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HERMITE NORMAL FORMS WITH A GIVEN δ-VECTOR

TAKAYUKI HIBI, AKIHIRO HIGASHITANI AND NAN LI

Abstract. Let δ(P) = (δ0, δ1, . . . , δd) be the δ-vector of an integral polytope

P ⊂ R
N of dimension d. By means of Hermite normal forms of square matrices,

the problem of classifying the possible integral simplices with a given δ-vector

(δ0, δ1, . . . , δd), where
∑d

i=0
δi ≤ 4, will be studied. In consequence, following the

previous work of characterizing the δ-vectors with
∑d

i=0
δi ≤ 3, the possible δ-

vectors with
∑

d

i=0
δi = 4 will be classified. And each possible δ-vectors can be

obtained by simplices.

1. introduction

1.1. A classification problem. Let Zd×d denote the set of d× d integral matrices

(aij). Recall that a matrix A ∈ Z
d×d is unimodular if det(A) = ±1. Given integral

polytopes P and Q in R
d of dimension d, we say that P and Q are unimodular

equivalent if there exists a unimodular matrix U ∈ Z
d×d and an integral vector w,

such that Q = fU(P) + w, where fU is the linear transformation in R
d defined by

U , i.e., fU(v) = vU for all v = (v1, . . . , vd) ∈ R
d.

Given a d dimensional integral polytope P, we can define its δ-vector δ(P) =

(δ0, δ1, . . . , δd) to be the coefficients appearing in the following generating function

for its Ehrhart polynomial i(P, n) = |nP ∩ Z
d| (see next subsection for more about

δ-vectors):
∑

n≥0

i(P, n)tn =
δ0 + δ1t+ · · ·+ δdt

d

(1− t)d+1
.

Clearly, if P and Q are unimodular equivalent, then δ(P) = δ(Q). Conversely,

given a vector v ∈ Z
d+1
≥0 , it is natural to ask what are all the integral polytopes P

under unimodular equivalence, such that δ(P) = v.

In this paper, we will focus on this problem for simplices with one vertex at the

origin. In addition, we do not allow any shifts in the equivalence, i.e., d dimensional

integral polytopes P andQ are equivalent if there exists a unimodular matrix U , such

that Q = fU(P). Let P be an integral simplex in R
d of dimension d with the vertices

0,v1, . . . ,vd. Define M(P) ∈ Z
d×d to be the matrix with the row vectors v1, . . . ,vd.

Then we have the following connection between the matrix M(P) and the δ-vector

of P: | det(M(P))| =
∑

i≥0 δi. In this setting P and P ′ are equivalent if and only if
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M(P) and M(P ′) have the same Hermite normal form. The Hermite normal form

of an integral square matrix B is the unique nonnegative lower triangular matrix

A = (aij) ∈ Z
d×d
≥0 such that A = BU for some unimodular matrix U ∈ Z

d×d and

0 ≤ aij < aii for all 1 ≤ j < i (see, for example, [6, Chapter 4]).

In other words, we can pick the Hermite normal form as the representative in each

equivalence class and study the following

Problem 1.1. Given a vector v ∈ Z
d+1
≥0 , classify all possible d×d matrices A ∈ Z

d×d

which are in Hermite normal form with δ(P) = (δ0, δ1, . . . , δd) = v, where P ⊂ R
d is

the integral simplex whose vertices are the row vectors of A together with the origin

in R
d.

We will present a solution of Problem 1.1 when
∑d

i=0 δi ≤ 4 in Section 4.

1.2. Background for δ-vectors. Let P ⊂ R
N be an integral polytope of dimension

d and ∂P its boundary. Define the numerical functions i(P, n) and i∗(P, n) by setting

i(P, n) = |nP ∩ Z
N |, i∗(P, n) = |n(P − ∂P) ∩ Z

N |.

Here nP = {nα : α ∈ P} and |X| is the cardinality of a finite set X .

The systematic study of i(P, n) and i∗(P, n) originated in Ehrhart around 1955,

who established the following fundamental properties:

(0.1) i(P, n) is a polynomial in n of degree d;

(0.2) i(P, 0) = 1;

(0.3) (reciprocity law) i∗(P, n) = (−1)di(P,−n) for every integer n > 0.

We say that i(P, n) is the Ehrhart polynomial of P. An introduction to Ehrhart

polynomials is discussed in [8, pp. 235–241] and [2, Part II].

We define the sequence δ0, δ1, δ2, . . . of integers by the formula

(1− λ)d+1

[

1 +
∞∑

n=1

i(P, n)λn

]

=
∞∑

i=0

δiλ
i.(1)

In particular, δ0 = 1 and δ1 = |P ∩ Z
N | − (d + 1). Thus, if δ1 = 0, then P is

a simplex. The above facts (0.1) and (0.2) together with a well-known result on

generating function ([8, Corollary 4.3.1]) guarantee that δi = 0 for every i > d. We

say that the sequence

δ(P) = (δ0, δ1, . . . , δd)

which appears in Eq. (1) is the δ-vector of P and the polnomial

δP(t) = δ0 + δ1t + · · ·+ δdt
d

which also appears in Eq. (1) is the δ-polynomial of P.

It follows from the reciprocity law (0.3) that

(1− λ)d+1

[
∞∑

n=1

i∗(P, n)λn

]

=

d∑

i=0

δd−iλ
i+1(2)
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In particular, δd = |(P − ∂P) ∩Z
N |. Each δi is nonnegative (Stanley [9]). If δd 6= 0,

then δ1 ≤ δi for every 1 ≤ i < d ([3]). Eq. (2) says that

max{ i : δi 6= 0 }+min{ i : i(P − ∂P) ∩ Z
N 6= ∅ } = d+ 1.

