the icosahedron, by multiples of 2π
3 through pairs of opposite vertices of the

dodecahedron, and by π through pairs of opposite edges. The cube above
sits inside this dodecahedron, and correspondingly O is an index 5 subgroup
of I.

We can now classify the finite subgroups G of S3. [2], [4], and [5] give
particularly nice accounts of these groups.

If −1 /∈ G, then ϕ is injective and G ∼= ϕ(G). For u = eθx, ϕu cannot

be a rotation by π, for otherwise θ = π
2 , so that u = e

π
2
x = x ∈ S2 and

u2 = −1 ∈ G. Looking at 1) through 3), the only subgroups of SO(3) which
contain no rotations by π are the cyclic groups of order, so ϕ(G) = Cm =
{apm | 0 ≤ p < m}, where am is the rotation of i by 2π

m
. As m is odd, pulling

back by ϕ gives G = {ζpm | 0 ≤ p < m} = Zm.

If −1 ∈ G, G consists of those ±e θ
2
x for which the rotation by θ about

x is in ϕ(G), so |G| = 2|ϕ(G)| and hence is “binary” to one of the groups
in the above list. If ϕ(G) is cyclic of order m, reasoning as above gives
G = {ζp2m | 0 ≤ p < 2m} = Z2m. In the remaining cases, G is non-cyclic
and is called a binary polyhedral group.

Assume that ϕ(G) = Dm. Each rotation by π about a line ℓ in (2) can be
expressed as the composition of the rotation apm and the rotation b about j
by π, so Dm = {apmbq | 0 ≤ p < m, 0 ≤ q ≤ 1}. Pulling Dm back by ϕ, G is
the binary dihedral group

D∗
m := {ζp2mjq | 0 ≤ p < 2m, 0 ≤ q ≤ 1} = Z2m ∪ Z2mj. (3)

When m = 2, D∗
2 = {±1,±i,±j,±k} is the quaternion group Q8, and for

this reason the D∗
m are also called generalized quaternions and denoted Q4m.
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In the case that ϕ(G) is one of the rotation groups of the Platonic solids,
G is the binary tetrahedral group T ∗ := ϕ−1(T ) of order 24, the binary
octahedral group O∗ := ϕ−1(O) of order 48, or the binary icosahedral group
I∗ = ϕ−1(I) of order 120.

Pulling the subgroup D2 ≤ T back by ϕ reveals D∗
2 = Q8 as a subgroup

of T ∗ of index 3, and the other 16 elements of T ∗ are the pullbacks of the
8 3-cycles of T . For instance, if a is the rotation of 1√

3
(i + j + k) by 2π

3 ,

then ϕ−1(a) = {±a∗}, where a∗ = cos(π3 )+ sin(π3 )
(i+j+k)√

3
= 1

2(1+ i+ j+ k).

Explicitly,

T ∗ = {±1,±i,±j,±k, 1
2
(±1± i± j ± k)} = ∪2

r=0Q8a
∗r. (4)

As T is an index 2 subgroup of O, T ∗ is an index 2 subgroup of O∗. Letting
b∗ = 1√

2
(1 + i), ϕ(b∗) is the rotation about i by π

2 , an element of O − T , so

O∗ − T ∗ = T ∗b∗ is a rotated copy of T ∗ and

O∗ = T ∗ ∪ T ∗b∗. (5)

Let σ be the 5-cycle of I rotating about 1√
2+τ

(τi+ j) by 2π
5 . As cos(π5 ) =

1
2τ and 1 + τ−1 = τ , σ∗ = cos(π5 ) + sin(π5 )(

1√
2+τ

(τi+ j)) = 1
2(τ + i+ τ−1j)

is the pullback (along with −σ∗) of σ, and since I is the union of the cosets
Tσr, 0 ≤ r ≤ 4,

I∗ = ∪4
r=0T

∗σ∗r. (6)

3. Tiling H by Finite Subgroups of S3

For each finite subgroupG ≤ S3, we will partition of H into non-overlapping,
contractible regions Rg, g ∈ G. In each case, the boundaries of the Rg will
be contained in a union of hyperplanes of R

4, and G will act freely and
transitively on the Rg by multiplication on the right and left (equivalently,
as left or right screws): Rg1g2 = Rg1g2 and g1Rg2 = Rg1g2 for g1, g2 ∈ G, and
in particular each Rg = R1g = gR1 will be a rotationally isometric copy of
R1. Such a decomposition will be called a G-tiling, and the Rg will be called
fundamental G-regions. Each Rg = cone(0, Cg) = ∪r≥0rCg will be the cone
on a region Cg, with the Cg forming a G-tiling of a topological S3.

