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POLYNOMIAL DIFFERENTIAL EQUATIONS WITH

PIECEWISE LINEAR COEFFICIENTS

M. A. M. ALWASH

Abstract. Cubic and quartic non-autonomous differential equations
with continuous piecewise linear coefficients are considered. The main
concern is to find the maximum possible multiplicity of periodic solu-
tions. For many classes, we show that the multiplicity is the same when
the coefficients are polynomial functions of degree n, or piecewise linear
functions with n segments.

1. Introduction

Consider the Abel differential equation

(1.1) ż =
dz

dt
= A(t) z3 +B(t) z2,

where z is real and A(t), B(t) are continuous functions. Let z(t, c) be the so-
lution that satisfies the initial condition z(0, c) = c. A solution ϕ is periodic
if it satisfies the boundary condition ϕ(0) = ϕ(1). The equation has a center
at z = 0 if there exists an open interval I containing 0 such z(t, c) is peri-
odic for all c in I. The concept is related to the classical center problem of
polynomial two-dimensional systems, see [5]. Several research articles were
published in the last twenty five years to find conditions which are neces-
sary and sufficient for the existence of a center, see [12]. The displacement
function q is defined by

q(c) = z(1, c) − c.

Zeros of q identify initial points of solutions of periodic solutions. Note that
q is a holomorphic function defined on an open set containing the origin.
The multiplicity of a periodic solution ϕ is that of ϕ(0) as a zero of q. In
the neighborhood of z = 0, we can write

(1.2) z(t, c) =
∞
∑

n=1

an(t) c
n,

for 0 ≤ t ≤ 1; the an(t) are continuous and satisfy the following initial
conditions.

a1(0) = 1, an(0) = 0, n > 1.
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The multiplicity of the origin is k, k ≥ 2, if and only if

ai(1) = 0, i = 2, · · · , k − 1, ak(1) 6= 0.

Moreover, z = 0 is stable when ak(1) < 0, and it is unstable when ak(1) > 0.
The Abel differential equation has a center at the origin if and only if

ak(1) = 0, k ≥ 2.

The functions an(t) satisfy the equations

a1(t) ≡ 1,

and

(1.3) ȧn = A
∑

i+j+k=n

ai aj ak +B
∑

i+j=n

ai aj .

Formulae for the an(t), in terms of A(t) and B(t), were derived in [5] for
2 ≤ n ≤ 8.

Now, we consider the quartic differential equation

(1.4) ż =
dz

dt
= z4 +A(t)z3 +B(t)z2,

where z is real and A(t), B(t) are continuous functions. With the same
definition of multiplicity, the formulae for an(t) becomes:

(1.5) ȧn =
∑

i+j+k+l=n

ai aj ak al +A
∑

i+j+k=n

ai aj ak +B
∑

i+j=n

ai aj .

Formulae for the an(t), in terms of A(t) and B(t), were derived in [4] for
2 ≤ n ≤ 8.

The class of equations (1.4) has received some attention in the literature.
The main concern is to estimate the number of periodic solutions. The
qualitative behavior of the solution curves depends entirely on the periodic
solutions; see, for example, [10]. The problem was suggested by C. Pugh
as a version of Hilbert’s sixteenth problem; it is listed as Problem 7 by
Steve Smale in [11]. Equations of the form (1.3), have been studied in [8]
and [10] using the methods of complex analysis and topological dynamics.
The variable z was assumed to be complex. The reason is that periodic
solutions cannot then be destroyed by small perturbations of the right-hand
side of the equation. Suppose that ϕ is a periodic solution of multiplicity
k. This solution is counted as k solutions. By applying Rouche’s theorem
to the function q, for any sufficiently small perturbations of the equation,
there are precisely k periodic solutions in a neighborhood of ϕ (counting
multiplicity). On the other hand, upper bounds to the number of periodic
solutions of equation (1.4) can be used as upper bounds to the number of
periodic solutions when z is limited to be real-valued. This is the reason that
the coefficients are not allowed to be complex-valued. The results presented
in [8] could be used for equations with piecewise linear coefficients; the
coefficients in [8] are only required to be continuous.
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The equation (1.4) was considered in [2] and [4]. The main concern was
the multiplicity of z = 0 when the coefficients are polynomial functions in
t, and in cos t and sin t. Equations with at least 10 real periodic solutions
were constructed. These periodic solutions are bifurcated from a periodic
solution of multiplicity 10. In this paper, we consider the case in which A(t)
and B(t) are continuous piecewise linear functions.