Let s = max{ i : δi 6= 0 }. Stanley [10] shows that

δ0 + δ1 + · · ·+ δi ≤ δs + δs−1 + · · ·+ δs−i, 0 ≤ i ≤ [s/2](3)

by using Cohen–Macaulay rings. The inequalities

δd−1 + δd−2 + · · ·+ δd−i ≤ δ2 + δ3 + · · ·+ δi + δi+1, 1 ≤ i ≤ [(d− 1)/2](4)

appear in [3, Remark (1.4)].

1.3. Two related classification problems. One of the most fundamental prob-

lems of enumerative combinatorics is to find a combinatorial characterization of all

vectors that can be realized as the δ-vector of some integral polytope. For example,

restrictions like δ0 = 1, δi ≥ 0, (3) and (4) are necessary conditions for a vector to

be a δ-vector of some integral polytope.

In [4], it is shown that when
∑d

i=0 δi ≤ 3, (3) and (4) is both necessary and

sufficient. Therefore, they give a combinatorial characterization of the possible δ-

vectors. However, this is not true for
∑d

i=0 δi = 4. In section 5, we show that (3)

and (4) with an additional condition will be both necessary and sufficient to give all

possible δ-vectors with
∑d

i=0 δi = 4. And in this case, all δ-vectors can be obtained

by simplices (Theorem 5.1).

Another question related with Problem 1.1 is to consider for a given vector,

whether or not there is a unique Hermite normal form. A more general version

is the following:

Problem 1.2. [1, Open Problem 3.41]Given integral polytopes P and Q in R
d of

dimension d with δ(P) = δ(Q), what conditions guarantee the existence of a vector

w ∈ R
d together with a unimodular matrix U ∈ Z

d×d such that Q = fU(P) +w?

Since [1, Open Problem 3.41] allows a shift in the equivalence class, Problem 1.1

is different from the simplex version of [1, Open Problem 3.41]. See the following

Example 1.3. Let d = 2 and P the triangle with the vertices (0, 0), (1, 0) and (0, 2)

and P ′ = P + (−1, 0). Thus P ′ is the triangle with the vertices (−1, 0), (0, 0) and

(−1, 2). Let A be the 2× 2 matrix with the row vectors (1, 0) and (0, 2), and A′ the

2 × 2 matrix with the row vectors (−1, 0) and (−1, 2). Then the Hermite normal

form of A is

(
1 0

0 2

)

and that of A′ is

(
1 0

1 2

)

.
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1.4. Structure of this paper. The way we approach Problem 1.1 is to develop

an algorithm for any Hermite normal form A to compute its δ-vector (See Theorem

2.1 in Section 2). This actually gives a new way to compute the δ-vector for any

integral simplex via its Hermite normal form. This algorithm can be very efficient

for simplices with small volumes and prime volumes.

Based on this algorithm, as a by-product, we can derive some conditions for

Hermite normal forms to have “shifted symmetric” δ-vector, namely, δi = δd+1−i.

We will discuss these conditions for two classes of Hermite normal forms in Section

3.

In Section 4, we apply Theorem 2.1 and get a solution to Problem 1.1 when
∑d

i=0 δi ≤ 4. In section 5, we show that (3) and (4) with an additional condition

will give all possible δ-vectors with
∑d

i=0 δi = 4. And in this case, all δ-vectors can

be obtained by simplices (Theorem 5.1).

Acknowledgements. We thank Richard Stanley for useful discussions and Steven

Sam for carefully reading the previous draft of this article.

2. An algorithm for the computation of the δ-vector of a simplex

In this section, we introduce an algorithm for the δ-vector of integral simplices

arising from Hermite normal forms.

Let M ∈ Z
d×d. We write P(M) for the integral simplex whose vertices are the

row vectors of M together with the origin in R
d. We will present an algorithm to

compute the δ-vector of P(M). To make the notation clear, we assume d = 3. The

general case is completely analogous. Let A be the Hermite normal form of M . We

have that {P(M) ∩ Z
d} is in bijection with {P(A) ∩ Z

d}. By definition,

A =





a11 0 0

a21 a22 0

a31 a32 a33



 ,

where each aij is a nonnegative integer.

For a vector λ = (λ1, λ2, λ3), consider

b(λ) = (λ1, λ2, λ3)A = (a11λ1 + a21λ2 + a31λ3, a22λ2 + a32λ3, a33λ3).

Then it is clear that the set of interior points inside P(A) ({(P(A)− ∂P(A))∩Z
3})

is in bijection with the set

{(λ1, λ2, λ3) | λi > 0, λ1 + λ2 + λ3 < 1 and b(λ) ∈ Z
3}.

An observation is that {n(P(A)− ∂P(A)) ∩Z
3}, for any n ∈ N, is in bijection with

{(λ1, λ2, λ3) | λi > 0, λ1 + λ2 + λ3 < n and b(λ) ∈ Z
3}.

We first consider all positive vectors λ satisfying b(λ) ∈ Z
3. By the lower trian-

gularity of the Hermite normal form, we can start from the last term of b(λ) and
4



move forward. It is not hard to see that each vector λ should have the following

form: ({r} is the fractional part of a rational number r.)

λk,k3
3 =

k

a33
+ k3,

λjk,k2
2 =

j − {a32λ
k
3}

a22
+ k2,

and

λijk,k1
1 =

i− {a21λ
jk
2 + a31λ

k
3}

a11
+ k1,

for some nonnegative integers k3, k2, k1. In the above formula, k ∈ {1, 2, . . . , a33},

j ∈ {1, 2, . . . , a22}, i ∈ {1, 2, . . . , a11} and λijk
1 = λijk,0

1 , λjk
2 = λjk,0

2 , λk
3 = λk,0

3 . We

call all the vectors λ with the same index (i, j, k) the congruence class of (i, j, k).

