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THE ENDOMORPHISMS MONOID OF A HOMOGENEOUS

VECTOR BUNDLE

L. BRAMBILA-PAZ AND ALVARO RITTATORE

Abstract. In this paper we give some properties of the algebraic and
geometric structure of the endomorphisms monoid of a homogeneous
vector bundle.

1. Introduction

Let k be an algebraically closed field of arbitrary characteristic and A an
abelian variety over k. For any a ∈ A denote by ta : A→ A the translation
by a. A vector bundle ρ : E → A over A is called homogeneous if E ∼= t∗aE,
for any a ∈ A. An indecomposable homogeneous vector bundles over A are
vector bundles of the form L⊗F , where L ∈ Pic0(A), and F is an unipotent
homogeneous vector bundle, i.e. F admits a filtration by sub-bundles such
that the associated graded bundle is a trivial bundle.

Let ξ = (E, ρ,A) and ξ′ = (E′, ρ′, A) be two homogeneous vector bundles
over A. A bundle homomorphism (f, α) : ξ → ξ′ is a morphism of the un-
derlying bundles; that is, f : E → E′ and α : A → A are maps such that
α = ta for some a ∈ A, ρ′f = αρ and the restriction fb : ρ

−1(b)→ ρ′−1(α(b))
is linear for each b ∈ A. We denote by Homhb(E,E

′) the set of such homo-
morphisms and by HomA(E,E

′) the subset of bundle homomorphisms of
the form (f, IdA). We will denote Homhb(E,E) (respectively HomA(E,E))
by Endhb(E) (respectively EndA(E)).

The monoid EndA(E) has been studied by a number of authors over
at least the last 50 years. From Atiyah’s results (see [2]) we have that a
homogeneous vector bundle E over A is indecomposable if and only if the
subset NA(E) ⊂ EndA(E) consisting of all nilpotent endomorphism of E is
a vector subspace which is in fact a 2-sided ideal in EndA(E), and

EndA(E) = k · 1E ⊕NA(E)

as a k-vector space, where the direct summand k · 1E consists of all scalar
endomorphisms. Miyanishi in [16] described the algebraic structure of the
automorphisms group Authb(E) of an homogeneous vector bundle E → A
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and derived some consequences about the structure of E as vector bundle.
Later, Mukai in [17] generalized Miyanishi results for the indecomposable
homogeneous vector bundles. In [12] Brion and the second author proved
that the endomorphisms monoid Endhb(E) is a smooth algebraic monoid
with unit group Authb(E), the group of automorphisms of E. Moreover, they
proved (see [12, Theorem 5.3]) that any normal algebraic monoid M can be
embedded as a closed submonoid of the endomorphisms monoid Endhb(E) of
an indecomposable homogeneous vector bundle E over A(M), where A(M)
is Albanese variety ofM . Moreover, its Albanese morphism α : Endhb(E)→
A is a morphism of algebraic monoids, with Kernel α−1(0) = EndA(E) (see
[12] and Remark 3.1 below).

The aim of this paper is to describe the geometric and algebraic structure
of the endomorphisms monoid Endhb(E), as well as the relationship between
this structure and the structure of E as a vector bundle.

If ρ : E = L⊗F → A be an indecomposable homogeneous vector bundle of
rank n, where L is a homogeneous line bundle and F is an unipotent vector
bundle then for the algebraic structure of Endhb(E) and the structure as
vector bundle we prove that,

(1) Endhb(E) → A is a homogeneous vector bundle with fiber isomor-
phic to EndA(E). In particular, EndA(E) is a finite-dimensional

k-algebra with dimEndA(E) ≤ 1 + n(n−1)
2 . Moreover, Endhb(E) is

obtained by successive extensions of L (see Theorems 3.3 and 4.17).
(2) If L is a line bundle then Endhb(L) ∼= L (see Lemma 4.9 and Corol-

lary 4.10).
(3) The Kernel of the algebraic monoid Endhb(E) is the zero section

Θ(E) = {θa : E → E : θ(vx) = 0x+a ∀ vx ∈ Ex} = Ker
(
Endhb(E)

)
.

In particular, Ker
(
Endhb(E)

)
is an algebraic group, isomorphic to

the abelian variety A (see Corollary 4.13).
(4) Let N hb(E) denote the set of pseudo-nilpotent elements, Then the

algebraic monoid Endhb(E) decomposes as a disjoint union

Endhb(E) = Authb(E) ⊔ N hb(E)

(see Theorem 4.16). In particular, N hb(E) is an ideal of Endhb(E).
Moreover, N hb(E) is a homogeneous vector bundle, obtained by suc-
cessive extensions of L (see Proposition 4.18).

(5) There exists a exact sequence of vector bundles

0 // N hb(E) // Endhb(E)
ρ // Endhb(L) ∼= L // 0

Moreover, the morphisms appearing in the sequence are compatible
with the structures of semigroup, and the sequence splits if and only
if E ∼= L (see Theorem 4.19).

Let ρ : E = L ⊗ F → A be an indecomposable homogeneous vector
bundle of rank n. Denote by E0 the fibre ρ−1(0) ⊂ E where 0 ∈ A is the
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unit element. Recall that the induced space Authb(E)∗AutA(E)E0 is defined
as the geometric quotient of Authb(E) × E0 under the diagonal action of
AutA(E) (see Definition 2.1 below). In Theorem 4.1 we prove that

an indecomposable homogeneous vector bundle ρ : E → A is the induced
space from the action of AutA(E) on E0 to an action of the automorphisms
group Authb(E), i.e.

E ∼= Authb(E) ∗AutA(E) E0.

The above description allow us to describe the structure of Endhb(E) as
vector bundle when E is a decomposable vector bundle (see Theorem 4.12).
More precisely, if E =

⊕
i,j Li⊗Fi,j, where Li is a homogeneous line bundle

and Fi,j an unipotent bundle, then

Endhb(E) ∼=
⊕

i

Li ⊗
(
⊕j,kHomhb(Fi,j , Fi,k)

)

where Homhb(Fi,j , Fi,k) is the monoid of homomorphisms from Fi,j to Fi,j.
Actually, (see Theorems 3.6 and 3.6 and Corollary 3.10) we have that if
(E, ρ,A) and (E′, ρ′, A) are two homogeneous vector bundles over A then
Homhb(E,E

′) is a homogeneous vector bundle over A.

The paper is organized as follows: in section 2 we recall the basic re-
sults about algebraic monoids and homogeneous vector bundles needed in
the subsequents sections. In section 3 we establish the first results on the
structure of Homhb(E,E

′). In section 4 we prove the main results of this
work, which relate the structure of the homogeneous vector bundle of E and
the structure of Endhb(E) as vector bundle and as algebraic monoid. In
section 5 we do explicit calculations of Endhb(E) and EndA(E) when E is a
homogeneous vector bundle of small rank.
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2. General results

In this paper we fix an algebraically closed field k of arbitrary character-
istic and an abelian variety A over k and recall the basic results on algebraic
monoids and homogeneous vector bundles over A that we will need. The
main references for the theory of algebraic monoids are [11, 12, 19, 20] and
[1, 2, 3, 16, 17] for the theory of homogeneous vector bundles.
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2.1. Algebraic monoids.

Recall that an algebraic monoid is an algebraic variety M together with
a morphism m : M ×M → M such that m is an associative product and
there exists a neutral element 1 ∈ M . The unit group of M is the group of
invertible elements

G(M) =
{
g ∈M : ∃ g−1 , gg−1 = g−1g = 1

}
.

It is well known that G(M) is an algebraic group, open in M (see [19]). If
M is an irreducible algebraic monoid, then its Kernel, denoted by Ker(M),
is the minimum closed ideal, that is Ker(M) is the minimum closed subset
Z ⊂ M such that MZM = M . The Kernel of an algebraic monoid always
exists: if M is an affine algebraic monoid, then its Ker(M) is the unique
closed

(
G(M) ×G(M)

)
-orbit (see [19, 12]).

Let M,N be algebraic monoids. A morphism ϕ : M → N is a morphism
of algebraic monoids if ϕ(ab) = ϕ(a)ϕ(b) for any a, b ∈M and ϕ(1M ) = 1N .
We denote such morphism as ϕam : M → N . If a morphism of algebraic
monoids ϕam : M → N is an isomorphism, we say that M and N are
isomorphic as algebraic monoids, and denote as M ∼=am N .

Definition 2.1. Let H ⊂ G be algebraic subgroup of an algebraic group G
such that H acts on an algebraic variety X. The induced space G ∗H X is
defined as the geometric quotient of G×X under the H-action h · (g, x) =
(gh−1, h · x). Under mild conditions on X (e.g. X is covered by quasi-
projective H-stable open subsets), this quotient exists. Clearly, G ∗H X is a
G-variety, for the action induced by a · (g, x) = (ag, x). We will denote the
class of (g, x) in G ∗H X by [g, x]. We refer the reader to [4], where some
basic facts about induced spaces were proved, and to [21] for a survey on
this construction.

Remark 2.2. Let G be an algebraic group and let H ⊂ G be a closed
subgroup, with H acting over an algebraic variety X. Then the morphism
π : G∗HX → G/H induced by (g, x) 7→ [g] = gH is a fiber bundle over G/H
with fiber isomorphic to X. If moreover X is a H-module, then G ∗H X →
G/H is a vector bundle (see [21]).