T simplify the presentation, we introduce the functions
Definition. µ1(m,n) = Maximum {multiplicity of z = 0 when B(t) and
A(t) are polynomial functions of degree m and n, respectively}.
µ2(m,n) = maximum {multiplicity of z = 0 when B(t) and A(t) are contin-
uous piecewise linear functions, with m and n segments, respectively}.
For µ2 the segments are connected at k

n
, k = 1, 2, · · · n− 1.

In the next section, we consider the cubic equation. First, sufficient con-
ditions for the existence of a center at z = 0 are given. Then we prove the
following result.

Theorem 1.1. For the equation (1.1),

(1) µ1(2, 2) = µ2(2, 2) = 4,
(2) µ1(2, 3) = µ2(2, 3) = 8,
(3) µ1(1, 2) = µ1(1, 3) = µ2(1, 2) = µ2(1, 3) = 4,

µ1(1, 4) = µ2(1, 4) = µ1(1, 5) = µ2(1, 5) = 5,
µ1(1, 6) = µ2(1, 6) = 10, µ1(1, 7) = µ2(1, 7) = 11.

The quartic equation is considered in Section 3. We prove our second
result.

Theorem 1.2. For the equation (1.4),

(1) µ1(2, 2) = µ2(2, 2) = 8,
(2) µ1(2, 3) = µ2(2, 3) = 10,
(3) µ1(1, 2) = µ1(1, 3) = µ2(1, 2) = µ2(1, 3) = 5,

µ1(1, 4) = µ2(1, 4) = 9, µ1(1, 5) = µ2(1, 5) = 10.

These results provide evidences for the following conjecture.

Conjecture 1.3. For the equations (1.1) and (1.4), µ1(m,n) = µ2(m,n),
for all m and n.

2. Cubic Equations

The formula (1.3) is nonlinear with an increasing number of terms. In
computing multiplicity, another linear formula is used. To derive this linear
formula, we use the expansion of the inverse Poincaré mapping

(2.1) c =
∞
∑

k=1

1

k
Vk(t)z

k,
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where V0(1) = 1, and Vk(1) = 0, k > 1. From the two expansions (1.2) and
(2.1), we have

c =
∞
∑

k=1

1

k
Vk [

∞
∑

n=1

an c
n]k.

It follows from equating the coefficients of ci in both sides that if ai(1) =
Vi(1) = 0, 1 < i < k − 1, then

ak(1) = −
1

k
Vk(1).

Next, differentiate c =
∑

∞

k=1
1
k
Vk(t) z

k with respect to t and then substitute
in (1.1); we obtain

0 =

∞
∑

1

(
1

k
V ′

k z
k + Vk z

k−1z′) =

∞
∑

1

(
1

k
V ′

k z
k + Vk z

k−1(Az3 +B z2)).

From equating the coefficients of zk in both sides, we have

(2.2) V1(t) ≡ 1, V2(t) = −2

∫ t

0
B(s) ds,

(2.3) Vk(t) = −k

∫ t

0
[B(s)Vk−1(s) +A(s)Vk−2(s)] ds, k > 2.

This formula is linear and easier to implement than the formula for an. We
summarize these remarks as follows.

Proposition 2.1. Suppose that Vi(t) are defined by the formulae (2.2). The
solution z = 0 of equation (1.1) is of multiplicity k if and only if Vi(1) = 0
for 2 ≤ i ≤ k−1 and Vk(1) 6= 0. The solution z = 0 is stable when Vk(1) > 0,
and is unstable when Vk(1) < 0.

The procedure of using the inverse Poincare map is classical, see [9]. Sim-
ilar formulae were obtained in [3] using Liapunov functions approach.

First, we present conditions on the functions A(t) and B(t) that imply
z = 0 is a center.

Theorem 2.2. Suppose that A(t) and B(t) are continuous functions. The
condition

z(
1

2
+ t) = z(

1

2
− t)

is satisfied by all solutions of equation (1.1) if and only if

A(
1

2
+ t) = −A(

1

2
− t), B(

1

2
+ t) = −B(

1

2
− t),

for 0 ≤ t ≤ 1
2 .
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Proof. Suppose that A(t) and B(t) satisfy the above condition. Let z(t) be
a solution of (1.1) defined on the interval [0, 1]. Consider the functions

z1(t) = z(
1

2
+ t), z2(t) = z(

1

2
− t).