Now we go to the condition λ1+λ2+λ3 < n in the above bijection. As n increases,

we ask when is the first time that a congruence class (i, j, k) starts to produce interior

points inside nP(A). In other words, fix (i, j, k). We want the smallest n such that

λ1 + λ2 + λ3 < n. Then it is clear that this happens when k1 = k2 = k3 = 0 and

n = sijk = ⌊λijk
1 + λjk

2 + λk
3⌋ + 1,

where ⌊r⌋ for a rational number is the biggest integer not larger than r.

Finally, when n grows larger than sijk, we want to consider how many interior

points this fixed congruence class produces. Let n = sijk + ℓ, so each interior point

corresponds to a choice of k1, k2, k3 in the formula of λijk,k1
1 , λij,k2

2 and λi,k3
3 such that

k1 + k2 + k3 ≤ ℓ. There are
((

d+1
ℓ

))
choices in total.

To sum up, we have the following two observations for each congruence class

(i, j, k), k ∈ {1, 2, . . . , a33}, j ∈ {1, 2, . . . , a22}, i ∈ {1, 2, . . . , a11}:

(1) sijk is the smallest n such that this congruence class contributes interior

points in the n-th dilation of P(A);

(2) In the (sijk+ℓ)-th dilation of P(A), this congruence class contributes
((

d+1
ℓ

))

interior points.

Therefore, the following Theorem holds. We state it for a general dimension d,

and the proof is analogous to the case d = 3.

Theorem 2.1. Let P(A) be a d dimensional simplex corresponding to a d× d ma-

trix A = (aij). Then the generating function for the interior points of nP(A),

i∗(P(A), n) = |n(P(A)− ∂P(A)) ∩ Z
d| is

∑

n≥1

i∗(P(A), n)tn = (1− t)−(d+1)
∑

(i1,...,id)
1≤ij≤aij

tsi1...id ,

where

si1...id =

⌊
d∑

k=1

λ
ik,ik+1,...id
k

⌋

+ 1,
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with

λid
d =

id
add

,

and for each 1 ≤ k < d,

λ
ik,ik+1,...id
k = a−1

kk

(

ik −

{
d∑

h=k+1

ahkλ
ihih+1...id
h

})

.

By the reciprocity law (0.3), we have

δP(A)(t) =
∑

(i1,...,id)
1≤ij≤aij

td+1−si1...id .

Example 2.2. Let A be the 4× 4 matrix







1 0 0 0

0 1 0 0

1 1 2 0

1 0 1 3







.

Consider

b(λ) = (λ1, λ2, λ3, λ4)A = (λ1 + λ3 + λ4, λ2 + λ3, 2λ3 + λ4, 3λ4).

Denote

λj
4 =

j

3
, for j = 1, 2, 3, λij

3 =
i− {λj

4}

2
, for i = 1, 2,

λij
2 = 1− {λij

3 }, λij
1 = 1− {λij

3 + λj
4}

and

sij = 1 + ⌊λij
1 + λij

2 + λij
3 + λj

4⌋.

Then we have

s11 = 2, s21 = 3, s12 = 2, s22 = 3, s13 = 3, s23 = 5,

δP(A)(t) =

3∑

i=1

2∑

j=1

td+1−sij = 1 + 3t2 + 2t3,

and thus

δ(P(A)) = (1, 0, 3, 2, 0).
6



3. Shifted symmetric δ-vectors

In this section, we define shifted symmetric δ-vectors and study its conditions for

some special Hermite forms. Results in this section are direct applications of the

algorithm developed in the previous section (Theorem 2.1). In [5], the second author

studied shifted symmetric δ-vectors without using the algorithm.

We call that a δ-vector is shifted symmetric, if δi = δd+1−i, 1 ≤ i ≤ d. For

example, (1, 1, 2, 2, 1, 2, 2, 1) is shifted symmetric.

We want this definition because it simply arises from the algorithm for the “one

row” Hermite normal forms as discussed in the first subsection. In the second

subsection, we will consider a special “one row” Hermite normal form, which allow

us to have better results.

3.1. “One row” Hermite normal forms. Consider all d × d matrices with de-

terminant D and the following Hermite normal forms for some k ∈ {1, 2, . . . , d}.

AD =















1
. . .

1

a1 · · · ak−1 D

1
. . .

1















,(5)

where a1, . . . , ak−1 are nonnegative integers smaller than D and all other terms are

zero. Let dj denote the number of j’s among these aℓ’s, for j = 1, . . . , D − 1. Then

we can simplify Theorem 2.1 for these “one row” Hermite normal forms.

Corollary 3.1. Let M ∈ Z
d×d with det(M) = D and P(M) be the corresponding

integral simplex. If its Hermite normal form looks like matrix (5), then we have

δP(M)(t) =
D∑

i=1

td+1−si,

where

si =

⌊

i

D
−

D−1∑

j=1

{
ij

D

}

dj

⌋

+ d.(6)

Proof. Consider

b(λ) = (λ1, . . . , λk, . . . , λd)AD = (λ1 + a1λk, . . . , λk−1 + ak−1λk, Dλk, λk+1, . . . , λd).

Using notation from the proof of Theorem 2.1, we have, for i = 1, 2, . . . , D,

λi
k =

i

D
, λi

ℓ = 1−

{

aℓ
i

D

}

, for ℓ = 1, . . . , k − 1

7



and

λi
k+1 = · · · = λi

d = 1.

Therefore, si = 1 + ⌊λi
1 + · · ·+ λi

d⌋ =
⌊

i
D
−
∑D−1

j=1

{
ij

D

}
dj

⌋

+ d. �

Now we are going to deduce a symmetry property of the δ-vectors by the following

fact: if D does not divide x, we have
{
−x

D

}

= 1−
{ x

D

}

and

⌊
−x

D

⌋

= −
⌊ x

D

⌋

− 1.(7)

Consider sD−i for i = 1, . . . , D − 1. By formula (6), we have

sD−i =

⌊

−
i

D
−

D−1∑

j=1

{

−
ij

D

}

dj

⌋

+ d+ 1.