3.1. G = Zm. As ij = k, H = C× Cj, and multiplication of H on the right
(left) by ζpm corresponds to rotating the first coordinate by 2πp

m
(2πp

m
) and

the second by −2πp
m

(2πp
m

). Fixing the circle 0× S1 and dividing S1 × 0 into

the closed arcs ap from (ζpm, 0) to (ζp+1
m , 0), 0 ≤ p < m, let Cζ

p
m

be the 3-
dimensional disk (“lens”) formed by taking the union of the great circle arcs
α(u, v)(t) = (cos(t)u, sin(t)v), t ∈ [0, π2 ], from (u, 0) ∈ ap to (0, v) ∈ 0 × S1.

Fixing u, these arcs form a disk D2
u with boundary 0×S1, and Cζ

p
m
= ∪uD

2
u.

In particular, ∂Cζ
p
m

is the topological S2 that is the union of the two caps

D2
ζ
p
m

and D2
ζ
p+1
m

which form the “top” and “bottom” of the lens. As S3 is

the union of great circles from S1 × 0 to 0 × S1, the Cζ
p
m

cover S3, and
6



their interiors are disjoint. Multiplying Cζ
p
m
on either the right or left by ζqm

rotates Cζ
p
m

to C
ζ
p+q
m

, so the Cζ
p
m

constitute a Zm-tiling of S3 (see, e.g., [4],

[5] and [7]).
Equivalently, the Cζ

p
m

are the points of S3 whose argument in the first

coordinate lies in [2πp
m
, 2π(p+1)

m
], so that using the standard hermitian inner

product on C2, Rζ
p
m
= ∪r≥0rCζ

p
m
= Sp×Cj = < e1 >

⊥ + Spe1, where Sp is

the closed sector {reiθ ∈ C | r ≥ 0, θ ∈ [2πp
m
, 2π(p+1)

m
]} in C and e1 = (1, 0).

Thus the Rζ
p
m
= {(z, w) |< (z, w), e1 >∈ Sp} = Sp are the regular 1

m
sectors

corresponding to the complex hyperplane < e1 >
⊥. The boundary ∂Sp =

{re 2πpi

m | r ≥ 0} ∪ {re 2π(p+1)i
m | r ≥ 0} of Sp is the union of half lines in C,

so ∂Rζ
p
m

= < e1 >
⊥ + ∂Spe1 is the union of two half-hyperplanes in R

4. In
particular, R1 and R−1 are the half-spaces corresponding to the hyperplane
(0, 1, 0, 0)⊥ in R

4 when m = 2.

3.2. Binary Polyhedral Groups. For each binary polyhedral group G,
there is a canonical 4-dimensional-polytope PG whose boundary triangulates
S3. In each case, PG = Conv(G)∗, the dual of the convex hull Conv(G),
whose vertices are the elements of the group G. Thus for each g ∈ G, we
look at the translated tangent space Hg = TgS

3 + g = < g >⊥ + g =
{w ∈ R

4 | w · g = 1} centered at g and the corresponding closed half-space
S−
g = {w | w · g ≤ 1}. PG = ∩g∈GS−

g , and the boundary ∂PG provides

a triangulation of S3 into |G| interior disjoint (as we shall see, uniform)
3-dimensional polyhedra Cg = Hg ∩ PG with center g. For a more detailed
exposition of the PG than given below, as well as for a discussion of Conv(G),
[2], [4], and [5] are recommended reading.

As the norm on H is multiplicative, multiplication on the left or right by
a fixed u ∈ S3 preserves the inner product on R

4, and since G is a group, it
follows easily that Hg1g2 = Hg1g2 and g1Hg2 = Hg1g2 for g1, g2 ∈ G, and in
particular that H1g = Hg = gH1 for each g. Cg = Hg ∩PG, so G acts freely
and transitively on the Cg by right or left multiplication, and since each rg
(and lg) is a rotation, each Cg is a rotated copy of the polyhedron C1.

The G-regions Rg are the cones on these three-dimensional polyhedra Cg

whose apex is the origin and whose cross-section bases are scaled copies of
the Cg. The boundary ∂Cg of each uniform polyhedra Cg is a union of
regular polygons, so ∂Rg is the union of the cones of these planar polygons
and hence is contained in a union of hyperplanes in R

4.

3.2.1. G = D∗
m. The elements of D∗

m (3) form the vertices of two mutually
orthogonal regular 2m-gons P2m=[1, ζ2m, . . . , ζ

2m−1
2m ] and P2mj=[j, ζ2mj, . . . , ζ

2m−1
2m j].