The Chevalley’s structure theorem for an algebraic monoid says that if
G is algebraic group and A(G) is the Albanese group then the Albanese
morphism p : G→ A(G) fits into an exact sequence of algebraic groups

1 // Gaff
// G

p // A(G) // 0

where Gaff is a normal connected affine algebraic group (since the group
A(G) is commutative, its law will be denoted additively).

Remark 2.3. Brion and Rittatore in [11, 12] generalize Chevalley’s decom-
position to irreducible, normal, algebraic monoids. They prove that if M is
a irreducible, normal, algebraic monoid with unit group G, then M admits
a Chevalley’s decomposition:
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1 // Maff = Gaff
// M = G

p // A(G) // 0

1 // Gaff
//

?�

OO

G
p|

G

//?�

OO

A(G) // 0

where p : M → A(G) = G/Gaff (respectively p|
G

: G → A(G)) is the
Albanese morphism of M (respectively G). Moreover, if Z0 denotes the
connected center of G, then A(G) ∼= Z0/(Z0 ∩Gaff ) and

M = G ·Maff = Z0 ·Maff .

Actually they prove that,

M ∼= G ∗Gaff
Maff

∼= Z0 ∗Z0∩Gaff
Maff .

From Brion and Rittatore results we have the following corollary.

Corollary 2.4. Let M be an irreducible algebraic monoid, with unit group
G. Then Ker(M) = GKer(Maff)G = GKer(Maff ) = Z0 Ker(Maff ) where Z

0

is the connected center of G.

Proof. Since M = Z0Maff , it follows that Ker(Maff) ⊂ Ker(M), and hence
GKer(Maff)G ⊂ Ker(M). Since both terms in the last inclusion are

(
G(M)×

G(M)
)
-orbits, the first equality follows.

It is clear that
(
GKer(Maff )G

)
∩Maff = Ker(Maff ) and from the decom-

positions M = Z0Maff =MaffZ
0 and G = Z0Gaff , we deduce that

GKer(Maff )G = Z0Ker(Maff) = GKer(Maff).

�

2.2. Homogeneous vector bundles.

Definition 2.5. A vector bundle E → A is called homogeneous if for all
a ∈ A, E ∼= t∗aE where ta is the translation by a.

Note that a line bundle is homogeneous if and only if it is algebraically
equivalent to zero (see [15, Sect. 9]). In particular the trivial bundle OA is
homogeneous.

Let ξ = (E, ρ,A) and ξ′ = (E′, ρ′, A) be two homogeneous vector bundles
over A and let (f, α) : ξ → ξ′ be a bundle homomorphism. We have a
commutative diagram:

E
f //

��

E′

��
A α

// A
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Since the projections ρ and ρ′ are the Albanese morphisms of E and E′

respectively, (see for example [15, Cor. 3.9]), it follows that f : E → E′

induces the morphism α : A→ A which is a translation

ta : A→ A, x 7→ a+ x

for some a ∈ A.

We denote Homhb(E,E
′) the set of such bundle homomorphisms and

HomA(E,E
′) the subset of bundle homomorphisms of the form (f, IdA), that

is, those that fix the base. If E∗ ⊗ E′ = Hom(E,E′), then HomA(E,E
′) =

H0(A,Hom(E,E′)); in particular, EndA(E) = H0(A,E∗ ⊗ E).

It is clear that if (f, ta) : E → E′ and (g, tb) : E′ → E′′ are bundle
morphisms then

(
(g ◦ f), tb+a

)
: E → E′′ is a bundle morphism. If E is

a homogeneous vector bundle, then Homhb(E,E) := Endhb(E) is a monoid
under composition, called the endomorphisms monoid. The group Authb(E)
of automorphisms of E is the unit group of this monoid. Clearly (f, ta) ∈
Authb(E) if and only if f : E → E is an isomorphism of algebraic varieties.

The map

π : Endhb(E)→ A , π(f, ta) = a ,

is a morphism of monoids. In particular, the fiber at the unit element 0 ∈ A
is the algebra of endomorphisms EndA(E) of the vector bundle E. It is well
known that if E is indecomposbale, then EndA(E) is a finite-dimensional
k-algebra; in particular, an irreducible, affine, smooth, algebraic monoid,
with unit group AutA(E) := π−1(0) ∩ Aut(E). We say that E is simple if
EndA(E) = k.

For convenience of notation we will denote sometimes a bundle homomor-
phism (f, α) : ξ → ξ′ just as f : E → E′ since α = ta is determined by f and
call it just a homomorphism. If (f, IdA) is an isomorphism, we will write
E ∼=vb E

′.

Remark 2.6. Let π : Homhb(E,E
′)→ A be defined as π(f, ta) = a.

(1) Let π−1(a) be the fibre of π : Homhb(E,E
′) → A at a ∈ A. There

is a natural bijection between π−1(a) and the set HomA(E, t
∗
aE

′).
Indeed, given (f, ta) ∈ Homhb(E,E

′) there is a homomorphism fa :
E → t∗aE

′ of vector bundles over A, such that the following diagram

E
fa

!!C
CC

CC
CC

C f

##

��

t∗aE
′

��

// E′

��
A

ta
// A

is commutative.
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(2) π : Homhb(E,E
′) → A is a fibration over A with fiber at a ∈ A

canonically bijective to HomA(E, t
∗
aE

′) which is a finite-dimensional
k-vector space. In particular, HomA(E,E

′) = π−1(0).

Definition 2.7. We say that a vector bundle E of rank r > 1 is obtained
by successive extensions of a vector bundle R, of length s, if there exist
extensions

ρ1 : 0 −→ E0
i1−→ E1

p1
−→ R −→ 0

ρ2 : 0 −→ E1
i2−→ E2

p2
−→ R −→ 0

ρ3 : 0 −→ E2
i3−→ E3

p3
−→ R −→ 0

...
...

ρs : 0 −→ Es−1
is−→ Es

ps
−→ R −→ 0

such that Es ∼= E and E0 = R.

In such case we say that (ρ1, . . . , ρs) are extensions associated to E. In
particular if Ei is homogeneous for all i = 0, . . . , s we say that E is obtained
by successive extensions of the homogeneous vector bundle R. If E is ob-
tained as successive extensions of the trivial bundle OA, we say that E is a
unipotent vector bundle.

Note that E is obtained by successive extensions of a vector bundle R if
and only if there exists a filtration

R = E0 ⊂ E1 ⊂ E2 ⊂ E3 ⊂ · · · ⊂ Es−1 ⊂ Es = E

such that Ei/Ei−1
∼= R for i = 1, . . . , s. The graded bundle i.e. gr(E) =

⊕Ei/Ei−1, associated to this filtration is isomorphic to ⊕sR. In particular,
if E is unipotent then gr(E) = ⊕OA.

Proposition 2.8. If E is a vector bundle obtained by successive extensions
of a vector bundle R, of length s, then dimk EndA(E) ≥ 2.

Proof. Let

ρ1 : 0 −→ R
i1−→ E1

p1
−→ R −→ 0

ρ2 : 0 −→ E1
i2−→ E2

p2
−→ R −→ 0

ρ3 : 0 −→ E2
i3−→ E3

p3
−→ R −→ 0

...
...

ρs : 0 −→ Es−1
is−→ Es ∼= E

ps
−→ R −→ 0

be the extensions associated to E. The composition ϕ = is◦· · ·◦i2◦i1◦ps 6= 0
defines a non invertible endomorphism of E. Therefore, dimk EndA(E) ≥
2. �

In the following remark we recall the main results of [16] and [17] that we
use in the rest of this paper.

Remark 2.9. Let E → A be a vector bundle over an abelian variety.
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(1) E is an indecomposable homogeneous vector bundle if and only if
E ∼= L⊗ F where L ∈ Pic0(A) and F is a unipotent vector bundle.

(2) E is homogeneous if and only if E decomposes as a direct sum E =⊕
Li⊗ Fi, where Li ∈ Pic0(A) and Fi is a unipotent vector bundle.

(3) Unipotent vector bundles are homogeneous.
(4) A vector bundle E that is a successive extensions of a homogeneous

line bundle L, is homogeneous.
(5) If E is indecomposable then E is obtained by extensions of a ho-

mogeneous line bundle L. Moreover, one can choose the associated
filtration 0 ( E1 = L ( · · · ( Ei ( · · · ( En = E in such a way that
Ei is stable by Authb(E) for all i.

From the results of Mukai in [17] we have that the category HA of
homogeneous vector bundles over an abelian variety A, with morphisms
HomA(E,E

′), is equivalent to the category of coherent sheaves over the dual

abelian variety Â, with support a finite number of points. In particular the
category of homogeneous vector bundles is abelian. Mukai’s paper involves
a transform which provides the equivalence between the derived categories.
This technique has come to be known as the Fourier-Mukai transform.

Under the above equivalence, the full subcategory HL,A of indecompos-
able vector bundles obtained by successive extensions of a homogeneous line
bundle L, is equivalent to the category of coherent sheaves with support on

a point x̂ ∈ Â. In particular a homogeneous line bundle L correspond to
the sheaf Ox̂. The subcategory UA of unipotent vector bundles is equivalent
to the category of finite length O

Â,0̂
-modules. In particular, the category of

unipotent vector bundles is abelian.