By (7), if D does not divide ij for all i, j = 1, . . . , D − 1, we have

sD−i =

⌊

−
i

D
−

D−1∑

j=1

{
ij

D

}

dj

⌋

+ d+ 1−
D−1∑

j=1

dj.

Now compare sD−i with formula (6) for si, and by (7) again, we have the following

symmetry property.

Proposition 3.2 (Shifted symmetry for “one row”). For a matrix M ∈ Z
d×d with

Hermite normal form (5), we have si + sD−i = d + 1, for i = 1, . . . , D − 1, which

implies δi = δd+1−i by reciprocity, if the following three conditions hold:

(1) D does not divide ij for all i, j = 1, . . . , D − 1. This is true, for example, if

D is prime;

(2) (− i
D
+
∑D−1

j=1

{
ij

D

}
dj) /∈ Z;

(3)
∑D−1

j=1 dj = d− 1.

These conditions are not very easy to check, so we consider a special case of

Hermite normal forms (5).

3.2. “All D− 1 one row” Hermite normal forms. Assume in addition dD−1 =

D − 1 in Corollary 3.1, i.e., the Hermite normal form looks like









1

1
. . .

1

D − 1 D − 1 · · · D − 1 D










.(8)

Then we have
8



Corollary 3.3 (All D−1). For a matrix M ∈ Z
d×d with Hermite normal form (8),

we have

δP(M)(t) =

D−1∑

i=1

td+1−si, where si =

⌊
id

D

⌋

+ 1.

By this formula, the conditions for shifted symmetry in Proposition 3.2 can be

simplified.

Proposition 3.4 (Shifted symmetry for “all D − 1 one row”). Let M ∈ Z
d×d with

Hermite normal form (8). Then

(1) δi = δd+1−i if D and d are coprime.

(2) When D = id, for i ∈ N, the δ-vector is

(1, i, . . . , i
︸ ︷︷ ︸

d−1

, i− 1),

which is not shifted symmetric. But for i = 2, we have δi = δd−i (Goren-

stein).

It is also interesting to see the changes of δ-vectors if we fix d and let D increase.

For example, for d = 7, we have the following table:

D δ-vector D δ-vector D δ-vector

9 1 1 1 1 2 1 1 1 16 1 2 2 2 3 2 2 2 23 1 3 3 3 4 3 3 3

10 1 1 1 2 1 2 1 1 17 1 2 2 3 2 3 2 2 24 1 3 3 4 3 4 3 3

11 1 1 2 1 2 1 2 1 18 1 2 3 2 3 2 3 2 25 1 3 4 3 4 3 4 3

12 1 1 2 2 1 2 2 1 19 1 2 3 3 2 3 3 2 26 1 3 4 4 3 4 4 3

13 1 1 2 2 2 2 2 1 20 1 2 3 3 3 3 3 2 27 1 3 4 4 4 4 4 3

14 1 2 2 2 2 2 2 1 21 1 3 3 3 3 3 3 2 28 1 4 4 4 4 4 4 3

15 1 2 2 2 2 2 2 2 22 1 3 3 3 3 3 3 3 · · ·

4. Classification of Hermite normal forms with a given δ-vector

In this section, we will give another application of the algorithm Theorem 2.1.

Consider Problem 1.1 first with the assumption that matrix A ∈ Z
d×d has prime

determinant, i.e., A is of the form (5), with only one general row. By Corollary

3.1, in order to classify all possible Hermite normal forms (5) with a given δ-vector

(δ0, δ1, . . . , δd), we need to find all nonnegative integer solutions (d1, d2, . . . , dD−1)

with d1 + d2 + · · ·+ dD−1 ≤ D − 1 such that

#{i : d+ 1− si = j, for i = 1, . . . , D} = δj , for j = 0, . . . , d.

By Corollary 3.1, we can build equations with “floor” expressions for (d1, d2, . . . , dD−1).

Remove the “floor” expressions, we obtain D linear equations of (d1, d2, . . . , dD−1)

with different constant terms but the same D×D coefficient matrix M with ij entry
9



{(ij)mod D}, which is a number in {0, 1, . . . , D − 1}. Then we first get all integer

solutions (d1, d2, . . . , dD−1), and then test every candidates by the restrictions of

nonnegativity and d1 + d2 + · · ·+ dD−1 ≤ D − 1.

For D = 2 and 3, the coefficient matrix M is nonsingular, so we can write down

the complete solutions, as presented in the first two subsections. For larger primes,

the coefficient matrix becomes singular, so there are free varibles in the integer

solutions (d1, d2, . . . , dD−1), which make it very hard to simplify the final solutions

after the test.

The idea is similar for Hermite normal forms with non prime determinant. Instead

of using Corollary 3.1, we need to use the formulas in Theorem 2.1. In the third

subsection, we will present the complete solution for D = 4 as an example.

4.1. A solution of Problem 1.1 when
∑d

i=0 δi = 2. The goal of this subsection is

to give a solution of Problem 1.1 when
∑d

i=0 δi = 2, i.e., given a δ-vector δ(P) with
∑d

i=0 δi = 2, we classify all the integral simplices with δ(P) arising from Hermite

normal forms with determinant 2.

We consider all Hermite normal forms (5) with D = 2, namely,

A2 =















1
. . .

1

∗ · · · ∗ 2

1
. . .

1















,(9)

where there are d1 1’s among the ∗’s. Notice that the position of the row with a 2

does not affect the δ-vector, so the only variable is d1. By Corollary 3.1, we have a

formula for the δ-vector of this integral simplex P(A2). Denote

k = 1−

⌊
1− d1

2

⌋

.

Then one has δ0 = δk = 1.

By this formula, we can characterize all Hermite normal forms with a given δ-

vector. Let δ0 = δi = 1. Then by solving the equation i = 1 −
⌊
1−d1
2

⌋
, we obtain

d1 = 2i− 2 and d1 = 2i− 1, both cases will give us the desired δ-vector.