The functions are defined on the interval [0, 12 ]. Differentiate z1(t) and z2(t)
and then substitute in the differential equation; this gives

ż1(t) = A(
1

2
+t) z3(

1

2
+t)+B(

1

2
+t) z2(

1

2
+t) = A(

1

2
+t) z31(t)+B(

1

2
+t) z21(t),

ż2(t) = −A(
1

2
−t) z3(

1

2
−t)−B(

1

2
−t) z2(

1

2
−t) = A(

1

2
+t) z32(t)+B(

1

2
+t) z22(t).

Hence, z1(t) and z2(t) are solutions of the differential equation

ż(t) = A(
1

2
+ t) z3(t) +B(

1

2
+ t) z2(t).

On the other hand, z1(0) = z2(0) = z(12 ). The uniqueness theorem implies
that z1(t) ≡ z2(t). Therefore,

z(
1

2
+ t) = z(

1

2
− t).

In particular, z(0) = z(1).
Conversely, assume that all solutions z(t) starting in a neighborhood of

the origin satisfy the condition z(12 + t) = z(12 − t) for 0 ≤ t ≤ 1
2 . Now, we

differentiate both sides and substitute in the equation to obtain

z(
1

2
+ t)[A(

1

2
+ t) +A(

1

2
− t)] +B(

1

2
+ t) +B(

1

2
− t) = 0

for all small z. Therefore,

A(
1

2
+ t) = −A(

1

2
− t), B(

1

2
+ t) = −B(

1

2
− t).

�

If A(t) and B(t) satisfy the condition in Theorem 2.2 then

A1(t) = A(t−
1

2
), B1(t) = B(t−

1

2
)

are odd functions. It follows from the theory of Fourier series that these
functions are of the form sin(4πt) g(cos(4πt)), where g is a continuous func-
tion. Therefore, A(t) and B(t) satisfy the composition condition. Recall
that A(t) and B(t) satisfy the composition condition if A(t) = s′(t)A1(s(t))
and B(t) = s′(t)B1(s(t)), where s(t) is a periodic function and A1 and B1

continuous functions. We refer the reader to [5] for more details.

Lemma 2.3. [5] If A(t) and B(t) satisfy the composition condition then
z = 0 is a center for equation (1.1).
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Let ti =
i
n
for i = 0, 1, 2, · · · , n. If f(t) is a continuous piecewise linear

function defined on the interval [0, 1], then f(t) can be written in the form

f(t) = m1t+ b+
1

2

i=n
∑

i=2

(mi −mi−1)(t− ti−1+ | t− ti−1 |).

If tk−1 ≤ t ≤ tk then t−ti+|t−ti| = 0 for i > k−1, and t−ti−|t−ti| = 2t−2ti
for i ≤ k − 1. Therefore, in each subinterval [ti−1, ti], the formula becomes

f(t) = mkt+ b+
1

n
[m1 +m2 + · · · +mk−1 − (k − 1)mk].

The slope of this line segment is mi

Corollary 2.4. Suppose that A(t) and B(t) are piecewise linear continuous
functions. Let mk and nk be the slopes of the line segments tk−1 < t <

tk, k = 1, 2, · · · , n of A(t) and B(t), respectively. If A(12) = B(12) = 0,
mk = mn−k and nk = nn−k for k = 1, 2, · · · , n then equation (1.1) has a
center at z = 0.

Proof. We show that A(t) satisfies the conditions in Theorem 2.2. For a
given t, let S1, S2, · · · , Sk be the segments that contain the interval 1

2 ≤ t ≤
1
2 + t. This implies that

A(
1

2
+ t) = s1

1

2n
+ s2

1

n
+ s3

1

n
+ · · ·+ sk−1

1

n
+ sk(

1

2
+ t−

2k − 3

2n
),

where, si is the slope of the line segment Si. Simplifying the right hand side
gives

A(
1

2
+ t) =

(s1 + 2s2 + · · · + 2sk−1 + sk(n+ 2nt− 2k + 3))

2n
,

On the other hand,

A(
1

2
− t) = −s1

1

2n
− s2

1

n
− s3

1

n
− · · · − sk−1

1

n
− sk(

1

2
− t−

2k − 3

2n
),

and hence,

A(
1

2
− t) =

−(s1 + 2s2 + · · ·+ 2sk−1 + sk(n+ 2nt− 2k + 3))

2n
.