Remark 2.10. Note that for every homogeneous line bundle L, the functor
F 7→ L⊗ F is an equivalence of categories between UA and HL,A. �

We finish this section by recalling the concept of stability introduced by
Gieseker in [13], and its relation with homogeneous bundles, as given by
Mukai in [17].

For any torsion-free sheaf F over A let χ(F ) = Σ(−1)i dimH i(A,F ) be
the Euler characteristic of F . Denote by p(F ) the rational number p(F ) :=
χ(F )/ rk(E).

A torsion-free sheaf E over A is Gieseker-stable (respectively Gieseker-
semistable) if for all coherent subsheaves F ⊂ E with 0 < rk(F ) < rk(E)
and torsion free quotient we have that

p
(
F (k)

)
< p

(
E(k)

) (
respectively p

(
F (k)

)
≤ p

(
E(k)

))

for all sufficiently large integers k ∈ Z. Note that stability implies semista-
bility but the converse is not true.

Remark 2.11. Mukai proved in [17, Proposition 6.13] that homogeneous
vector bundles are Gieseker-semistable. Moreover, a homogeneous vector
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bundle E is Gieseker-stable if and only if it is simple. It follows from Propo-
sition 2.8 that a homogeneous vector bundle E is Gieseker-stable if and only
if E is a homogeneous line bundle.

3. The endomorphisms monoid of a homogeneous vector bundle

Let E → A, E′ → A be homogeneous vector bundles. In this section we
endow Homhb(E,E

′) with a structure of homogeneous vector bundle induced
by the canonical action of either AutA(E) or of AutA(E

′) on HomA(E,E
′).

In Theorem 3.12 we show that both structures are isomorphic.

We begin this section by recalling the description of the algebraic struc-
ture (i.e. as algebraic monoid) of Endhb(E). Recall first (see [2]) that a
homogeneous vector bundle E over A is indecomposable if and only if the
subset NA(E) ⊂ EndA(E) consisting of all nilpotent endomorphisms of E is
a vector subspace which is an ideal in EndA(E), and

EndA(E) = k · 1E ⊕NA(E)

as a k-vector space.

If E is an indecomposable homogeneous vector bundle, then AutA(E) ∼=
Gm × UA(E), where Gm = k∗ and UA(E) is the unipotent affine subgroup
Id+NA(E). Miyanishi in [16, Lem 1.1] proved that Authb(E) as an alge-
braic group is an extension of A by AutA(E), that is, we have the exact
sequence

1 // AutA(E) // Authb(E) // A // 0

Remark 3.1. Brion and Rittatore in [12] gave the Chevalley’s decomposi-
tion of Endhb(E) as an algebraic monoid. They prove that Endhb(E) has a
structure of a non-singular irreducible algebraic monoid such that its action
on E is algebraic. Moreover they show the Albanese morphism of Endhb(E)
is π : Endhb(E) → A where π((f, ta)) = a, and that End(E)aff = EndA(E)
fits in the following exact sequence of monoids

1 // EndA(E) // Endhb(E) // A // 0.

�

Remark 3.2. Let Z0
hb(E) be the connected center of Endhb(E) and Z0

A(E) =
Z0
hb(E) ∩ EndA(E). From the results of Brion and Rittatore we have the

following isomorphisms of algebraic monoids

Endhb(E) = Authb(E) · EndA(E) = Z0
hb(E) · EndA(E)

∼=am Authb(E) ∗AutA(E) EndA(E)

∼=am Z0
hb(E) ∗Z0

A(E) EndA(E).

Theorem 3.3. Let E be a homogeneous vector bundle of rank r over an
abelian variety A. Then Endhb(E) is a homogeneous vector bundle with fiber
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isomorphic to EndA(E). Moreover, if E is an indecomposable homogeneous
vector bundle, then Endhb(E) is a homogeneous vector bundle over A of rank
≤ 1 + r(r − 1)/2.

Proof. Since Endhb(E) ∼=am Authb(E)∗AutA(E)EndA(E) as algebraic monoids,
it follows from general properties of the induced action that Endhb(E)→ A is
a vector bundle with fiber isomorphic to EndA(E), since EndA(E) is a finite
dimensional algebra (see for example [21]). Moreover, since Authb(E) acts by
left multiplication by automorphisms on Endhb(E) we have that Endhb(E)
is homogeneous. Indeed, given ainA, there exists (f, ta)in ∈ Authb(E).
If ℓf : Endhb(E) → Endhb(E) denotes the isomorphism ℓf (h) = f ◦ h,
h ∈ EndA(E), then α(ℓf ) = ta.

As in [6, Prop. 1.1.9] we have that the dimension of the algebra of
endomorphisms of semistable bundles E of rank r is upper bounded by
dimEnd(E) ≤ 1 + r(r − 1)/2. Indeed, the fiber Ea has a flag invariant
under ea(EndA(E)) where ea : EndA(E) → Endk(Ea), ea(f) = f |

Ea
is the

restriction to the fiber a ∈ A. Since a homogeneous bundles are semistable,
the proof in [6, Prop. 1.1.9] generalizes to abelian varieties. Hence,

dimEndA(E) ≤ 1 + r(r − 1)/2

and then Endhb(E) is a homogeneous vector bundle over A of rank ≤ 1 +
r(r − 1)/2. �

In section 5 we will give an explicit description the homogeneous vector
bundle Endhb(E) for small rank.

Remark 3.4. AutA(E) acts in two different ways on EndA(E), either by
post-composing, f · h = f ◦ h, or by pre-composing, f · h = h ◦ f−1, with
f ∈ AutA(E) and h ∈ EndA(E). This allows to endow Endhb(E) with two
structures of vector bundle. However, since

Authb(E) ∗AutA(E) EndA(E) ∼=vb Z
0
hb(E) ∗Z0

A(E) EndA(E),

one can prove that in fact these structures coincide. Instead of proving this
in full details, we will prove in theorems 3.6 and 3.7 slightly more general
results relating the structures of vector bundle of Homhb(E,E

′).

Proposition 3.5. Let E and E′ be two vector bundles over A. Suppose E′ is
homogeneous. The inclusion Z0

hb(E
′) →֒ Authb(E

′) induces an isomorphism
of the homogeneous vector bundles

Z0
hb(E

′) ∗Z0
A(E′) HomA(E,E

′) ∼=vb Authb(E
′) ∗AutA(E′) HomA(E,E

′),

where Z0
A(E

′) and AutA(E
′) act on EndA(E,E

′) by post-composing.

Proof. Recall that the induced space P = Authb(E
′) ∗AutA(E′) HomA(E,E

′)

is a vector bundle over Authb(E
′)/AutA(E

′) = A.
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It is clear that the canonical action of Authb(E
′) over P induces a mor-

phism of (abstract) groups ϕ : Authb(E
′)→ Aut(P ),

ϕ(f, ta) = (f̃ , ta),

where f̃
([
(h, tb), h

′
])

=
[
(f ◦h, tb+a), h

′
]
. Hence, since the canonical projec-

tion Authb(E
′) → A, (f, ta) 7→ a, is surjective, it follows that the canonical

projection Authb(P )→ A is also surjective. In other words, the vector bun-
dle P is homogeneous. In an analogous way one can prove that the vector
bundle Q = Z0

hb(E
′) ∗Z0

A(E′)HomA(E,E
′) is homogeneous. In order to finish

the proof just observe that the inclusion Z0
hb(E

′) →֒ Authb(E
′) induces a

morphism of homogeneous vector bundles Q → P which is bijective, hence
Q ∼=vb P . �

Theorem 3.6. Let E,E′ be vector bundles over the Abelian variety A, with
E′ homogeneous. Then Homhb(E,E

′) can be endowed with an structure of
homogeneous vector bundle, via an

φ : Authb(E
′) ∗AutA(E′) HomA(E,E

′)→ Homhb(E,E
′)

isomorphism of vector bundles. Moreover,

Homhb(E,E
′) ∼=vb Z

0
hb(E

′) ∗Z0

A(E′) HomA(E,E
′).

Proof. We shall prove that there exists a bijection

φ : Authb(E
′) ∗AutA(E′) HomA(E,E

′)←→ Homhb(E,E
′)

such that the following diagram

(3.1) Authb(E
′) ∗AutA(E′) HomA(E,E

′)
φ //

π′

))TTTTTTTTTTTTTTTTT
Homhb(E,E

′)

π
yyrrrrrrrrrrr

A

is commutative, where π : Hom(E,E′) → A is the projection π(f, ta) = a,
and π′ : Authb(E

′) ∗AutA(E′) HomA(E,E
′) → A is the canonical projection

π′(g, h) = [g] ∈ Authb(E
′)/AutA(E

′) ∼= A.

Let (g, ta) ∈ Authb(E
′) and h ∈ HomA(E,E

′). Then the following dia-
gram

E
h //

��>
>

>
>

>
>

>
>

E′ ∼= t∗aE
′ g //

zzuuuu
uu

uu
uu

E′

��
A

ta
// A

is commutative.

Let ϕ : Authb(E
′)×HomA(E,E

′)→ Homhb(E,E
′) be given by

ϕ
(
(g, ta), h

)
= (g ◦ h, ta).
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Clearly ϕ is constant at the AutA(E
′)-orbits, and hence induces a homo-

morphism

φ : Authb(E
′) ∗AutA(E′) HomA(E,E

′)→ Hom(E,E′).