Let P ∗
2m be the regular 2m-gon dual to P2m, so in particular P ∗

2mj is dual
to P2mj. Solving the equations defining the dual of Conv(D∗

m), one sees
that PD∗

m
=P ∗

2m × P ∗
2mj is the product of these 2m-gons. Therefore, ∂PD∗

m

is composed of 2m regular prisms Cg, each of which is the product of one
7



of these dual regular 2m-gons with the edge of the other, and S3 is trian-
gulated as T2m ∪ T2mj, the union of two solid tori T2m = ∂P ∗

2m × P ∗
2mj and

T2mj = P ∗
2m × ∂P ∗

2mj with common boundary ∂P ∗
2m × ∂P ∗

2mj. The first

solid torus T2m = ∪2m−1
p=0 Cζ

p
2m

is formed by stacking each prism C
ζ
p+1
2m

onto

the adjacent prism Cζ
p
2m

along their common 2m-gon face, thereby forming

a ring of regular prisms, and the second solid torus T2mj = ∪2m−1
p=0 Cζ

p
2mj is

formed in the same way.
When m = 2, PQ8 = [±1 ± i ± j ± k] is the hypercube dual to the

cross-polytope [±1,±i,±j,±k] = Conv(Q8), and each polyhedra of PQ8 is a
3-dimensional cube dual to an element of Q8. For example, C1 = [1±i±j±k]
is the cube dual to 1.

3.2.2. G = T ∗, O∗, I∗. We describe C1; each Cg is a rotationally isometric
copy. By (4), T ∗ is the union of the vertices of the cross-polytope and
the vertices of its dual hypercube [12 (±1 ± i ± j ± k)], normalized so that

its vertices lie in S3. The points closest to 1 are the vertices of the cube
[12(1± i± j ± k)], and C1 is the regular octahedra [1± i, 1± j, 1± k] in the
hyperplane a = 1 formed by intersecting H1 with the half-spaces determined
by the hyperplanes tangent to the vertices of this cube.

As O∗ is the union of T ∗ and its translate T ∗b∗, it follows that C1 is
the intersection of H1 with the half-spaces determined by the hyperplanes
tangent to the vertices of the cube 1

2 [1 ± i± j ± k] above (the points of T ∗

closest to 1) and the hyperplanes tangent to the vertices of the octahedron
1√
2
[1±i, 1±j, 1±k], (the points of T ∗b∗ (and of O∗) closest to 1). Therefore,

C1 is the intersection of the octahedra [1± i, 1± j, 1± k] and the cube [1±
(
√
2−1)i±(

√
2−1)j±(

√
2−1)k], the truncated cube lying in the hyperplane

a = 1 whose faces are 8 equilateral triangles in the planes ±b±c±d = 1 and
6 regular octagons in the planes ±b =

√
2−1, ±c =

√
2−1, and ±d =

√
2−1.

For I∗, the points closest to 1 are the vertices of the regular icosahedron
[12(τ ± j ± τ−1k), 1

2(τ ± τ−1i± k), 1
2(τ ± i± τ−1j)] in the hyperplane a = τ

2 .
Reasoning as above, C1 is the regular dodecahedron [1± i± j ± k, 1± (τ −
1)i± (1− τ−1)j, 1 ± (1− τ−1)i± (τ − 1)k, 1 ± (1− τ−1)j ± (τ − 1)k].

4. G-Tiling H
n

Scalar multiplication of Hn on the left or right by elements of H makes
H

n into a left or right module over the ring H, with corresponding canonical
“left” and “right” Hermitian inner products. For w = (w1, . . . , wn) and
v = (v1, . . . , vn), these are defined by < w,v >l= w1v̄1 + . . .+wnv̄n, and <
w,v >r =< w̄, v̄ >l = w̄1v1+. . .+w̄nvn, respectively, where v̄ = (v̄1, . . . , v̄n)
is the conjugate of v̄. Note that the left product is “conjugate-linear” in
the second variable: < w, av >l = < w,v >l ā for each a ∈ H, while
the right product is “conjugate-linear” in the first-variable: < wa,v >r =
ā < w,v >r.

8



With respect to these inner products, one can define “left” and “right”
quaternionic hyperplanes by Hl := {u ∈ H

n |< u,a >l= b} and Hr := {u |<
a,u >r= b}, respectively, for any a 6= 0 and b ∈ H.

For each finite subgroup G ≤ S3, we associate to each hyperplane Hl

a partition of H
n into non-overlapping fundamental “G-regions” Rl,g :=

{u |< u,a >l= b + v; v ∈ Rg} for each g ∈ G. There is a natural free and
transitive G right action on the Rl,g defined by setting Rl,g1 · g2 = Rl,g1g2

for g1, g2 ∈ G, so that each Rl,g = Rl,1 · g is a G-translate of Rl,1. For each
w ∈ S3, conjugate linearity of the inner product shows that multiplying a

on the left by w and b on the right by w−1 gives the same left hyperplane.
However, each v ∈ Rg is rotated by the left screw w, so restricting w to C1

gives all the possibleG-regions {u |< u,v >l= b+vw; v ∈ Rg} corresponding
to Hl.

Geometrically, Hl =< a >⊥
l + ba

||a||2 is a (4n− 4)-dimensional affine space

in R
4n corresponding to the linear subspace < a >⊥

l = {u |< u,a >l= 0} of
R
4n. Recalling that Rg = Cone(0, Cg), Rl,g is the “wedge” region Hl+Rga.