The same argument is applied to B(t). Hence, A(t) and B(t) satisfy the
conditions in Theorem 2.2. �

Remark 2.5. (1) It follows from Corollary 2.3 that if z = 0 is a center
with respect to the interval [0, 1], then z = 0 is a center with respect
to any interval of the form [12 − r, 12 + r] with 0 ≤ r ≤ 1

2 .
(2) Suppose that f(t) satisfy the conditions in Corollary 2.2. If the num-

ber of segments is even then the two middle segments have the same
slope and hence can be considered of one segment with length 2

n
and

we call it the middle segment. To understand the shape of f(t), we
start from middle segment and add two parallel segments, one at
each side. We continue in this process until we cover the interval
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[0, 1]. The only condition is that the point (12 , 0) is on the middle
segment.

Notation. Let ηk denotes Vk(1) modulo the ideal generated by 〈V2(1), V3(1), · · · , Vk−1〉.
The multiplicity of the solution z = 0 is k when η2 = η3 = · · · = ηk−1 = 0,
and ηk 6= 0. We use the theory of Gröbner bases to simply the base of an
ideal. The Gröbner basis of the ideal generated by 〈η2, η3, · · · , ηk〉 is de-
noted by Gk. The Computer Algebra System Maple is used in computing
Gröbner bases; see [7]. Now, we prove Theorem 1.1. In the case that the

coefficients are polynomial functions, the results were proved in [1], [5] and
[6]. We present the proofs for completeness.

Proof. (Theorem 1.1 ) We compute the Gröbner bases G2, G3, · · · , Gk, such
that vanishing all polynomials in Gk implies that the origin is a center.
The existence of Gk follows from Hilbert’s finiteness theorem. The basis Gk

is the basis of the center ideal. This ideal is called the Bautin ideal; see,
for example, [12]. To show that z = 0 is a center, we need sufficient and
necessary conditions for a center.

(1) Let

B(t) = a+ 2 bt+ 3 ct2, A(t) = d+ 2 et+ 3 ft2.

The Gröbner basis is given by

G4 = 〈ec− fb, a+ b+ c, f + e+ d〉.

These three conditions imply that B(t) = b
e
A(t). Lemma 2.3 implies

that z = 0 is a center. With the notation, s(t) is the definite integral
of A(t). Therefore, µ1(2, 2) = 4. In the case of piecewise linear
coefficients, we let

B(t) = at+ b+
1

2
(c− a)

(

t−
1

2
+

∣

∣

∣

∣

t−
1

2

∣

∣

∣

∣

)

,

A(t) = dt+ e+
1

2
(f − d)

(

t−
1

2
+

∣

∣

∣

∣

t−
1

2

∣

∣

∣

∣

)

.

We obtain a similar Gröbner basis

G4 = 〈ce− fb, 8 b+ c+ 3 a, f + 3 d+ 8 e〉

These conditions imply that B(t) = b
e
A(t). Same argument used

above implies that µ2(2, 2) = 4.
(2) Let

B(t) = a+ 2 bt+ 3 ct2, A(t) = d+ 2 et+ 3 ft2 + 4 gt3

The basis is given by

G7 = 〈a+ b+ c, g + f + e+ d, 1287 gfc + 1482 g2c+ 858 gec − 2 gb2c,

−7 ec+ 7 fb+ 14 gb + 9 gc, 39 g2bc− 7 gcb3, 3 gc2 + 2 gbc,−3 gcb3 + 13 egbc〉.
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The case g = 0 is considered in part (1) and the case c = 0 is
considered in the part (3). We assume that gc 6= 0. The basis
becomes

G7 = 〈3 a + b, 7 f − 9h, 2h + g, 3 c + 2 b, 7 e + 2h,−39h + 7 b2〉.

and η8 is given by

η8 = −
17

10405395
cg3 +

4

1486485
ceg2 −

1

945945
cge2 +

41936

15335981015355
cgb4.

Adding η8 to the basis gives

G8 = 〈1〉.

Hence µ1(2, 3) = 8.
Next, let

B(t) = at+ b+
1

2
(c− a)

(

t−
1

2
+

∣

∣

∣

∣

t−
1

2

∣

∣

∣

∣

)

A(t) = dt+ e+
1

2
(f − d)

(

t−
1

3
+

∣

∣

∣

∣

t−
1

3

∣

∣

∣

∣

)

+
1

2
(g − f)

(

t−
2

3
+

∣

∣

∣

∣

t−
2

3

∣

∣

∣

∣

)

.

The case that c−a = 0 is considered in the part (3). When c−a 6= 0,
we make the change of variables

z 7→
1

c− a
z.