By construction φ makes the diagram (3.1) commutative.

In order to prove the surjectivity of φ consider (f, ta) ∈ Hom(E,E′), so
we have the following commutative diagram

E
f //

��

E′

��
A

ta
// A.

Since E′ is homogeneous, for a ∈ A there exists (g, t−a) ∈ Authb(E
′) such

that we have the following commutative diagram

E
f //

��

E′ ∼= t∗aE
′ g //

��

E′

��
A

ta //

t0=Id

55A
t−a // A.

Hence, the composition (g, t−a) ◦ (f, ta) = (g ◦ f, t0) defines a homomor-
phism g ◦ f : E → E′, as vector bundles over A. Moreover,

φ
([
(g−1, ta), g ◦ f

])
= (g−1 ◦ g ◦ f, ta) = (f, ta),

and thus φ is surjective.

We claim that φ is injective. Indeed, if
[
(g1, ta1), h1

]
,
[
(g2, ta2), h2

]
∈ Authb(E) ∗AutA(E) HomA(E,E

′)

are such that φ
([
(g1, ta1), h1)

])
= φ

([
(g2, ta2), h2

])
then, by definition of φ,

we have that g1 ◦ h1 = g2 ◦ h2 and ta1 = ta2 . It follows that a1 = a2, and
hence g−1

2 ◦ g1 ∈ AutA(E).

Since φ is linear when restricted to a fiber, we can endow Hom(E,E′)
with a structure of vector bundle in such a way that

[
(g1, ta1), h1

]
=

[
(g1 ◦ (g

−1
1 ◦ g2), ta1), (g

−1
2 ◦ g1) ◦ h1

]

=
[
(g2, ta1), g

−1
2 ◦ (g1 ◦ h1)

]

=
[
(g2, ta2), h2

]
.

It follows that φ : Authb(E
′) ∗AutA(E′) HomA(E,E

′)→ Homhb(E,E
′) is also

injective and hence a bijection. Therefore

Homhb(E,E
′) ∼=vb Z

0
hb(E

′) ∗Z0

A(E′) HomA(E,E
′)

∼=vb Authb(E
′) ∗AutA(E′) HomA(E,E

′).
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The last part follows from Proposition 3.5. �

If E is homogeneous we have the corresponding theorem.

Theorem 3.7. Let E,E′ be vector bundles over A. If E is homogeneous,
then Homhb(E,E

′) can be endowed with an structure of homogeneous vector
bundle via

ψ : Authb(E) ∗AutA(E) HomA(E,E
′) −→ Hom(E,E′),

which becomes an isomorphism of vector bundles. Moreover,

Homhb(E,E
′) ∼=vb Z

0
hb(E) ∗Z0

A(E) HomA(E,E
′)

Theorem 3.7 also follows from the corresponding proposition.

Proposition 3.8. Let E and E′ be two vector bundles over A. Suppose E is
homogeneous. The inclusion Z0

hb(E) →֒ Authb(E) induces an isomorphism
of the vector bundles

Z0
hb(E) ∗Z0

A(E) HomA(E,E
′) ∼=vb Authb(E) ∗AutA(E) HomA(E,E

′),

where Z0
A(E) and AutA(E) act on EndA(E,E

′) by pre-composing: g · f =
f ◦ g−1, f ∈ EndA(E), g ∈ AutA(E).

The proofs of Theorem 3.7 and Proposition 3.8 are analogous to the proofs
of Theorem 3.6 and Proposition 3.5. In this case there exists a bijection

ψ : Authb(E) ∗AutA(E) HomA(E,E
′)←→ Hom(E,E′)

such that the following diagram

Authb(E) ∗AutA(E) HomA(E,E
′)

ψ //

π′′

��

Hom(E,E′)

π

��
A

− Id
// A

is commutative where π′′ : Authb(E) ∗AutA(E) HomA(E,E
′) → A is the

canonical projection π′′(g, h) = [g] ∈ Authb(E)/AutA(E) ∼= A. The ho-
momorphism ψ is given as follows: the canonical action of AutA(E) over
Authb(E)×HomA(E,E

′) is given by

g ·
(
(f, ta), h

)
=

(
(f ◦ g−1, ta), h ◦ g

−1
)
,

where g ∈ AutA(E), (f, ta) ∈ Aut(E), h ∈ Aut(E). Hence, the map

ξ : Authb(E) ×HomA(E,E
′)→ Hom(E,E′) ,

defined as
(
(f, ta), h) 7→ (h ◦ f−1, t−a) is constant on the AutA(E)-orbits,

and hence induces a the homomorphisms

ψ : Authb(E) ∗AutA(E) HomA(E,E
′)→ Hom(E,E′).

�
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If E,E′ are both homogeneous vector bundles, it is not clear a priori
that the structures of vector bundles on Homhb(E,E

′) given in Theorem 3.6
and Theorem 3.7 are the same. In Theorem 3.12 we will prove that the
structure of homogeneous vector bundle on Homhb(E,E

′) is unique, up to
isomorphism. First we have the following propositions. Denote by P the
vector bundle Z0

hb(E) ∗Z0

A(E) EndA(E); recall that P is the quotient of the

action of Z0
A(E) over Z0

hb(E)× EndA(E) given by

(3.2) z ·
(
(f, ta), h

)
=

(
(f ◦ z−1, ta), z ◦ h

)
.

Let Q be the vector bundle (Z0
hb(E)∗Z0

A(E)EndA(E)), that is the quotient

of the action of Z0
A(E) over Z0

hb(E)× EndA(E) defined by

z ·
(
(f, ta), h

)
=

(
(f ◦ z−1, ta), h ◦ z

−1
)
.

Proposition 3.9. If E → A is a homogeneous vector bundle then P ∼=vb

(-Id)∗Q.

Proof. Consider the morphism ξ : Z0
hb(E)×EndA(E)→ Q given by ξ

(
(f, ta), h

)
=[

(f−1, t−a), h
]
. If we consider the action of Z0

hb(E) over Z0
hb(E) × EndA(E)

given by (3.2), then for z ∈ Z0
hb(E) we have that

ξ
(
z ·

(
(f, ta), h

))
= ξ

(
(f ◦ z−1, ta), z ◦ h

)
=

[
(z ◦ f−1, t−a), z ◦ h

]

=
[
(f−1 ◦ z, t−a), h ◦ z

]
,

where for the last equality we use the fact that z commutes with any en-
domorphism of the homogeneous vector bundle E. Taking into account the
definition of Q, it follows that

ξ
(
z ·

(
(f, ta), h

))
=

[
(f−1 ◦ z, t−a), h ◦ z

]
=

[
(f−1, t−a), h

]
.

In other words, ξ is constant on the AutA(E)-orbits (of the action given by
(3.2)), and hence induces a homomorphism of homogeneous vector bundles

ξ̃ : P → Q. An easy calculation shows that ξ̃ is an isomorphism such that
the diagram

P ξ̃

$$

!!

ξ̄

##
(-Id)∗Q

��

// Q

��
A

-Id
// A

commutes. Hence, ξ̃ induces the required isomorphism ξ̄ : P →vb (-Id)
∗Q.
�
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Corollary 3.10. If E is a homogeneous vector bundle then the structures of
homogeneous vector bundle defined on Endhb(E) by φ in Theorem 3.6 and
ψ in Theorem 3.7 are isomorphic. �

Proposition 3.11. If E =
⊕

iEi and E
′ =

⊕
j E

′
j are two homogeneous

vector bundles. Consider the structure of homogeneous vector bundle in
Homhb(E,E

′) and in Homhb(Ei, E
′
j) given in Theorem 3.6. Then

Homhb(E,E
′) ∼=vb

⊕

i,j

Homhb(Ei, E
′
j).

In particular,

Endhb(E) ∼=vb

⊕

i,j

Homhb(Ei, Ej).

Proof. We have that HomA(E,E
′) ∼=

⊕
i,j HomA(Ei, E

′
j). First, we prove

that

Authb(E
′) ∗AutA(E′) HomA(E,E

′) ∼=vb

⊕

i,j

Homhb(Ei, E
′
j).

Let

ιi,j : HomA(Ei, E
′
j) →֒ HomA(E,E

′),

be the canonical inclusion, that is, ιi,j(fi,j)(v) = fi,j(vi), where fi,j ∈
HomA(Ei, E

′
j), v ∈ E and if v ∈ Ea then v =

∑
i vi, with vi ∈ (Ei)a.

For any j, the automorphisms group Authb(E
′
j) can be immersed as a sub-

semigroup of Endhb(E
′) via the canonical inclusion ιj(fj, ta) = (ιj(fj), ta),

where if v′ ∈ E′ belongs to the fiber E′
b and decomposes as v′ =

∑
v′j,

v′j ∈ E
′
j , then ιj(fj)(v

′) = fj(v
′
j).

Consider the morphism

ϕi,j : Homhb(Ei, E
′
j)
∼=vb Authb(E

′
j)∗AutA(E′

j)
HomA(Ei, E

′
j)→ Homhb(E,E

′)

induced by

ψi,j : Authb(E
′
j)×HomA(Ei, E

′
j) → Homhb(E,E

′)

ψi,j
(
(fj, ta), fi,j

)
=

(
ιj(fj) ◦ ιi,j(fi,j), ta

)
.