Notice that there is a constraint on d1 to be 0 ≤ d1 ≤ d − 1. Not all δ-vectors

are obtained by from simplices. But we can easily get the restriction of i and the

corresponding d1 as follows (by d1 ≥ 0, we have i ≥ 1):

(1) If i ≤ d/2, d1 = 2i − 2 and d1 = 2i − 1 both work, and these give all the

matrices with this δ-vector.

(2) If i = (d+ 1)/2, only d1 = 2i− 2 = d− 1 works.
10



(3) If i > (d+ 1)/2, there is no solution.

4.2. A solution of Problem 1.1 when
∑d

i=0 δi = 3. We consider all Hermite

normal forms (5) with D = 3, namely,

A3 =















1
. . .

1

∗ · · · ∗ 3

1
. . .

1















,(10)

where there are d1 1’s and d2 2’s among the ∗’s. Since the position of the row with a

3 does not affect the δ-vector, so the only variables are d1 and d2. Also, by Corollary

3.1, we have δP(A3)(t) = 1 + tk1 + tk2, where

k1 = 1−

⌊
1− 2d2 − d1

3

⌋

and k2 = 2−

⌊
2− d2 − 2d1

3

⌋

.

Then by the formula, similar to the case of
∑d

i=0 δi = 2, though a little more

complicated, we can characterize all Hermite normal forms with a given δ-vector.

Let δP(A3)(t) = 1 + ti + tj . Set
{

i = 1−
⌊
1−2d2−d1

3

⌋

j = 2−
⌊
2−d2−2d1

3

⌋
.

(Later reverse the role of i and j if i 6= j, in both equations and solutions.) After

computations, the solutions for (d1, d2) are

d(1) =

{

d1 = 2j − i

d2 = 2i− j − 1,
d(2) =

{

d1 = 2j − i− 1

d2 = 2i− j − 1
and d(3) =

{

d1 = 2j − i

d2 = 2i− j − 2.

In addition, by the restriction on (d1, d2) that d1, d2 ≥ 0 and d1 + d2 ≤ d − 1, we

have the following characterizations:

Table 1. Characterizations for matrices of the form (10)

2j 2i i+ j solutions

≥ i ≥ j + 1 ≤ d d(1)

≥ i+ 1 ≥ j + 1 ≤ d+ 1 d(2)

≥ i ≥ j + 2 ≤ d+ 1 d(3)

(1) If 2j ≥ i, 2i ≥ j + 1 and i + j ≤ d, then the solution d(1) will work and this

gives all the matrices with this δ-vector.
11



(2) If 2j ≥ i + 1, 2i ≥ j + 1 and i + j ≤ d + 1, then the solution d(2) will work

and this gives all the matrices with this δ-vector.

(3) If 2j ≥ i, 2i ≥ j + 2 and i + j ≤ d + 1, then the solution d(3) will work and

this gives all the matrices with this δ-vector.

(4) If {i, j} in the given vector does not satisfy any of the above cases, there is

no matrix with this vector as its δ-vector.

Notice that only the solution

d(2) =

{

d1 = d− 1

d2 = 0

works when i = (d + 2)/3 and j = (2d + 1)/3. This happens when d ≡ 1 (mod 3)

and there is only one matrix with d1 = d−1 and d2 = 0. Similary, only the solution

d(3) =

{

d1 = 0

d2 = d− 1

works when i = (2d + 2)/3 and j = (d + 1)/3. This happens when d ≡ 2 (mod 3)

and again, there is only one matrix with d1 = 0 and d2 = d− 1.

4.3. A solution of Problem 1.1 when
∑d

i=0 δi = 4. When the determinant is 4,

there are two cases of Hermite normal forms. One is the Hermite normal forms (5)

with D = 4, namely,

A4 =















1
. . .

1

∗ · · · ∗ 4

1
. . .

1















,(11)

where there are d1 1’s, d2 2’s and d3 3’s among ∗’s. The other one looks like

A′
4 =






















1
. . .

1

∗ · · · ∗ 2

1
. . .

1

∗̇ · · · ∗̇ ∗̄ ∗̇ · · · ∗̇ 2

1
. . .






















,(12)
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where there are d1 1’s (resp. d′1 1’s) among ∗’s (resp. ∗̇’s), there are e1 1’s (resp.

e′1 1’s) among ∗’s (resp. ∗̇’s) of which the ∗̇ (resp. ∗) in the same column is not 1.

Also, set d′′1 = e1 + e′1. (For example, a 6× 6 Hermite normal form











1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 1 1 2 0 0

0 0 0 0 1 0

1 1 0 1 0 2












is a matrix (12) with d1 = d′1 = 2, e1 = e′1 = 1, d′′1 = 2 and ∗̄ = 1.)

First, we consider the Hermite normal forms (11). Then, by Corollary 3.1, we

have δP(A4)(t) = 1 + tk1 + tk2 + tk3, where

k1 = 1−

⌊
1− d1 − 2d2 − 3d3

4

⌋

, k2 = 1−

⌊
1− d1 − d3

2

⌋

and k3 = 1−

⌊
3− 3d1 − 2d2 − d3

4

⌋

.

Let δP(A4)(t) = 1 + ti + tj + tk. We get three sets of equations, according to the

order of k1, k2 and k3:






i = 1−
⌊
1−d1−2d2−3d3

4

⌋

j = 1−
⌊
1−d1−d3

2

⌋

k = 1−
⌊
3−3d1−2d2−d3

4

⌋

(Later replace the roles of i, j and k if any of the three are distinct.) After compu-

tations, the solutions for (d1, d2, d3) are

d(1) =







d1 = −i+ j + k − 1

d2 = i− 2j + k

d3 = i+ j − k − 1,

d(2) =







d1 = −i+ j + k

d2 = i− 2j + k

d3 = i+ j − k − 2,

d(3) =







d1 = −i+ j + k

d2 = i− 2j + k

d3 = i+ j − k − 1

and d(4) =







d1 = −i+ j + k

d2 = i− 2j + k − 1

d3 = i+ j − k − 1.