This transformation reduces the equation into a similar one but c−a

is replaced by 1. It should be mentioned that this transformation
does not change the multiplicity. Hence, we let c− a = 1. The basis
is given by

G8 = 〈4 a+ 8 b+ 1, d, e, 4 c − 3 + 8 b, f, g〉.

These conditions imply that A(t) ≡ 0, and hence the origin is a
center.

(3) It follows from Proposition 2.1 that if the multiplicity is greater

than 2 then
∫ 1
0 B(t) dt = 0. If B(t) is a linear function then the

multiplicity is greater than 2 when B(t) = u (2 t − 1), where u is a
constant. With the transformation

z 7→
1

u
z

we can assume that u = 1. We write the polynomials in the form

B(t) = 2 t− 1,

A(t) = a+b
(

t2 − t
)

+c
(

t2 − t
)2
+d

(

t2 − t
)3
+(2 t− 1)

(

e+ f
(

t2 − t
)

+ g
(

t2 − t
)2

+ h
(

t2 − t
)3
)

.

This form is used in [1] and it gives smaller Gröbner bases. It is clear
that if a = b = c = d implies that z = 0 is a center. The composition
condition in Lemma 2.3 is satisfied with s(t) = t2 − t.
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The bases for all the cases are given by
If f = g = h = d = c = 0 then G4 = 〈a, b〉.
If g = h = d = c = 0 then G4 = 〈a, b〉.
If g = h = d = 0 then G5 = 〈a, b, c〉.
If h = d = 0 then G5 = 〈a, b, c〉.
If h = 0 then G10 = 〈a, b, c, d〉.
If the degree of A(t) is 7 then G11 = 〈a, b, c, d〉.

For the case of piecewise linear coefficients, we take

B(t) = 2 t− 1

and the forms of A(t) are taken separately. In each case the center
follows from Corollary 2.4.

A(t) = at+ b+
1

2
(c− a)

(

t−
1

2
+

∣

∣

∣

∣

t−
1

2

∣

∣

∣

∣

)

The basis is given by

G4 = 〈a− c, c+ 2 b〉

and

A(
1

2
) =

1

2
a+ b = 0.

With three segments, we take

A(t) = at+ b+
1

2
(c− a)

(

t−
1

3
+

∣

∣

∣

∣

t−
1

3

∣

∣

∣

∣

)

+
1

2
(d− c)

(

t−
2

3
+

∣

∣

∣

∣

t−
2

3

∣

∣

∣

∣

)

And this gives

G4 = 〈a− d, c + 2d+ 6b〉

and

A(
1

2
) =

a

3
+ b+

c

6
= 0

Similarly, for 4, 5, 6 and 7 segments the forms of A(t) and the bases
are given in by:

A(t) = at+ b+
1

2
(c− a)

(

t−
1

4
+

∣

∣

∣

∣

t−
1

4

∣

∣

∣

∣

)

+
1

2
(d− c)

(

t−
2

4
+

∣

∣

∣

∣

t−
2

4

∣

∣

∣

∣

)

+

1

2
(e− d)

(

t−
3

4
+

∣

∣

∣

∣

t−
3

4

∣

∣

∣

∣

)

G5 = 〈a− e, 4b+ d+ e, c− d〉

A(
1

2
) =

a

4
+ b+

c

4
= 0

A(t) = at+ b+
1

2
(c− a)

(

t−
1

5
+

∣

∣

∣

∣

t−
1

5

∣

∣

∣

∣

)

+
1

2
(d− c)

(

t−
2

5
+

∣

∣

∣

∣

t−
2

5

∣

∣

∣

∣

)

+

1

2
(e− d)

(

t−
3

5
+

∣

∣

∣

∣

t−
3

5

∣

∣

∣

∣

)

+
1

2
(f − e)

(

t−
4

5
+

∣

∣

∣

∣

t−
4

5

∣

∣

∣

∣

)

G5 = 〈a− f, 10b+ d+ 2e+ 2f, c− e〉
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A(
1

2
) =

a

5
+ b+

c

5
+

d

10
= 0

A(t) = at+ b+
1

2
(c− a)

(

t−
1

6
+

∣

∣

∣

∣

t−
1

6

∣

∣

∣

∣

)

+
1

2
(d− c)

(

t−
2

6
+

∣

∣

∣

∣

t−
2

6

∣

∣

∣

∣

)

+

1

2
(e− d)

(

t−
3

6
+

∣

∣

∣

∣

t−
3

6

∣

∣

∣

∣

)

+
1

2
(f − e)