Each g ∈ G acts as the rotation of Hn about Hl which rotates the orthogo-
nal complement H⊥

l =< a >l= Ha as a left screw; since Rg1g2 = Rg1g2, g2
rotates Rl,g1 to Rl,g1g2 and the Rl,g are rotationally symmetric about Hl by
the action · above. The Rl,g are contractible with disjoint interiors, so the
Rl,g form a “left” G-tiling of Hn.

With this view, the left G average
∑

g g
−1µℓ(Rl,g) of the introduction is

obtained by rotating Rl,1 by the left-screw g onto Rl,g, taking the measure
µℓ(Rl,g), and rotating µℓ(Rl,g) back by the right screw g−1. Summing over
G gives a rotational average of the measures of the G-translates of Rl,1,
and the conclusion of Theorem 1 is a type of rotational symmetry of the
measures of the G-translates of Rl,1 with respect to each of the n measures.

Similarly, one has a “right” G-tiling of Hn with respect to any right hyper-
plane Hr by defining fundamental G-regions Rr,g = {u |< a,u >r= b+v; v ∈
Rg}=Hr + aRg, where Hr =< a >⊥ + ab

||a||2 is the (4n−4)-dimensional affine

space corresponding to the linear subspace < a >⊥
r = {u |< a,u >r= 0} of

R
4n. G acts freely and transitively on these G-regions on the left by setting

g1 ·Rr,g2 = Rr,g1g2 , i.e., by rotating Rl,g2 about Hr via the right screw g1, and
there is an analogous interpretation of the right average

∑
g µℓ(Rr,g)g

−1.

5. Proof of Theorem 1

By way of motivation, we recall proofs of the ham sandwich theorem in
the real and complex cases. For each real (or complex) hyperplane H, there
is a corresponding G-tiling of Rn (or Cn) into G-regions, and one connects
the free and transitive G action on these regions to a free G action on the
unit sphere in R

n (or Cn) in a continuous fashion. In the real case, Z2 acts
freely and transitively on pairs of half-spaces by reflecting the half-spaces
about H, and acts freely on the unit sphere Sn−1 ⊆ R

n by the antipodal
9



action sending each point x to its antipode −x. In the complex case, Zm

acts freely and transitively on each set of regular 1
m

sectors by rotating

each sector by multiples of ζm about H, and acts freely on S2n−1 ⊆ C
n by

coordinate wise multiplication by powers of ζm, so that each coordinate is
rotated successively by 2π

m
.

To each x ∈ Sn − (S0 × 0) (respectively, S2n+1 − (S1 × 0)), one assigns a
real (complex) hyperplane H(x) and half-spaces S+(x) and S−(x) (regular 1

m

sectors Sk(x), 0 ≤ k < m) in a way that respects the given G actions: H(−x)
= H(x) and S+(−x) = S−(x), and H(ζkmx) = H(x) and S0(ζ

k
mx) = Sk(x) for

each k. The association x 7→ µi(S
+(x)) (x 7→ µi(S0(x))) is continuous for

each measure µi, and both theorems follow from “Borsuk-Ulam” theorems
applied to the their respective groups.

In the real case (see [8]), one extends the map to all of Sn and applies the
standard (Z2) Borsuk-Ulam Theorem: For a continuous map f : Sn −→ R

n,
there exists some x ∈ Sn such that f(x) = f(−x), i.e., such that the Z2

average f(x) − f(−x) is 0. In the complex case, one extends the map to
S2n+1−(Zm×0) and uses a Zm-variant of the Borsuk-Ulam Theorem: For a
continuous map f : S2n+1 − (Zm × 0) −→ C

n, there exists some z for which

the Zm average
∑m−1

k=0 ζ
−k
m f(ζkmz) is 0. (see [9]).

In the quaternionic case, G ≤ S3 acts on H
n by restricting left (or right)

scalar multiplication by H to G, so that each g ∈ G rotates each coordinate
of Hn as a right (or left) screw; these actions are free when H

n is restricted
to S4n−1. The proof of Theorem 1 will proceed as in the cases above, by
connecting this free left (right) G action on quaternionic spheres to the
free and transitive G right (left) action on G-regions. We concentrate on
proving (1) of Theorem 1; the proof of (2) is similar. Thus for each w ∈
S4n+3 − (S3 × 0), we will assign quaternionic hyperplanes Hl(w), and a
corresponding set of G-regions Rl,g(w), in such a way as to preserve the
group actions: Hl(gw) = Hl(w) and Rl,g1(g2w) = Rl,g1g2(w).

As above, we will need to extend this map. Let X := ∪g∈G∂C̄ ′
g × 0,

where C ′
g = S3 ∩ Rg and C̄ ′

g = {u−1 | u ∈ C ′
g} is its conjugate. Thus C ′

g is

the spherical image of the polyhedron Cg on S3 when G is binary dihedral,
C ′
g = Cg when G is cyclic, and each ∂C̄ ′

g is a topological S2 . Theorem 1
will follow from the following “Borsuk-Ulam” Theorem:

Theorem 2: For any continuous map f : S4n+3 − X −→ H
n, there ex-

ists some w ∈ S4n+3 −X such that∑
g∈G

g−1f(gw) = 0. (7)

Proof. If no such w exists, then h(w) :=
∑

g∈G g
−1f(gw) never vanishes,

yielding a continuous map h′ : S4n+3−X −→ S4n−1 given by h′(w) = h(w)
||h(w)|| .