Then the direct sum

ϕ =
∑

i,j

ϕi,j :
⊕

i,j

Homhb(Ei, E
′
j)→ Homhb(E,E

′)

is clearly a homomorphism of homogeneous vector bundles of the same rank
(since HomA(E,E

′) =
⊕

i,j HomA(Ei, E
′
j)). In order to prove that ϕ is an

isomorphism, it suffices to prove that ϕ is injective. Let
∑

i,j

[
(hi,j , ta), fi,j

]

and
∑

i,j

[
(h′i,j , ta′), f

′
i,j

]
in

⊕
i,j Authb(E

′
j) ∗AutA(E′

j)
HomA(Ei, E

′
j) be such

that

ϕ
(∑

i,j

[
(hi,j , ta), fi,j

])
= ϕ

(∑

i,j

[
(h′i,j , ta′), f

′
i,j

])
.
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Then ∑
ϕi,j

([
(hi,j , ta), fi,j

])
=

∑
ϕi,j

([
(h′i,j , ta′), f

′
i,j

])
,

and hence
(∑

i,j ιj(hi,j) ◦ ιi,j(fi,j), ta
)
=

(∑
i,j ιj′(h

′
i,j) ◦ ιi′,j′(f

′
i,j), ta′

)
. It

follows that a = a′ and that

(3.3) Φ =
∑

i,j

ιj(hi,j) ◦ ιi,j(fi,j) =
∑

i,j

ιj′(h
′
i,j) ◦ ιi′,j′(f

′
i,j) = Φ′.

Since equation (3.3) holds if and only if Φ|Ei
= Φ′|Ei

for all i, it follows
that (3.3) holds if and only if for all i,
∑

j

ιj(hi,j) ◦ ιi,j(fi,j)|Ei
= Φ|Ei

= Φ′|Ei
=

∑

j

ιj(h
′
i,j) ◦ ιi′,j(f

′
i,j)|Ei

: Ei → E′

Observe that ιj(hi,j)|E′

j
= hi,j : E

′
j → E′

j and ιj(h
′
i,j)|E′

j
= h′i,j : E

′
j → E′

j

are automorphisms such that ιi,j(fi,j)|Ei
= fi,j : Ei → E′

j, ιi,j(f
′
i,j)|Ei

=

f ′i,j : Ei → E′
j. It follows that Φ = Φ′ if and only if

ιj(hi,j) ◦ ιi,j(fi,j) =
∑

j

ιj(h
′
i,j) ◦ ιi′,j(f

′
i,j) ∀ i, j.

Hence, hi,j ◦ fi,j = h′i,j ◦ f
′
i,j for all i, j, and

[
(hi,j , ta), fi,j

]
=

[
(h′i,j , ta), f

′
i,j

]
.

Indeed, h−1
i,j ◦ h

′
i,j ∈ AutA(E

′
j), and thus for all i, j we have that

[
(hi,j , ta), fi,j

]
=

[
(hi,j ◦ h

−1
i,j ◦ h

′
i,j, ta), h

′
i,j

−1
◦ hi,j ◦ fi,j

]

=
[
h′i,j , ta), h

′
i,j

−1
◦ h′i,j ◦ f

′
i,j

]

=
[
h′i,j , ta), f

′
i,j

]
.

Therefore,

Homhb(E,E
′) ∼=vb

⊕

i,j

Homhb(Ei, E
′
j).

�

In an analogous way, one can prove a similar decomposition when consid-
ering the structures of vector bundles given by the isomorphisms

Homhb(E,E
′) ∼=vb Authb(E) ∗AutA(E) HomA(E,E

′)
Homhb(Ei, E

′
j)
∼=vb Authb(Ej) ∗AutA(Ej) HomA(Ei, E

′
j)

Theorem 3.12. Let E and E′ be homogeneous vector bundles. The struc-
tures of vector bundle on Homhb(E,E

′) given in Theorem 3.6 and in Theo-
rem 3.7 are isomorphic.

Proof. Consider the vector bundle E ⊕ E′. Then, we have isomorphisms

Endhb(E ⊕ E
′) ∼=vb Homhb(E,E

′)⊕Homhb(E
′, E) ⊕ Endhb(E) ⊕ Endhb(E

′)

From Corollary 3.10 the structure of vector bundle given by theorems 3.6
and 3.7 are isomorphic, the isomorphism being induced by ξ̄ : P → Q
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as in the proof of Proposition 3.9. It is clear that by construction this
isomorphism must then induce and isomorphism between the structures of
Homhb(E,E

′) given in Theorem 3.6 and in Theorem 3.7, and the same for
Homhb(E

′, E). �

4. Relationship between the structure of a homogeneous

bundle and its endomorphisms monoid

We begin this section by showing that a homogeneous vector bundle E →
A is obtained as an extension of its fiber E0 at 0 by the principal bundle
Authb(E)→ A.

Theorem 4.1. Let ρ : E → A be a homogeneous vector bundle. Then as
vector bundles over A

E ∼=vb Authb(E) ∗AutA(E) E0
∼=vb Z

0
hb(E) ∗Z0

A(E) E0.

Proof. Recall that A ∼= Authb(E)/AutA(E). We first define

φ : Authb(E) ×E0 → E

as
(
(f, ta), v

)
7→ f(v) ∈ Ea, where (f, ta) ∈ Authb(E) and v ∈ E0. Clearly,

φ is constant on the AutA(E)-orbits, and hence induces a homomorphism
ϕ : Authb(E) ∗AutA(E) E0 → E.

It is easy to see that ϕ is in fact a isomorphism of vector bundles. Indeed,
given a ∈ A, consider (f, ta) ∈ Authb(E). Then

(
Authb(E) ∗AutA(E) E0

)
a
=

{(
(f, ta), v

)
: v ∈ E0

}
,

and f |E0
: E0 → Ea, is a linear isomorphism. Hence, the restriction

ϕa :
(
Authb(E) ∗AutA(E) E0

)
a
→ EA, ϕa

(
(f, ta), v

)
= f(v), is a linear iso-

morphism, and hence ϕ is a isomorphism of vector bundles.

Since Z0
hb(E) → A is surjective, it is clear that we can apply the same

argument to prove that E ∼= Z0
hb(E) ∗Z0

A(E) E0. �

Corollary 4.2. Let E → A be an indecomposable homogeneous vector bun-
dle. Then:

(i) E0 is an indecomposable EndA(E)-module;
(ii) E0 is an indecomposable Z0

A(E)-module.

Proof. In order to prove (i), suppose that E0
∼= V1 ⊕ V2 as Z0

A(E)-modules.
Then
(
Z0
hb(E)∗Z0

A(E)V1
)
⊕
(
Z0
hb(E)∗Z0

A(E)V2
)
∼=vb

(
Z0
hb(E)∗Z0

A(E) (V1⊕V2)
)
∼=vb E

as vector bundles over A, where the last isomorphism is given by Theorem
4.1; hence, E is decomposable. It is clear that (i) implies (ii). �

The converse of Corollary 4.2 is false, as the following example shows.
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Example 4.3. Let L be a homogeneous line bundle over A and consider
E = L⊕L. Then AutA(E) ∼= GL2(k) and E0 is a indecomposable AutA(E)-
module.

As a consequence of Theorem 4.1, we have the following corollary which
characterizes the trivial homogeneous vector bundles of rank r. We denote
by Ir =

⊕r
i=1OA = A× kr, the trivial bundle of rank r.

Corollary 4.4. Let E → A be a homogeneous vector bundle or rank r. Then
E is isomorphic to the trivial bundle of rank r if and only if Endhb(E) ∼=am

A× End(kn).

Proof. It is clear that the trivial bundle Ir, of rank r, has endomorphisms
monoid Endhb(Ir) ∼=am A× End(kn).

Let E → A be such that Endhb(E) ∼=am A × End(kn). Then, since
E ∼=vb Authb(E) ∗AutA(E) E0, it follows that

E ∼=vb

(
A×GLn(k)

)
∗GLn(k) k

n ∼=vb A× kn.

�

In [16, Lem 1.4] Miyanishi gives a characterization of homogeneous vec-
tor bundles E → X (over complete homogeneous spaces) in terms of the
existence of schematic sections for certain fibrations. For the abelian case,
Theorem 4.1 gives a simple proof of such result. Recall that a schematic
section of a fibration π : Authb(E) → A is a morphism σ : A → Authb(E)
such that π ◦ σ = IdA.

Corollary 4.5. Let E → A be a homogeneous vector bundle of rank r. If
π : Authb(E)→ A has a schematic section, then E ∼=vb Ir.

Proof. Let σ : A → Authb(E), σ(a) =
(
σ1(a), ta

)
, be a schematic section,

and let ϕ : A × E0 → Authb(E) ∗AutA(E) E0
∼=vb E, be the morphism given

by ϕ(a, v) =
[
(σ1(a), ta), v

]
. Clearly, ϕ is a homomorphism of homogeneous

vector bundles. We claim that ϕ is injective. If this is the case, then ϕ is
an isomorphism, since both vector bundles have the same rank.