(

t−
4

6
+

∣

∣

∣

∣

t−
4

6

∣

∣

∣

∣

)

+

1

2
(g − f)

(

t−
5

6
+

∣

∣

∣

∣

t−
5

6

∣

∣

∣

∣

)

G10 = 〈a− g, 6b+ e+ f + g, c − f, d− e〉

A(
1

2
) =

a

6
+ b+

c

6
+

d

6
= 0

A(t) = at+ b+
1

2
(c− a)

(

t−
1

7
+

∣

∣

∣

∣

t−
1

7

∣

∣

∣

∣

)

+
1

2
(d− c)

(

t−
2

7
+

∣

∣

∣

∣

t−
2

7

∣

∣

∣

∣

)

+
1

2
(e− d)

(

t−
3

7
+

∣

∣

∣

∣

t−
3

7

∣

∣

∣

∣

)

+
1

2
(f − e)

(

t−
4

7
+

∣

∣

∣

∣

t−
4

7

∣

∣

∣

∣

)

+

1

2
(g − f)

(

t−
5

7
+

∣

∣

∣

∣

t−
5

7

∣

∣

∣

∣

)

+
1

2
(h− g)

(

t−
6

7
+

∣

∣

∣

∣

t−
6

7

∣

∣

∣

∣

)

G11 = 〈a− h, 14b + e+ 2f + 2g + 2h, c − g, d − f〉

A(
1

2
) =

a

7
+ b+

c

7
+

d

7
+

e

14
= 0

�

3. Quartic Equations

A linear recursive formula for computing the multiplicity can be derived
as in Section 2. In this case, the functions Vk(t) are defined by:
(3.1)

V1(t) ≡ 1, Vk(t) = −k

∫ t

0
[B(s)Vk−1(s) +A(s)Vk−2(s) + Vk−3(s)]ds, k > 1.

Proposition 3.1. Suppose that Vi(t) are defined by the formula (3.1). The
solution z = 0 of equation (1.4) is of multiplicity k if and only if Vi(1) = 0
for 2 ≤ i ≤ k − 1 and Vk(1) 6= 0.

Now, we consider the equation (1.4). In this case, the origin can not be
a center. It is shown in [4] that z = 0 is an isolated periodic solution. For
a given class of coefficients the Gröbner bases are computed until Gk = 〈1〉;
in this case the set of polynomials in Gk do not have a common zero and
therefore the maximum possible multiplicity is k. It is shown in [4] that
µ1(2, 2) = 8, and it is shown in [2] that µ1(2, 3) = 10. We include proofs of
these results also.

Proof. (Theorem 1.2)
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(1) Let

B(t) = a+ 2 bt+ 3 ct2, A(t) = d+ 2 et+ 3 ft2

The Gröbner basis is given by

G7 = 〈108 a − 11 e2, 36 b + 11 e2, 54 c − 11 e2, d+ e, 11 e3 − 3240, f〉

and

η8 = −
11552

626535
e2.

It follows that G8 = 〈1〉.
For the case piecewise linear coefficients, we take

B(t) = at+ b+
1

2
(c− a)

(

t−
1

2
+

∣

∣

∣

∣

t−
1

2

∣

∣

∣

∣

)

,

A(t) = dt+ e+
1

2
(f − d)

(

t−
1

2
+

∣

∣

∣

∣

t−
1

2

∣

∣

∣

∣

)

.

The basis G7 and η8 are given by

G7 = 〈144 a+ 7 f2, 576 b− 7 f2, 144 c− 7 f2,−f + d, f + 2 e,−27648 + 7 f3〉

η8 = −
2041

498960
f2

These imply that G8 = 〈1〉.
(2) Let

B(t) = a+ 2 bt+ 3 ct2, A(t) = d+ 2 et+ 3 ft2 + 4 gt3.

If the multiplicity is greater than 5 then η5 = 0, where

η5 =
1

1764
(gc+ 210) (2 b+ 3 c) .

If gc+ 210 = 0 then G5 = 〈1〉, and if 2b+ 3c = 0 then G10 = 〈1〉.
For piecewise linear coefficients, let

B(t) = at+ b+
1

2
(c− a)

(

t−
1

2
+

∣

∣

∣

∣

t−
1

2

∣

∣

∣

∣

)

A(t) = dt+ e+
1

2
(f − d)

(

t−
1

3
+

∣

∣

∣

∣

t−
1

3

∣

∣

∣

∣

)

+
1

2
(g − f)

(

t−
2

3
+

∣

∣

∣

∣

t−
2

3

∣

∣

∣

∣

)

.