This map is left G-equivariant, i.e., h′(gw) = gh′(w) for each g ∈ G and
10



w ∈ S4n+3 −X. In particular, h′ is Zm-equivariant for any Zm = {ζpm | 0 ≤
p < m} which is a subgroup of G, m ≥ 2.

For each u ∈ S3, the union of the great circle arcs α(u,w)(t) = (cos(t)u,
sin(t)w), 0 ≤ t ≤ π

2 , w ∈ S4n−1, forms a 4n-dimensional disk D4n
u whose

boundary is 0 × S4n−1, and D4n
u ⊆ S4n+3 − X when u /∈ ∪g∂C̄

′
g. Thus

the inclusion map i : S4n−1 →֒ S4n+3 − X, w 7→ (0, w), is nullhomotopic,
as it is “filled in” by the extension D4n

u →֒ S4n+3 − X. The composition
k := h′ ◦ i : S4n−1 −→ S4n−1 is therefore Zm-equivariant and nullhomotopic
as well. It follows by a standard topological argument that we no describe
that no such map k can exist.

Let L4n−1(m) be the Lens Space S4n−1/Zm, the quotient space whose
elements are the equivalence class (orbits) [w] = Zmw of each w ∈ S4n−1

under left multiplication. Since Zm acts freely and is finite, the quotient
map q : S4n−1 −→ L4n−1(m) sending each w to its orbit is a covering map.
This implies that L4n−1(m) is a manifold, and in fact an orientable manifold
because Zm acts by rotations, which are orientation preserving.
S4n−1 is simply-connected, so π1(L

4n−1(m)) ∼= Zm by covering space the-
ory. Explicitly, if s0 ∈ S4n−1 and α is any path from s0 to ζms0, then
ᾱ := q ◦ α is a loop in L4n−1(m) at x0 := [s0] whose homotopy class [ᾱ] is a
generator of π(L4n−1(m);x0).

By the Zm-equivariance, k induces a well-defined continuous map k̄ :
L4n−1(m) −→ L4n−1(m) given by k̄[w] = [k(w)]. Thus k̄ ◦ q = q ◦ k, and we
have the following commutative diagram:

S4n−1 k−→ S4n−1

↓ q ↓ q
L4n−1(m)

k̄−→ L4n−1(m)

It follows that k̄ : π1(L
4n−1(m);x0) −→ π1(L

4n−1(m); k̄(x0)) represents
the identity homomorphism from Zm to itself. The unique lift of k̄ ◦ ᾱ
beginning at k(s0) is k ◦α (i.e., q ◦k ◦α = k̄ ◦ ᾱ), which is a path from k(s0)
to k(ζms0) = ζmk(s0), and as k̄∗([ᾱ]) = [k̄ ◦ ᾱ], k̄∗ is the identity on Zm.

Next, we examine the homology groups Hi(L
4n−1(m)) and cohomology

ring H∗(L4n−1(m)), where coefficients will be taken in the ring Zm of inte-
gers modulo m. Using the standard CW-structure of L4n−1(m), it follows
that Hi(L

4n−1(m)) ∼= Zm for i ≤ 4n − 1 and is 0 otherwise; the same
is true for the cohomology groups H i(L4n−1(m)) with Zm coefficents. By
Poincaré Duality applied to the oriented manifold L4n−1(m), it follows that
{x, y, xy, y2, . . . , y2n, xy2n} is a basis for the ring H∗(L4n−1(m)), where x is
a generator of H1, y = β(x) is a generator of H2, and β is the Bockstein

homomorphism β : H1(L4n−1(m))
∼=−→ H2(L4n−1(m)) (see, e.g., [7], for a

discussion of Lens Spaces and the Bockstein homomorphism).
As the induced map k̄∗ on π1 represents the identity map on Zm, it follows

by the universal coefficients theorem (see, e.g., [7]) that k̄∗ : H1(L4n−1(m)) −→
H1(L4n−1(m)) also represents the identity on Zm, so k̄∗(x) = x, and by the
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naturality of the Bockstein we have k̄∗(y) = βk̄∗(x) = y. As k̄∗ is a ring ho-
momorphism, we conclude that k̄∗ is the identity on H∗, and in particular on
H4n−1. By the universal coefficients theorem, it follows that k̄∗ : Zm −→ Zm

is the identity on H4n−1, so the Zm degree of k̄, deg(k̄) ∈ Zm, is 1. On the
other hand, h is nullhomotopic, so h̄ is as well, so that h̄∗ on H4n−1 is the 0
map and deg(k̄) = 0. �

We now prove Theorem 1.