Let (a, v), (a′, v′) ∈ A×E0 be such that ϕ(a, v) = ϕ(a, v′). Then
[
(σ1(a), ta), v

]
=

[
(σ1(a

′), ta′), v
′
]
,

and it follows that a = a′, and hence v = v′. �

Corollary 4.6. Let ρ : E → A and ρ′ : E′ → A be homogeneous vector
bundles. Then the following statements are equivalent:

(i) E ∼=vb E
′;

(ii) Authb(E) ∼=am Authb(E
′), and E0

∼= E′
0 as rational AutA(E

′) ∼= AutA(E)-
modules;

(iii) Authb(E) ∼=am Authb(E
′), and E0

∼= E′
0 as rational Z0

A(E
′) ∼= Z0

A(E)-
modules.
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Proof. The implications (i) =⇒ (ii) =⇒ (iii) are clear.

Assume that (iii) holds. Let ψ : Authb(E) → Authb(E
′) be an iso-

morphism of algebraic groups and let Φ : E0 → E′
0 be a morphism of

Z0
A(E)-modules, that is Φ(g · v) = ψ(g) · Φ(v). Then the morphism ϕ :

Z0(E) × E0 → E′, defined as ϕ(g, v) = ψ(g)
(
Φ(v)

)
induces the required

isomorphism E → E′. �

Remark 4.7. It is well known that AutA(E) ∼=am AutA(E
′) (or EndA(E) ∼=am

EndA(E
′)) does not imply that E ∼= E′. However, Corollary 4.4 shows the

trivial bundle is characterized by its endomorphisms monoid. One can see
that in the case of the trivial bundle, Z0

A(Ir) = k∗ Id acts by homotheties in
the fiber. In the general case, the group Z0

A(E) could be larger and there
could exist two different irreducible representations of the same dimension.
This is the main obstruction to generalize Corollary 4.4, and raises the fol-
lowing

Question 4.8. Let E,E′ → A be two indecomposable homogeneous vector
bundles. Does the existence of an isomorphism Authb(E) ∼=am Authb(E

′)
(or Endhb(E) ∼=am Endhb(E

′)) imply that E ∼= E′?

The following Lemma is a straightforward generalization of [14, Lem. 4.3].
We omit the proof, since it is an easy adaptation of the cited result (see also
[20, Thm. 2]).

Lemma 4.9. Let ρ : L → A be an homogeneous line bundle. Then there
exists an structure of algebraic monoid L × L → L such that ρ is a mor-
phism of algebraic monoids. The fiber ρ−1(0) = L0

∼= k is central in L. In
particular, L is a commutative algebraic monoid. Moreover, the unit group
for this monoid is G(L) = L \ Θ(L)), where Θ(L) is the image of the zero
section of L.

Corollary 4.10. Let ρ : L → A be an homogeneous line bundle. Then
Endhb(L) ∼=vb L.

Proof. By Lemma 4.9 L is an algebraic monoid. For any x ∈ L let lx : L→ L
be the endomorphisms defined as lx(y) = xy (the product on the algebraic
monoid L). Hence, L is a sub-bundle of Endhb(L). But EndA(L) ∼= k; hence
Endhb(L) is a line bundle, and L = Endhb(L). �

4.1. Structure of the endomorphisms monoid of a homogeneous

vector bundle.

Let E → A be a homogeneous vector bundle over an abelian variety.
We have proved in Theorem 3.3 that the Chevalley’s decomposition of
Endhb(E) induces on Endhb(E) a structure of vector bundle over A, of fiber
EndA(E). We establish now the relationship between the decomposition
given by Miyanishi (see Remark 2.9) and the structure of the endomor-
phisms monoid, generalizing in this way Corollary 4.10:
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Recall from Remark 2.9 that an indecomposable homogeneous vector bun-
dle E → A is of the form E ∼= L⊗F , where L is an homogeneous line bundle
and F is unipotent homogeneous vector bundle. Hence, E is a successive
extensions of the line bundle L.

Proposition 4.11. For i = 1, 2, let Ei → A be an indecomposable homo-
geneous vector bundle of rank ni = rk(Ei), and Ei ∼= Li ⊗ Fi, where Li is
an homogeneous line bundle and Fi is unipotent homogeneous vector bundle.
Then

(1) If L1 6∼=hb L2, then

Homhb(E,E
′) = {θa : E → E′ : a ∈ A} ∼=vb A× {0},

where if v ∈ (E)x, then θa(v) = 0a+x ∈ E
′.

(2) If L1
∼=vb L2

∼= L, then

Homhb(E1, E2) ∼=vb L⊗Homhb(F1, F2).

In particular, Endhb(E) ∼=vb L⊗ Endhb(F ).

Proof. By Proposition 3.8,

Homhb(E1, E2) ∼= Authb(E1) ∗AutA(E1) HomA(E1, E2).

We claim that if L1 6∼= L2, then HomA(E1, E2) = 0. Thus,

Homhb(E1, E2) ∼= Authb(E1) ∗AutA(E1) {0}
∼= A× {0}.

Indeed, let

L = H0 ⊂ H1 ⊂ H2 ⊂ · · · ⊂ Hn1−1 ⊂ Hn1
= E1

be the filtration associated to such E1 and 0 6= ϕ ∈ HomA(E1, E2). Let
i ∈ {0, . . . , n1 − 1} be such that Hi ⊂ Ker(ϕ) but Hi+1 6⊂ Ker(ϕ). Let
j ∈ {0, . . . , n′ − 1} be such that Im(ϕ) ⊂ K ′

j+1, Im(ϕ) 6⊂ K ′
j where

0 = K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Kn2−1 ⊂ Kn2
= E2

be the filtration associated to such E2.

Then ϕ induces a non zero morphism ϕ̃ : L1
∼= Hi+1/Hi → Kj+1/Kj

∼=
L2. Since both are algebraically equivalent to zero, ϕ̃ is an isomorphism, and
hence L1

∼= L2.

Suppose now that L1
∼=vb L2 = L. Then

HomA(E1, E2) ∼= (L⊗ F1)
∨ ⊗ (L⊗ F2)

)

∼= F∨
1 ⊗ F2

∼= HomA(F1, F2).

It follows that Homhb(E,E
′) and L⊗Homhb(F,F

′) are homogeneous vector
bundles of the same rank. Consider the homomorphism ϕ : L⊗Homhb(F,F

′)→
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Homhb(E,E
′) given by ϕ

(
(l, ta)⊗ (h, ta)

)
= (l⊗ h, ta), where we are identi-

fying L ∼=vb Endhb(L), and l ⊗ h(v ⊗ w) = l(v) ⊗ h(w), for v ⊗ w ∈ L ⊗ F .
ϕ is an injection, and hence an isomorphism of vector bundles. �

Let E → A be a homogeneous vector bundle. As a consequence of Theo-
rem 3.12 and Proposition 4.11, we have the following explicit description of
Endhb(E).

Theorem 4.12. Let E =
⊕

i,j Li⊗Fi,j and E
′ =

⊕
i,j Li⊗F

′
i,j be a homo-

geneous vector bundles, where Li are homogeneous line bundles, Fij and F
′
ij

unipotent homogeneous vector bundles and Li ≇ Lj if i 6= j. Then

Homhb(E,E
′) ∼=vb

⊕

i

Li ⊗
(
⊕j,kHomhb(Fi,j , F

′
i,k)

)
.

In particular,

Endhb(E) ∼=vb

⊕

i

Li ⊗
(
⊕j,kHomhb(Fi,j , Fi,k)

)
.

�

In view of Theorem 4.12, the description of the endomorphisms monoid of
a homogeneous vector bundle follows from the description of Homhb(F,F

′)
for two unipotent indecomposable homogeneous vector bundles. In Section
5 we describe Homhb(F,F

′) for vector bundles of small rank.

By construction, the map σ : A → Endhb(E) given by a 7→ θa is the
zero section of the vector bundle Endhb(E)→ A. As an easy application of
Corollary 2.4 we have the following result.

Corollary 4.13. Let ρ : E → A be a homogeneous vector bundle over an
abelian variety. Then the algebraic monoid Endhb(E) has Kernel

Ker
(
Endhb(E)

)
= Θ(E) =

{
θa : E → E : θa(v) = 0ρ(v)+a

}
.

In particular, Ker
(
Endhb(E)

)
is an algebraic group, isomorphic to the

abelian variety A. �

We shall give now a decomposition of Endhb(E) using pseudo-nilpotent
endomorphisms.

Definition 4.14. Let E → A be an homogeneous vector bundle over an
abelian variety. An endomorphism f ∈ Endhb(E) is pseudo-nilpotent of
index n if fn ∈ Θ(E) = Ker

(
Endhb(E)

)
whereas fn−1 /∈ Θ(E). Denote by

N hb(E) the set of pseudo-nilpotent endomorphisms.

Example 4.15. Let L be a homogeneous line bundle. The algebraic monoid
Endhb(L) = L decomposes in a disjoint union of its unit group and its
Kernel(L) = L = Authb(L) ⊔Θ(L). In particular, N hb(L) = Θ(L).
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From Atiyah’s results (see [2]) we have that for indecomposable vector
bundles EndA(E) = k · IdE ⊕NA(E) – recall that NA(E) ⊂ EndA(E) is the
subset of idempotents elements. For indecomposable homogeneous vector
bundle E over an abelian variety we have the following decomposition of
Endhb(E).