In addition, by the restriction on (d1, d2, d3) that d1, d2, d3 ≥ 0 and d1+d2+d3 ≤ d−1,

we have the following characterization:

(1) If j + k ≥ i+ 1, 2j ≤ i+ k ≤ d+ 1 and i+ j ≥ k + 1, then the solution d(1)

will work and this gives all the matrices with this δ-vector.

(2) If j + k ≥ i, 2j ≤ i+ k ≤ d+ 1 and i+ j ≥ k + 2, then the solution d(2) will

work and this gives all the matrices with this δ-vector.

(3) If j+ k ≥ i, 2j ≤ i+ k ≤ d and i+ j ≥ k+1, then the solution d(3) will work

and this gives all the matrices with this δ-vector.
13



Table 2. Characterization for matrices of the form (11)

j + k 2j i+ j solutions

≥ i+ 1 ≤ i+ k ≤ d+ 1 ≥ k + 1 d(1)

≥ i ≤ i+ k ≤ d+ 1 ≥ k + 2 d(2)

≥ i ≤ i+ k ≤ d ≥ k + 1 d(3)

≥ i ≤ i+ k − 1 ≤ d ≥ k + 1 d(4)

(4) If j + k ≥ i, 2j + 1 ≤ i+ k ≤ d+ 1 and i+ j ≥ k + 1, then the solution d(4)

will work and this gives all the matrices with this δ-vector.

(5) If {i, j, k} in the given vector does not satisfy any of the above cases, there

is no matrix with this vector as its δ-vector.

Notice that only the solution

d(2) =







d1 = 0

d2 = 0

d3 = d− 1

works when i = (3d + 3)/4, j = (d + 1)/2 and k = (d + 1)/4. This happens when

d ≡ 3 (mod 4) and there is only one matrix with d3 = d − 1. Similarly, only the

solution

d(1) =







d1 = d− 1

d2 = 0

d3 = 0

works when i = (d + 3)/4, j = (d + 1)/2 and k = (3d + 1)/4. This happens when

d ≡ 1 (mod 4) and again, there is only one matrix with d1 = d− 1.

Next, we consider the Hermite normal forms (12). However, we need to consider

two cases, which are the cases when ∗̄ = 0 and ∗̄ = 1.

First, we consider the case with ∗̄ = 0. Notice that the variables are d1, d
′
1 and d′′1.

Obviously we cannot use Corollary 3.1, but we apply Theorem 2.1 directly. Thus

we have δP(A′

4
)(t) = 1 + tk1 + tk2 + tk3 , where

k1 =

⌊
d1 + 2

2

⌋

, k2 =

⌊
d′1 + 2

2

⌋

and k3 =

⌊
d′′1 + 2

2

⌋

.

Let δP(A′

4
)(t) = 1 + ti + tj + tk. We get three sets of equations, according to the

order of k1, k2 and k3:






i =
⌊
d1+2
2

⌋

j =
⌊
d′
1
+2

2

⌋

k =
⌊
d′′1+2

2

⌋

14



or replace the role of i, j and k if i, j and k are distinct, in all equations and solutions.

After computations, since d1 + d′1 + d′′1 is even, the solutions of (d1, d
′
1, d

′′
1) are

d(1) =







d1 = 2i− 2

d′1 = 2j − 1

d′′1 = 2k − 1,

d(2) =







d1 = 2i− 1

d′1 = 2j − 2

d′′1 = 2k − 1,

d(3) =







d1 = 2i− 1

d′1 = 2j − 1

d′′1 = 2k − 2

and d(4) =







d1 = 2i− 2

d′1 = 2j − 2

d′′1 = 2k − 2.

In addition, by the restriction on (d1, d
′
1, d

′′
1) that 0 ≤ d1 ≤ d− 2, 0 ≤ d′1 ≤ d− 2,

0 ≤ d′′1 ≤ d− 2, d1+ d′1+ d′′1 ≤ 2(d− 2), d′′1 ≤ d1+ d′1, d
′
1 ≤ d1+ d′′1 and d1 ≤ d′1+ d′′1,

we have the following characterization:

Table 3. Characterization for matrices of the form (12) with ∗̄ = 0

i j k i+ j i+ k j + k i+ j + k solutions

≤
⌊
d
2

⌋
≤
⌊
d−1
2

⌋
≤
⌊
d−1
2

⌋
≥ k + 1 ≥ j + 1 ≥ i ≤ d d(1)

≤
⌊
d−1
2

⌋
≤
⌊
d
2

⌋
≤
⌊
d−1
2

⌋
≥ k + 1 ≥ j ≥ i+ 1 ≤ d d(2)

≤
⌊
d−1
2

⌋
≤
⌊
d−1
2

⌋
≤
⌊
d
2

⌋
≥ k ≥ j + 1 ≥ i+ 1 ≤ d d(3)

≤
⌊
d
2

⌋
≤
⌊
d
2

⌋
≤
⌊
d
2

⌋
≥ k + 1 ≥ j + 1 ≥ i+ 1 ≤ d+ 1 d(4)

(1) If i ≤ ⌊d/2⌋, j, k ≤ ⌊(d − 1)/2⌋, i + j + k ≤ d, k + 1 ≤ i + j, j + 1 ≤ i + k

and i ≤ j+ k, then the solution d(1) will work and this gives all the matrices

with this δ-vector.

(2) If j ≤ ⌊d/2⌋, i, k ≤ ⌊(d − 1)/2⌋, i + j + k ≤ d, k + 1 ≤ i + j, j ≤ i + k and

i+ 1 ≤ j + k, then the solution d(2) will work and this gives all the matrices

with this δ-vector.