Proof. For each w = (w0, w1, . . . , wn) ∈ S4n+3 − X, define Hl(w) = {u ∈
H

n |< u, (w1, . . . , wn) >l= −w̄0} and Rl,g(w) = {u |< u, (w1, . . . , wn) >l=
−w̄0 + v; v ∈ Rg}. The left Hermitian inner product is “conjugate-linear”
in the second variable, so Hl(gw) = H(w) for each g ∈ G, and for the same
reason Rl,g1(g2w) = Rl,g1g2(w) for g1, g2 ∈ G. When w /∈ S3 × 0, Hl(w) is
a quaternionic hyperplane, the Rl,g(w) are G-regions, and the association
w 7→ Rl,1(w) preserves the G actions. For w = (w0, 0), Hl(w) = ∅ and
Rl,g(w) = {u | w0 ∈ C̄ ′

g}. Hence Rg(w) = H
n if w0 ∈ C̄ ′

g and is empty
otherwise.

For each measure µℓ, define fℓ : S
4n+3−X −→ H by fℓ(w) = µℓ(Rl,1(w)).

Each fℓ is continuous (Lemma 1), so f := (f1, . . . , fn) : S
4n+3 −X −→ H

n

is continuous as well. By (7), there must be some w ∈ S4n+3 −X such that∑
g∈G g

−1µℓ(Rl,1(gw)) = 0 for each ℓ, and as Rl,1(gw) = Rl,g(w) for each g,∑
g∈G

g−1µℓ(Rl,g(w)) = 0 (8)

for each µℓ.
To finish the proof, we only need to show that w /∈ S3 × 0, so that Hl(w)

is a quaternionic hyperplane and the Rl,g(w) are G-regions. Assume for a
contradiction that w = (w0, 0), w0 /∈ ∪g∈G∂C̄ ′

g. As the Cg have disjoint

interiors, so do the C̄ ′
g, and there is some unique g0 for which w0 ∈ C̄ ′

g0
.

By the above discussion, µℓ(Rl,g) = µℓ(H
n) if g = g0 and µℓ(Rl,g) = 0

otherwise, so by (8), g−1
0 µℓ(H

n) = 0 for each ℓ. Hence µℓ(H
n) = 0 for each

ℓ, contrary to the assumption on the µℓ.
For (2), let Hr(w) = {u |< (w1, . . . , wn), u >r= −w̄0} and Rr,g(w) =

{u |< (w1, . . . , wn)r, u >r= −w̄0 + v; v ∈ Rg} for each w ∈ S4n+3 − X.
Hr(wg) = Hr(w) and Rr,g2(wg1) = Rr,g1g2(w) by conjugate linearity, and
(2) follows as above by using a right multiplication version of Theorem 2:∑

g f(wg)g
−1 = 0 for some w, which is proved in the analogous way as for

left multiplication. �

6. Quaternionic Measures

Let B(Hn) denote the Borel sets of H
n. By direct analogy with the

definition of a complex Borel measure (see, e.g., [6] or [9]), a function
µ : B(Hn) −→ H is called a quaternionic Borel measure on H

n if
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1) µ(∅) = 0, and

2) If {Ei}∞i=0 is a countable collection of disjoint Borel sets, then µ(
⋃∞

i=0Ei) =∑∞
i=0 µ(Ei), and the convergence of this sum is absolute:

∑∞
i=0 |µ(Ei)| <∞.

In particular, |µ(E)| <∞ for each Borel set E.

A quaternionic Borel measure µ on H
n may be written uniquely as µ =

µ1 + µ2i + µ3j + µ4k, where each µr : B(Hn) −→ R is a Borel signed
measure. By the Jordan decomposition theorem, (see, e.g., [6]), each µr can
be expressed uniquely as the difference of two mutually singular positive
Borel measures µ+r and µ−r on H

n. That is, there exist two disjoint Borel
sets Ar and Br whose union is H

n, such that µ+r (Br) = µ−r (Ar) = 0 and
µr = µ+r − µ−r . In particular, condition 2) implies that each µ±r is finite, as
µ+r (H

n) = µ+r (Ar) = µr(Ar) <∞ and µ−r (H
n) = µ−r (Br) = −µr(Br) <∞.