Theorem 4.16. Let E → A be a indecomposable homogeneous vector bundle
over an abelian variety. Then:

(1) The algebraic monoid Endhb(E) decomposes as the disjoint union of
Authb(E) and N hb(E), that is,

Endhb(E) = Authb(E) ⊔ N hb(E).

In particular, N hb(E) is an ideal of Endhb(E).

(2) The set N hb(E) of pseudo-nilpotent elements is a homogeneous vector
bundle over A of rkN hb(E) = rkEndhb(E)− 1. Moreover,

N hb(E) = Z0
hb(E) ·NA(E) ∼= Z0

hb(E) ∗Z0

A(E) NA(E).

where · denotes the composition (the product in Endhb(E)). In particular,
the fiber of π : N hb(E) → A is isomorphic to NA(E), and π is a morphism
of algebraic semigroups.

Proof. Recall from Remark 3.2 that

Endhb(E) = Z0
hb(E) · EndA(E) ∼= Z0

hb(E) ∗Z0

A(E) EndA(E).

Let f ∈ EndA(E) and z ∈ Z0
hb(E). Since EndA(E) = k Id⊕NA(E) it

follows that either f ∈ AutA(E) or f ∈ NA(E). If f ∈ AutA(E), then z ·f ∈
Authb(E). If f ∈ NA(E), with fn = 0, then clearly (z ·f)n = zn ·fn = θπ(zn),

where π : Z0
hb(E)→ A is the canonical projection. Therefore,

Endhb(E) = Authb(E) ⊔ N hb(E).

Note that in particular we have proved that

N hb(E) = Z0
hb(E) ·NA(E) ∼= Z0

hb(E) ∗Z0
A(E) NA(E).

Since N hb(E) = Endhb(E) \Authb(E), it follows that N hb(E) is an ideal.
In particular, N hb(E) is Authb(E)-stable, and hence a homogeneous vector
bundle, since composing with an automorphism gives an automorphism of
Endhb(E).

Finally, the equality rkN hb(E) = rkEndhb(E)− 1 follows again from the
fact that EndA(E) = k Id⊕NA(E) and NA(E) 6= 0. �

Theorem 4.17. Let E → A be a indecomposable vector bundle obtained by
successive extensions of the homogeneous line bundle L. Then Endhb(E) is
obtained by successive extensions of the homogeneous line bundle L.



ENDOMORPHISMS OF HOMOGENEOUS VECTOR BUNDLES 23

Proof. Indeed, let L′ ⊂ Endhb(E) be a homogeneous line sub-bundle and
ρ : Endhb(E) →vb L as in Theorem 4.19. Let f ∈ L′ ∩ EndA(E) be a non
zero nilpotent element. In other words, f ∈ L′

0 \ {θ0}. Let e ∈ E0 be such
that f(e) 6= 0. Since Endhb(E) ∼=vb Authb(E) ∗AutA(E) EndA(E), for every
a ∈ A, there exists (ha, ta) ∈ Authb(E) such that L′

a = k(ha ◦ f). Hence,
ϕL′ → E, ϕ(l) = l(e) is an injective morphism of homogeneous vector
bundles, and since E is obtained by successive extensions of L, it follows
that L′ ∼= L. Thus, Endhb(E) is also obtained by successive extensions of
L. �

Proposition 4.18. Let E → A be an indecomposable homogeneous vector
bundle of rank r ≥ 2, obtained by successive extension of the homogeneous
line bundle L. Then there exists an injective morphism of vector bundles
ψ : L →֒vb N hb(E). In particular, rkN hb(E) ≥ 1, and if rkN hb(E) ≥ 2
then N hb(E) is obtained by successive extensions of the line bundle L.

Proof. By theorems 4.16 and 4.17, N hb(E) is a homogeneous vector bundle,
obtained by succesive extensions of L (sinceit is a sub-bundle of Endhb(E)).
Hence, we only need to prove that ( rk)N hb(E) ≥ 1.

Let 0 = E0 ⊂ E1 ⊂ · · · ⊂ Er = E be a filtration such that Ei/Ei−1
∼= L.

By proposition 2.8, there exists 0 6= ϕ ∈ EndA(E) such that ϕ2 = 0, and
thus ( rk)N hb(E) 6= 0. �

We now to state and prove a generalization of Miyanishi structure theorem
(see Remark 2.9).

Theorem 4.19. Let E ∼= L ⊗ F → A be an indecomposable homogeneous
vector bundle, where L is a homogeneous line bundle and F is an unipotent
homogeneous vector bundle. Then there exists an exact sequence of vec-
tor bundles over A, compatible with the structures of algebraic semigroups
(i.e. the morphisms are compatible with the composition)

0 // N hb(E) // Endhb(E)
ρ // Endhb(L) ∼= L // 0

Moreover, the exact sequence splits if and only if E ∼= L.

Proof. Since L ⊂ E is Authb(E)-stable (Remark 2.9) is also Endhb(E)-
stable. The restriction ρ : Endhb(E)→ Endhb(L) is a morphism of algebraic
monoids, in particular it is compatible with the structure of vector bundles.

By Theorem 4.16, Endhb(E) = Authb(E) ⊔ N hb(E). It is clear that if
g ∈ Authb(E), then ρ(g) ∈ Authb(L) = L \ Θ(L). If (f, ta) ∈ N hb(E),
then there exists n ∈ N such that fn = θna. It follows that the restriction
f |

L
∈ N hb(L) = Θ(L). Hence, N hb(E) = Ker(ρ).

Assume now that the exact sequence splits, then there exists an immersion
of homogeneous vector bundles ι : L →֒ Endhb(E), such that ρ ◦ ι = IdL. In
particular, ι

(
L \ Θ(L)

)
⊂ Authb(E). Let E0 be the fiber of E over 0 ∈ A
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and consider the morphism of vector bundles

ϕ : L⊗ E0
∼= Endhb(L)⊗ E0 → E , ϕ(f ⊗ v) = f(v).

Let e ∈ E be such that π(e) = a. Let f ∈ L\Θ(L) be such that α(f) = a.
Then ϕ

(
ι(f)⊗ ι(f)−1(e)) = e, and it follows that ϕ is a surjective morphism

of homegeneous vector bundles of the same rank. Thus, ϕ is an isomorphism.
But L⊗E0 is decomposable unless dimE0 = 1. It follows that E ∼=vb L. �

Remark 4.20. We can resume the results proved until now about the struc-
ture of Endhb(E) as follows: Let E = L ⊗ F → A be an indecomposable
homogeneous vector bundle, where L is a homogeneous line bundle and F
is an unipotent vector bundle. Then,

(1) Endhb(E) is a non-singular algebraic monoid. Its Albanese morphism α :
Endhb(E) → A is a morphism of algebraic monoids, with Kernel α−1(0) =
EndA(E) (see [12] and Remark 3.1).

(2) Endhb(E) → A is a homogeneous vector bundle, obtained by successive
extensions of L (see theorems 3.3 and 4.17).

(3) The Kernel of the algebraic monoid Endhb(E) is the zero section

Θ(E) = {θa : E → E : θ(vx) = 0x+a ∀ vx ∈ Ex} = Ker
(
Endhb(E)

)
.

In particular, Ker
(
Endhb(E)

)
is an algebraic group, isomorphic to the abelian

variety A (see Corollary 4.13).

(4) Let N hb(E) denote the set of pseudo-nilpotent elements, Then the alge-
braic monoid Endhb(E) decomposes as a disjoint union

Endhb(E) = Authb(E) ⊔ N hb(E)

(see Theorem 4.16). In particular, N hb(E) is an ideal of Endhb(E). More-
over, N hb(E) is a homogeneous vector bundle, obtained by successive ex-
tensions of L (see Proposition 4.18).

(5) There exists a exact sequence of vector bundles

0 // N hb(E) // Endhb(E)
ρ // Endhb(L) ∼= L // 0

Moreover, the morphisms appearing in the sequence are compatible with the
structures of semigroup, and the sequence splits if and only if E ∼= L (see
Theorem 4.19).

5. Explicit calculations in small rank

In this section we describe explicitly Endhb(E) and Homhb(E,E
′) when

the homogeneous vector bundles have small rank.
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5.1. Homomorphisms between a homogeneous line bundle and an

homogeneous vector bundle.

From Theorem 4.12 without loss of generality we work with indecompos-
able unipotent homogeneous vector bundles. As we saw in Section 4, any
line bundle is an algebraic monoid, and is isomorphic to its endomorphism
monoid. We give a description of Homhb(E,E

′) when one of the homoge-
neous vector bundles is a line bundle and the other is indecomposable and
unipotent homogeneous vector bundle.

Proposition 5.1. Let F be a indecomposable unipotent homogeneous vector
bundle, rkF = n ≥ 2 and L a homogeneous line bundle. Then,

(1) if L = OA is the trivial bundle then
• Homhb(OA, F ) is trivial, with fiber isomorphic to HomA(OA, F ) =
H0(A,F ), i.e.

Homhb(OA, F ) ∼=vb A×H
0(A,F ).

• Homhb(F,OA) is trivial, with fiber isomorphic to HomA(F,OA) =
H0(A,F∨), i.e.

Homhb(F,OA) ∼=vb A×H
0(A,F∨).