The case that c− a = 0,

G4 = 〈6 eb+ fb+ 2 db+ 81, c + 2 b, 3 f + 18 e+ 5 d+ g, 2 b + a〉

G5 = 〈1〉.

When c− a 6= 0, we make the change of variables

z 7→
1

c− a
z.

With this transformation, the equation is of the form

ż = k z4 +A(t) z3 +B(t) z2,
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with a non-zero constant k. In fact, k = 1
(c−a)3

. Moreover, the

coefficient c− a in B(t) is replaced by 1. The basis, with c− a = 1,
is given by

G9 = 〈66735388183208154600960 f4 + 5829122567397869818848 f3 − 68783721774316079552 fe

+139990051412348601632 f2 + 1344723268054007200 e + 146583972817817393 f,

17101027722240 ef2 − 5269542106752 f3+

733610765888 fe − 233959770968 f2 − 6125396800 e + 1693244383 f, 8 eb − e,

82432 e2 − 17024 fe − 1904 f2 + 920 e − 269 f, 8 fb− f,

2 g + 6 e+ f, 4 a+ 8 b+ 5, 10368 k + 32 e − 11 f, f + 6 e+ 2 d〉

η10 = −
104057406529615499

780994714281201717844377600
f3−

867941774841100820209033

96522790757355293736025622524723200
fe+

1666102537252531452515843

140396786556153154525128178217779200
f2 +

2196152718747243263819885

206810570805324733709188812087754752
e−

2900881012686053802785600993

951328625704493775062268535603671859200
f.

G10 = 〈g, 4 a + 8 b+ 5, k, d, e, f〉

(3) If B(t) is a linear function and the multiplicity is greater than 2,
then B(t) = a− 2 a t. Again with the change of variables

z 7→
1

a
z

We consider the differential equation

ż = k z4 +A(t) z3 +B(t) z2,

with

B(t) = 2 t− 1, A(t) = b+ ct+ dt2 + et3 + ft4 + gt5.
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Here, k = 1
a3
. The bases are given by

G10 = 〈37511692566915157189513021571250141246445562631168000 a+

76954078025109319792419383346327250 g4f+

6849063961008228076202649414049259748983323392 fg+

192385195062773299481048458365818125 g5+

17122659902520570190506623535123149372458308480 g2 ,

812753338949828405772782134043753060339653857008640 b−

3039686081991818131800565642179926375 g4+

6396626065376256805845080981938604767430030478336 g,

12699270921091068840199720844433641567807091515760 c+

2539854184218213768039944168886728313561418303152 f+

423247429138101258858306608404799875 g4+

4341516136354618897336295790080428452939652335036 g,

496186409615279857004140496974208217545576225280 d−

595423691538335828404968596369049861054691470336 f−

38477039012554659896209691673163625 g4−

1028512938658225137299402571203191057331286500736 g,

744279614422919785506210745461312326318364337920 e+

1488559228845839571012421490922624652636728675840 f+

38477039012554659896209691673163625 g4+

2020885757888784851307683565151607492422438951296 g,

455446932871017250994724610810483152793296813865452398540570112 f2+

2277234664355086254973623054052415763966484069327261992702850560 fg−

49539000048633777493317082388741947622188883125 g5+

2845280986013026886327275526892991130747287056580695907322835840 g2 ,

3984808136948929447103185415887785672672861696 g3−

14218838340357434859762303459719245720157600157874298880000+

38477039012554659896209691673163625 g6〉

When g = 0,

G9 = 〈k, b+ c− e, d + 2 e, f〉

When f = g = 0,

G5 = 〈k, b+ c− e, d+ 2 e〉

When e = f = g = 0,

G5 = 〈k, b+ c, d〉
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In the corresponding piecewise linear coefficients, we take B(t) =
2 t− 1 and

A(t) = at+ b+
1

2
(c− a)

(

t−
1

2
+

∣

∣

∣

∣

t−
1

2

∣

∣

∣

∣

)

G4 = 〈144 + ad+ 2 ac, 8 c + d+ 3 b〉, η5 =
a

6
.

When

A(t) = dt+ e+
1

2
(f − d)

(

t−
1

3
+

∣

∣

∣

∣

t−
1

3

∣

∣

∣

∣

)

+
1

2
(g − f)

(

t−
2

3
+

∣

∣

∣

∣

t−
2

3

∣

∣

∣

∣

)

,

we have

G4 = 〈ad+ 6 ac + 2 ab− 81, 18 c + 3 d+ 5 b+ e〉, η5 =
2 a

9
.