A Borel set E will be called null with respect to µ if µ(E′) = 0 for each
Borel set E′ ⊆ E. By the Jordan decompositions of the µr, this is equivalent
to E having measure zero with respect to each of the µ±r : If E is null for
µ, then µ+r (E) = µ+r (E ∩ Ar) = µr(E ∩ Ar) = 0 for each r, and similarly
µ−r (E) = 0 for each r as well. Conversely, if E has measure zero for each µ±r
and E′ ⊆ E is Borel, then µr(E

′) = µ+r (E
′)− µ−r (E

′) = 0.
We will call a subset of Hn a “real hyperplane” if it is a hyperplane in R

4n

under the canonical identification with H
n, and we will call a quaternionic

Borel measure µ on H
n “proper” if each real hyperplane in H

n is null with
respect to µ. For each g ∈ G, ∂Rl,g = Hl + ∂Rga, where each Hl is a
(4n − 4) dimensional affine space in R

4n, and as each ∂Rg is contained in
a finite union of hyperplanes in R

4, ∂Rl,g is contained in a finite union of
hyperplanes in R

4n. A subset of a null set is a null set and the union of null
sets is also a null set, so each ∂Rl,g is a null set with respect to any proper
quaternionic Borel measure on H

n. Finally, we prove Lemma 1.

Proof. We proceed as in [9]. Let µ be a proper, quaternionic Borel measure
on H

n. As µ = (µ+1 −µ−1 )+(µ+2 −µ−2 )i+(µ+3 −µ−3 )j+(µ+4 −µ−4 )k, continuity
of the association w 7→ µ(Rl,1(w)) is equivalent to continuity of the map
w 7→ µ±r (Rl,1(w)) for each r. Let {wm}∞m=1 be a sequence in S4n+3 − X
converging to w, and let hm = χRl,1(wm) and h = χRl,1(w). We will show
that hm converges to h pointwise outside of a null set, so that hm converges
to h almost everywhere with respect to each µ±r .

Each hm is dominated by χHn , which is in L1(µ±r ) because µ
±
r (H

n) <∞.
By the Dominated Convergence Theorem,

lim
m→∞

µ±r (Rl,1(wm)) = lim
m→∞

∫
hmdµ±r =

∫
hdµ±r = µ±r (Rl,1(w)),

so the function w 7→ µ±r (Rl,1(w)) is continuous.
Now we show the convergence of the hm. Recalling that w /∈ X, define

∂Rl,1(w) = {u |< u, (w1, . . . , wn) >l= −w̄0 + v; v ∈ ∂R1}. If w /∈ S3 × 0,
13



then ∂Rl,1(w) is the boundary of the G-region Rl,1(w) and hence is a null
set, while if w = (w0, 0), then ∂Rl,1(w) = {u | w0 ∈ ∂C̄ ′

1} = ∅. Thus
∂Rl,1(w) is always a null set, and we will show that the hm converge to h
outside of ∂Rl,1(w).

For each u /∈ ∂Rl,1(w), define ψu : S4n+3 − X −→ H by ψu(z) = <
u, (z1, . . . , zn) >l +z̄0. For u /∈ ∂Rl,1(z), u is in either Int(Rl,1(z)) :=
{u |< (u, z1, . . . , zn) >l= −z̄0 + v; v ∈ Int(R1)} or Ext(Rl,1(z)) := {u |<
u, (z1, . . . , zn) >l= −z̄0 + v; v ∈ Int(H − R1)}. Moreover, u ∈ Int(Rl,1(z))
iff z ∈ ψ−1

u (Int(R1)), while u ∈ Ext(Rl,1(z)) iff z ∈ ψ−1
u (Int(H−R1)).

Suppose first that u ∈ Int(Rl,1(w)), so that w ∈ ψ−1
u (Int(R1)). ψ

−1
u (Int(R1))

is open because ψu is continuous and Int(R1) is open, and since wm → w,
wm ∈ ψ−1

u (Int(R1)) for all sufficiently large m. Hence u ∈ Int(Rl,1(wm))
for all large enough m, and by the same reasoning u ∈ Ext(Rl,1(wm)) for all
large enough m if u ∈ Ext(Rl,1(w)). Thus for u /∈ ∂Rl,1(w), hm(w) = h(w)
for all sufficiently large m and hm → h outside of ∂Rl,1(w). �

7. Applications of Theorem 1

7.1. G = Zm. From here on, we will omit the subscripts differentiating left
and right quaternionic hyperplanes and regions.

Identifying H with C
2, any quaternionic Borel measure on H

n is a pair of
complex Borel measures on C

2n, so Theorem 1 applies to 2n complex Borel
measures µ1, µ2, . . . , µ2n on C

2n. When G = Zm, it follows from section
3.1 that the Rζkm

, 0 ≤ k < m, are regular 1
m

sectors Sk corresponding to

a complex hyperplane, and Theorem 1 gives that
∑m−1

k=0 ζ
−k
m µℓ(Sk) = 0 for

each µℓ, thereby recovering the Zm ham sandwich theorem for C2n.
The union ∪m−1

k=0 ∂Sk is a regular m-fan centered at a codimension 2 affine
subspace. Letting each complex Borel measure be a proper, Borel measure
on R

4n, one concludes in particular that given 2n proper, Borel measures on
R
4n, there is a regular 3-fan trisecting each measure, a pair of orthogonal

hyperplanes which bisect each measure, and a regular 6-fan whose corre-
sponding opposite regular 1

3 -sectors always have equal measure (see [9]).