(3) If k ≤ ⌊d/2⌋, i, j ≤ ⌊(d − 1)/2⌋, i + j + k ≤ d, k ≤ i + j, j + 1 ≤ i + k and

i+ 1 ≤ j + k, then the solution d(3) will work and this gives all the matrices

with this δ-vector.

(4) If i, j, k ≤ ⌊d/2⌋, i + j + k ≤ d + 1, k + 1 ≤ i + j, j + 1 ≤ i + k and

i+ 1 ≤ j + k, then the solution d(4) will work and this gives all the matrices

with this δ-vector.

(5) If {i, j, k} in the given vector does not satisfy any of the above cases, there

is no matrix with this vector as its δ-vector.

Next, we consider the case with ∗̄ = 1. By Theorem 2.1, we have δP(A′

4
)(t) =

1 + tk1 + tk2 + tk3, where

k1 = 1−

⌊
1− (d1 + 2d′′1)

4

⌋

, k2 = 1−

⌊
1− d1

2

⌋

and k3 = 2−

⌊
3− (d1 + 2d′1)

2

⌋

.
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Let δP(A′

4
)(t) = 1 + ti + tj + tk. We get three sets of equations, according to the

order of k1, k2 and k3:







i = 1−
⌊
1−(d1+2d′′1 )

4

⌋

j = 1−
⌊
1−d1
2

⌋

k = 2−
⌊
3−(d1+2d′1)

2

⌋

or replace the roles of i, j and k if i, j and k are distinct. After computations,

considering d1 + d′1 + d′′1 is even, the solutions of (d1, d
′
1, d

′′
1) are

d(1) =







d1 = 2j − 1

d′1 = 2k − j − 3

d′′1 = 2i− j − 2,

d(2) =







d1 = 2j − 1

d′1 = 2k − j − 2

d′′1 = 2i− j − 1,

d(3) =







d1 = 2j − 2

d′1 = 2k − j − 3

d′′1 = 2i− j − 1

and d(4) =







d1 = 2j − 2

d′1 = 2k − j − 2

d′′1 = 2i− j − 2.

In addition, by the restriction on (d1, d
′
1, d

′′
1) that 0 ≤ d1 ≤ d − 2, 0 ≤ d′1 ≤ d − 2,

0 ≤ d′′1 ≤ d− 2, d1+ d′1+ d′′1 ≤ 2(d− 2), d′′1 ≤ d1+ d′1, d
′
1 ≤ d1+ d′′1 and d1 ≤ d′1+ d′′1,

we have the following characterization:

Table 4. Characterization for matrices of the form (12) with ∗̄ = 1

2k 2i 2j i+ j i+ k j + k solutions

≥ j + 3, ≥ j + 2, ≤ d− 1 ≥ k ≥ 2j + 2, ≥ i+ 1 d(1)

≤ d+ j + 1 ≤ d+ j ≤ d+ 1

≥ j + 2, ≥ j + 1, ≤ d− 1 ≥ k ≥ 2j + 1, ≥ i+ 1 d(2)

≤ d+ j ≤ d+ j − 1 ≤ d

≥ j + 3, ≥ j + 1, ≤ d ≥ k ≥ 2j + 1, ≥ i+ 2 d(3)

≤ d+ j + 1 ≤ d+ j − 1 ≤ d+ 1

≥ j + 2, ≥ j + 2, ≤ d ≥ k + 1 ≥ 2j + 1, ≥ i+ 1 d(4)

≤ d+ j ≤ d+ j ≤ d+ 1

(1) If j+3 ≤ 2k ≤ d+ j+1, j+2 ≤ 2i ≤ d+ j, 2j ≤ d−1, 2j+2 ≤ i+k ≤ d+1,

i + 1 ≤ j + k and k ≤ i + j, then the solution d(1) will work and this gives

all the matrices with this δ-vector.

(2) If j + 2 ≤ 2k ≤ d+ j, j + 1 ≤ 2i ≤ d+ j − 1, 2j ≤ d− 1, 2j + 1 ≤ i+ k ≤ d,

i + 1 ≤ j + k and k ≤ i + j, then the solution d(2) will work and this gives

all the matrices with this δ-vector.
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(3) If j+3 ≤ 2k ≤ d+ j+1, j+1 ≤ 2i ≤ d+ j−1, 2j ≤ d, 2j+1 ≤ i+k ≤ d+1,

i+2 ≤ j + k and k ≤ i+ j then the solution d(3) will work and this gives all

the matrices with this δ-vector.

(4) If j + 2 ≤ 2k ≤ d + j, j + 2 ≤ 2i ≤ d + j, 2j ≤ d, 2j + 1 ≤ i + k ≤ d + 1,

i+1 ≤ j+ k and k+1 ≤ i+ j then the solution d(4) will work and this gives

all the matrices with this δ-vector.

(5) If {i, j, k} in the given vector does not satisfy any of the above cases, there

is no matrix with this vector as its δ-vector.

Notice that only the solution

d(3) =







d1 = d− 2

d′1 = d− 2

d′′1 = 0

works when i = (d + 2)/4, j = d/2 and k = (3d + 2)/4. This happens when

d ≡ 2 (mod 4) and there is only one matrix with d1 = d′1 = d − 2. Similarly, only

the solution

d(4) =







d1 = d− 2

d′1 = 0

d′′1 = d− 2

works when i = 3d/4, j = d/2 and k = d/4 + 1. This happens when d ≡ 0 (mod 4)

and again, there is only one matrix with d1 = d′′1 = d− 2.

5. The classification of possible δ-vectors with
∑d

i=0 δi = 4

In [4], it is shown that when
∑d

i=0 δi ≤ 3, (3) and (4) is both necessary and

sufficient. In this section, we classify the possible δ-vectors with
∑d

i=0 δi = 4 by

results from Section 4.3.