(2) If L 6= OA then Homhb(F,L) = Homhb(L,F ) = A× {0}.

Proof. The proposition follows from Theorem 3.12, since

Homhb(OA, F ) ∼=vb Authb(OA) ∗AutA(OA) HomA(OA, F )

=vb (A× k∗) ∗k∗ Id HomA(OA, F )
∼=vb A×HomA(OA, F ).

and

Homhb(F,OA) ∼=vb Authb(OA) ∗AutA(OA) HomA(F,OA)

=vb (A× k∗) ∗k∗ Id HomA(F,OA)
∼=vb A×HomA(F,OA).

Part (2) follows from Proposition 4.11. �

Corollary 5.2. Let E = L ⊗ F be a indecomposable homogeneous vector
bundle of rkE = n ≥ 2 with L 6= OA and L′ a homogeneous line bundle.
Then,

(1) if L = L′ then
• Homhb(L,E) ∼=hb ⊕

rL where r = dimH0(A,F ).
• Homhb(E,L) ∼=hb ⊕

sL where s = dimH0(A,F∨).
(2) If L 6= L′ then Homhb(E,L

′) ∼=hb Homhb(L
′, E) ∼=hb A× {0}.

Proof. The corollary follows from Proposition 5.1 since from Proposition
4.11 Homhb(L,E) ∼=hb L⊗Homhb(OA, F ) and Homhb(E,L) ∼=hb L⊗Homhb(F,OA)
if L = L′ and Homhb(L,E) ∼=hb Homhb(E,L) ∼=hb A× {0} if L 6= L′. �
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5.2. Homomorphisms between indecomposable homogeneous vec-

tor bundles of rank 2.

Let E and E′ be two non-isomorphic indecomposable homogeneous vector
bundles of rank 2. Let

ρE : 0→ L
j
−→ E

π
−→ L→ 0

and

ρE′ : 0→ L′ i1−→ E′ p1
−→ L′ → 0

be the extensions associated to E and E′ respectively. By Proposition 4.11,
if L 6= L′ then HomA(E,E

′) = 0.

If L ∼=vb L
′, let 0 6= φ = i1 ◦ π ∈ HomA(E,E

′). We shall prove that
HomA(E,E

′) = kφ.

Proposition 5.3. Let E and E′ be two non-isomorphic indecomposable ho-
mogeneous vector bundles of rank 2, obtained by successive extensions of a
line bundle L. Then Homhb(E,E

′) ∼=vb L.

Proof. By Theorem 4.17, we only need to show that HomA(E,E
′) = kφ,

where φ is as in the introduction of this paragraph.

Let 0 6= ϕ ∈ HomA(E,E
′). Since E and E′ are non-isomorphic, the image

ϕ(E) is a line sub-bundle L0 of E′. Moreover, ψ : p1 ◦ ϕ : E → L is a non
zero homomorphism of homogeneous vector bundles. If ϕ(E) = L0 6= L we
get a contradiction since from Corollary 5.2 we have that Homhb(E,L) ∼=hb

A× {0}. Thus, L0
∼=hb L.

If ϕ 6= λφ, 0 6= ϕ ◦ j : L→ L0 is an isomorphism, and then ϕ ◦ (ϕ ◦ j)−1 :
E → L is a spitting for j, which is a contradiction. Hence, ϕ = λφ, with
λ ∈ k. �

5.3. Endomorphisms monoid of indecomposable homogeneous vec-

tor bundles of small rank.

In Proposition 4.11 we prove that if E = L ⊗ F is an indecomposable
homogeneous vector bundle then Endhb(E) = L⊗ Endhb(F ). We are inter-
ested now in describing Endhb(F ). Recall that F is a successive extensions
of the trivial bundle OA and hence E is a successive extensions of L. The
algebra of endomorphisms of vector bundles of small rank over a curve that
are successive extensions of line bundles has been studied by Brambila-Paz
in [6, 7, 8, 9, 10]. Similar results apply for vector bundles over abelian va-
rieties. We shall use these results in order to give an explicit description of
the endomorphisms monoid of indecomposable homogeneous vector bundles
of rank 2 and 3.

Let E = L ⊗ F → A be a indecomposable homogeneous vector bundle
of rank 2 over A. Hence E fits in the following exact sequence of vector
bundles

0→ L
i
−→ E

p
−→ L→ 0
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From Theorem 3.3 we have that dimEndA(E) ≤ 2 and from the above
exact sequence we have that 0 6= ϕ = i ◦ p : E → E satisfied ϕ2 = 0, hence
rkN hb(E) ≥ 1 (see Proposition 4.18). Therefore Endhb(E) is a homogeneous
vector bundle of rank 2. Moreover, by a result of Atiyah (see [2]) it follows
that EndA(E) ∼= k Id⊕kϕ. Hence, we have the following Proposition:

Proposition 5.4. Let E → A be an indecomposable homogeneous vector
bundle of rank 2. Then Endhb(E) is a commutative algebraic monoid, and
EndA(E) ∼= k[t]/(t2). Moreover, Endhb(E) ∼=vb E.

Proof. The only assertion that remains to prove is the last one. For this,
observe that

EndA(E) ∼=am

{(
a b
0 a

)
: a, b ∈ k

}
,

with action over the fiber E0 given as follows: consider an isomorphism
E0
∼= k2, in such a way that (1, 0) ∈ Ker(p)0. In other words, (1, 0) belongs

to the fiber over 0 ∈ A, of the Aut(E)-stable line bundle L ⊂ E. Under this
identification, the action EndA(E) × E0 → E0 is given by

(
a b
0 a

)
· (x, y) =

(ax+ by, ay).

On the other hand, the action of AutA(E) on EndA(E) is given by
(
a b
0 a

)
·

( x y0 x ) =
(
ax ay+bx
0 ax

)
. Thus, there exists an isomorphism of AutA(E)-modules

ϕ : E0 → EndA(E). It follows that the morphism

ψ : Authb(E) ∗AutA(E) E0 → Authb(E) ∗AutA(E) EndA(E)
ψ
([
(f, ta), e0

])
=

[
(f, ta), ϕ(e0)

]
,

is an isomorphism of vector bundles. Thus, E ∼=vb Endhb(E). �

Remark 5.5. Actually Proposition 5.6 could be done first for indecompos-
able unipotent vector bundles F to obtain Endhb(F ) = F. Then if E = L⊗F
we have Endhb(E) = L⊗ Endhb(F ) = L⊗ F = E.

Let E → A be an indecomposable homogeneous vector bundle of rank
r ≥ 2, such that EndA(E) ∼= k[t]/(tr). As in the rank 2 case, there exists
an isomorphism ϕ : E0 → EndA(E) of AutA(E)-modules which induce a
isomorphism

ψ : Authb(E) ∗AutA(E) E0 → Authb(E) ∗AutA(E) EndA(E)
ψ
([
(f, ta), e0

])
=

[
(f, ta), ϕ(e0)

]
,

of vector bundles and hence, E ∼=vb Endhb(E). We shall prove in detail the
above affirmation for rank 3.

Proposition 5.6. Let E → A be an indecomposable homogeneous vector
bundle of rank 3 with EndA(E) ∼= k[t]/(t3). Then Endhb(E) is a commuta-
tive algebraic monoid, and Endhb(E) ∼=vb E.

Proof. It suffices to prove that the representations AutA(E) × EndA(E) →
EndA(E) and AutA(E)× E0 → E0 are isomorphic. In this case,

EndA(E) ∼=am

{(
a b c
0 a b
0 0 a

)
a, b ∈ k

}
,
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and the action over the fiber E0 given as follows: consider an isomorphism
E0
∼= k3, such that (1, 0, 0) ∈ (E1)0, where L = E1 ⊂ E2 ⊂ E is a Aut(E)-

stable filtration. Under this identification the action EndA(E) × E0 → E0

is given by
(
a b c
0 a b
0 0 a

)
· (x, y, z) = (ax+ by + cz, ay + bz, az).

On the other hand, the action of AutA(E) on EndA(E) is given by
(
a b c
0 a b
0 0 a

)
·
( x y z

0 x y
0 0 x

)
=

(
ax bx+ay ax+by+cz
0 ax bz+ay
0 0 ax

)
.

Therefore, there exists an isomorphism ϕ : E0 → EndA(E) of AutA(E)-
modules and hence the homomorphism

ψ : Authb(E) ∗AutA(E) E0 → Authb(E) ∗AutA(E) EndA(E)
ψ
([
(f, ta), e0

])
=

[
(f, ta), ϕ(e0)

]
,

is an isomorphism of vector bundles. Thus, E ∼=vb Endhb(E). �

Remark 5.7. For indecomposable homogeneous vector bundles of rank 3
we have, from Theorem 3.3, that dimEndA(E) ≤ 4. As in [6, 7] we have that
EndA(E) is a commutative algebra of dimension 2 ≤ dimEndA(E) ≤ 3 and
all the possible algebras for EndA(E) are k[t]/(t2), k[t]/(t3) or k[r, s]/(r, s)2.
The structure of the algebra of endomorphisms of EndA(E), and hence of
Endhb(E), will depend on the extensions associated to E and their relations.
For higher rank there will be more possibilities for EndA(E). We expect
that the equivalence on categories given by Mukai could be used to describe
EndA(E) for higher rank.
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