If µ1, µ2, µ3, µ4 are proper, Borel measures on R
4n, then µ := µ1 + µ2i+

µ3j+µ4k is a proper quaternionic Borel measure on H
n. The Z2 regions R1

and R−1 of Theorem 1 are the half-spaces S+ and S− of a hyperplane in
R
4n (see section 3.1), and as each measure is proper, we recover the original

ham sandwich theorem on R
4n: µℓ(S

+) = µℓ(S
−) = 1

2µℓ(R
4n) for each µℓ.

7.2. G = D∗
m. Recall from section 3.2.1 that D∗

m triangulates S3 as the
union of the two solid tori, where each torus is a ring of regular 2m prisms
Cg, and R

4 is the union of the two rings of cones Rg on these prisms. Real-
izing each (4n− 4)-dimensional affine space H as a quaternionic hyperplane
Hℓ, R

4n is the union of two rings of 2m “prism wedges” Rg = H +Rga.

Similarly, the complement H⊥ of each codimension 4 affine subspace H of
14



R
4n+k, 1 ≤ k ≤ 3, can be partitioned into copies of the D∗

m-regions Rg,

thereby partitioning R
4n+k into prism wedges which we again denote by Rg,

and R
4n+k is the union of two rings of 2m wedges each.

Let µ1, . . . , µn be proper, finite Borel measures on R
4n. Each µℓ can be

seen as a proper quaternionic Borel measure taking values in [0,∞), so by
Theorem 1 there is a codimension 4 affine space H and 4m corresponding
D∗

m regions such that for each µℓ,

2m−1∑
p=0

ζ−p
2mµℓ(Rζ

p
2m

) = 0 (9)

2m−1∑
p=0

ζ−p
2mµℓ(Rζ

p
2mj) = 0 (10)

Thus (9) and (10) show that for each of the two rings forming R
4n, the Z2m

average of the measures of the ring’s wedges is zero for each µℓ.
This result can be extended to n finite, proper Borel measures µℓ, 1 ≤

ℓ ≤ n, on R
4n+k, 1 ≤ k ≤ 3. The projection π : R4n+k −→ R

4n onto the
last 4n coordinates of R4n+k induces n finite Borel measures π(µℓ) on R

4n

by setting π(µℓ)(E) = µℓ(π
−1(E)) for each Borel set E ⊆ R

4n. The pull-
back of an affine subspace of R4n is an affine subspace of R4n+k of the same
codimension, so in particular each π(µℓ) is proper, and since a prism wedge
Rg in R

4n pulls back to a prism wedge in R
4n+k, applying Theorem 1 to the

π(µℓ) shows that there is some codimension 4 affine subspace H in R
4n+k

and corresponding prism wedges Rg which satisfy (9) and (10).

We conclude with the cases m = 2 and m = 3. When m = 2, the Cg are
cubes (section 3.2.1) and the Rg are cubical wedges. Examining real and
imaginary parts in (9) and (10) yields

µℓ(R1) = µℓ(R−1) µℓ(Rj) = µℓ(R−j)
µℓ(Ri) = µℓ(R−i) µℓ(Rk) = µℓ(R−k)

(11)

R−g = −Rg for each g, so R−g and Rg are opposite regions of R4n+k

with respect to the affine space H, and (11) says that for each µℓ, opposite
wedges have equal measure.

Corollary 1: Given ⌊n4 ⌋ finite, proper Borel measures µ1, . . . , µ⌊n
4
⌋ on R

n,

there exists a codimension 4 affine space and a corresponding decomposi-
tion of Rn into 2 rings of 4 cubical wedges Rg, g ∈ Q8, such that for each
µℓ, opposite wedges have equal measure: µℓ(Rg) = µℓ(R−g) for each g ∈ Q8.

When m = 3, the Rg are hexagonal prism wedges, six in each of the two
rings comprising R

n, and within each ring there are six “1
3 rings” Tg formed

by taking the union of two adjacent wedges (e.g., Tζp6 := Rζ
p
6
∪ R

ζ
p+1
6

in

the first ring), and the 1
3 ring opposite to Tg with respect to H is T−g. A
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calculation using (9) and (10) yields that opposite 1
3 rings always have equal

measure:

µℓ(Tζp6 ) = µℓ(T−ζ
p
6
), 0 ≤ p ≤ 2 (12)

µℓ(Tζp6 j) = µℓ(T−ζ
p
6 j
), 0 ≤ p ≤ 2 (13)

for each µℓ.

Corollary 2: Given ⌊n4 ⌋ finite, proper Borel measures on R
n µ1, . . . , µ⌊n

4
⌋,

there exists a codimension 4 affine space and a corresponding decomposition
of Rn into 2 rings of 6 hexagonal prism wedges Rg, g ∈ D∗

3, such that for
each µℓ, opposite

1
3 rings have equal measure: µℓ(Tg) = µℓ(T−g) for each

g ∈ D∗
3 .
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