When

A(t) = at+ b+
1

2
(c− a)

(

t−
1

4
+

∣

∣

∣

∣

t−
1

4

∣

∣

∣

∣

)

+
1

2
(d− c)

(

t−
2

4
+

∣

∣

∣

∣

t−
2

4

∣

∣

∣

∣

)

+

1

2
(e− d)

(

t−
3

4
+

∣

∣

∣

∣

t−
3

4

∣

∣

∣

∣

)

,

we have

G8 = 〈24301478794941 ad2 − 5170471968081920 c − 6997968367619776 d,

348941857826215204551 d3 − 500251867306017904135800 ad+

62937496133967787727964160, 86251 a2 − 122304 c − 7280 d, 690 ac−

519 ad + 125456, 61144830207333600 c2 − 6622547301720987 d2+

3643254234403888940 a,−302960854428691360 a − 280441397922231 d2+

3057241510366680 dc, 7841 e − 19320 c + 6691 d, 23523 b + 115712 c+

7261 d, 116632 c + 23523 f + 6569 d〉

and

η9 =
2426539331050271747

36743835937950792000
d−

322603494879515897

3674383593795079200
c.

G9 = 〈1〉

Finally, for the case

A(t) = at+ b+
1

2
(c− a)

(

t−
1

5
+

∣

∣

∣

∣

t−
1

5

∣

∣

∣

∣

)

+
1

2
(d− c)

(

t−
2

5
+

∣

∣

∣

∣

t−
2

5

∣

∣

∣

∣

)

+

1

2
(e− d)

(

t−
3

5
+

∣

∣

∣

∣

t−
3

5

∣

∣

∣

∣

)

+
1

2
(f − e)

(

t−
4

5
+

∣

∣

∣

∣

t−
4

5

∣

∣

∣

∣

)

we make the change of variable z 7→ 1
a
z and let B(t) = 2 t− 1. The

basis is given by

G10 = 〈k, e + 10 c+ 2 d+ 2 g, b − g,−d+ f〉

�
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Remark 3.2. (1) To see the effect of connection points on multiplic-
ity, we repeat the computations in Theorem 1.2(i) with many values
of the connection points. The results are the same. In particular,
µ292, 2) = 8. As an example, we give the Gröbner basis G7 and η8
when the connection point is at 3

7 .

G7 = 〈81486729 a+5324000 f2 , 190135701 b−3327500 f2 , 6036054 c−166375 f2 ,

9027 d − 6836 f, 21063 e + 8810 f, 2013137500 f3 − 9344599297047〉,

η8 = −
652948208

152171939367
f2.

(2) It follows from the proof of Theorem 1.2(i) that if z = 0 has the
maximum multiplicity then A(t) is a linear function. The values of
b and c when the multiplicity is 8 imply that the parabola representing
B(t) has a vertex at t = 1

2 . The other similarities between polynomial
coefficients and piecewise linear coefficients are: there is only one
equation with multiplicity 8, and when the multiplicity is 8 the origin
is unstable.

Finally, we consider a case where A(t) has two segments connected at any
point inside the interval [0, 1].

Theorem 3.3. Consider the class of equations in which B(t) is a linear
function and A(t) is a piecewise linear with two segments connected at a
point h, with 0 ≤ h ≤ 1. Then, µ2(1, 2) = 5.

Proof. We put η2 = 0, and then take

B(t) = 2 at− a.

The function A(t) is written as A(t) = b t+ c when 0 ≤ t ≤ h, and A(t) =
d t+b h+c−dh when h ≤ t ≤ 1. To compute η3, η4, η5, we use the following
formulae derived in [4].

η3 =

∫ 1

0
A(t) dt,

η4 =

∫ 1

0
[A(t) B̄(t) + 1] dt,

η5 =

∫ 1

0
[A(t) (B̄(t))2 + 2 B̄(t)] dt,

where B̄(t) =
∫ t

0 B(s) ds. The Gröbner basis G5 is given by

G5 = 〈ab−ad−108, 36 c2+6 cd+30 bc+bd+7 b2+d2, 2 ac+108h+ad+36,

3 bh− 3 dh+ b+ 6 c + 2 d,−5 d − 24 c+ 9 dh + 18 ch − 7 b, 3h2 + 1− 3h〉.

It is clear that the last polynomial does not have a real solution. Hence,
µ2(1, 2) = 5. �
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