Let (δ0, δ1, . . . , δd) be a sequence of nonnegative integers with
∑d

i=0 δi = 4 satisfy-

ing the inequalities (3) and (4), where δ0 = 1 and δ1 ≥ δd, which are the necessary

conditions to be a possible δ-vector. Now it is led into the following inequalities

from (3) and (4) that (i1, i2, i3) satisfies

i3 ≤ i1 + i2, i1 + i3 ≤ d+ 1 and i2 ≤ ⌊(d+ 1)/2⌋.(13)

Finally, the classification of possible δ-vectors of integral polytopes with
∑d

i=0 δi =

4 is given by the following

Theorem 5.1. Let 1 + ti1 + ti2 + ti3 be a polynomial with 1 ≤ i1 ≤ i2 ≤ i3 ≤ d.

Then there exists an integral polytope P ⊂ R
d of dimension d whose δ-polynomial

equals to 1 + ti1 + ti2 + ti3 if and only if (i1, i2, i3) satisfies (13) and an additional
17



condition

(14) 2i2 ≤ i1 + i3 or i2 + i3 ≤ d+ 1.

Moreover, all these polytopes are actually simplices.

Proof. There are four cases: (1) i1 = i2 = i3, (2) i1 < i2 = i3, (3) i1 = i2 < i3,

(4) i1 < i2 < i3. We will show that in each case (13) together with (14) are the

necessary and sufficient conditions for 1 + ti1 + ti2 + ti3 to be the δ-vector of some

integral polytope.

(1) Assume i1 = i2 = i3 = ℓ. By the inequalities (13), we have 1 ≤ ℓ ≤ ⌊(d+1)/2⌋.

Set i = j = k = ℓ. We have

j + k ≥ i+ 1, 2j ≤ i+ k ≤ d+ 1 and i+ j ≥ k + 1.(15)

Thus, by our result on the classification of the case of a matrix (11) (Table 2, the

solution d(1)), there exists an integral polytope (it is actually a simplex) whose δ-

vector is (1, 0, . . . , 0, 3, 0, . . . , 0).

On the other hand, if there exists an integral polytope with this δ-vector, then (13)

holds since it is a necessary condition. In this case, it follows that both inequalities

in (14) hold.

(2) Assume ℓ = i1 < i2 = i3 = ℓ′. By (13), we have 1 ≤ ℓ < ℓ′ ≤ ⌊(d + 1)/2⌋.

Let j = ℓ and i = k = ℓ′. Then inequalities (15) hold. Thus there exists an integral

simplex whose δ-vector is (1, 0, . . . , 0, 1, 0, . . . , 0, 2, 0, . . . , 0).

On the other hand, we have (13) since it is a necessary condition. Then, i2+ i3 ≤

d+ 1 follows from i2 ≤ ⌊(d+ 1)/2⌋.

(3) Assume ℓ = i1 = i2 < i3 = ℓ′. Set i = ℓ′ and j = k = ℓ. Then it follows from

(13) that

j + k ≤ i, 2j + 1 ≤ i+ k ≤ d+ 1 and i+ j ≥ k + 1.

Thus, by our result (Table 2, the solution d(4)), there exists an integral simplex

whose δ-vector is (1, 0, . . . , 0, 2, 0, . . . , 0, 1, 0, . . . , 0).

On the other hand, if there exists an integral polytope with this δ-vector, then (13)

holds since it is a necessary condition. In this case, it follows that both inequalities

in (14) hold.

(4) Assume 1 ≤ i1 < i2 < i3 ≤ d. Suppose 2i2 ≤ i1 + i3 holds. Set i = i3, j = i2
and k = i1. Then we have j + k = i1 + i2 ≥ i3 = i, 2j = 2i2 ≤ i1 + i3 = i + k ≤
d + 1 and i + j = i2 + i3 ≥ 2i2 + 1 ≥ 2i1 + 3 > i1 + 2 = k + 2. Thus, by our

result (Table 2, the solution d(2)), there exists an integral simplex whose δ-vector is

(1, 0 . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0).

Suppose i2 + i3 ≤ d + 1 holds. Set i = i3, j = i1 and k = i2. Then we have

j + k = i1 + i2 ≥ i3 = i, 2j = 2i1 < i2 + i3 = i + k ≤ d + 1 and i + j = i1 + i3 ≥

i1 + i2 + 1 ≥ i2 + 2 = k + 2. Thus, by our result (Table 2, the solution d(2)), there

exists an integral simplex whose δ-vector coincides with (δ0, δ1, . . . , δd).
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On the other hand, assume the contrary of (14): both 2i2 > i1+i3 and i2+i3 > d+1

hold. We claim that there exists no integral polytope P with this δ-vector. First

we want to show that if there exists such a polytope, it must be a simplex. Note

that the δ-vector satisfies (13). Suppose i1 = 1. It then follows from (13) and

i2+ i3 > d+1 that i2 = (d+1)/2 and i3 = (d+3)/2. However, this contradicts (4).

Therefore i1 > 1, and thus δ1 = 0. By an explanation after equation (1), P must be

a simplex if δ1 = 0. Now we can apply our characteristic results for simplices.

If we set j = i3, then 2j = 2i3 > i1 + i2 = i + k. If we set j = i2, then

2j = 2i2 > i1 + i3 = i + k. If we set j = i1, then i + k = i2 + i3 > d + 1. In any

case there does not exist an Hermite normal form (11) whose δ-vector coincides with

(δ0, δ1, . . . , δd).

Moreover, since i+ j + k = i1 + i2 + i3 > i2 + i3 > d+ 1, there does not exsit an

Hermite normal form (12) with ∗̄ = 0 whose δ-vector coincides with (δ0, δ1, . . . , δd).

In addition, if we set j = i3, then 2j = 2i3 > i1 + i2 = i + k. If we set j = i2,

then 2j = 2i2 > i1 + i3 = i + k. If we set j = i1, then i + k = i2 + i3 > d + 1.

Thus there dose not exist an Hermite normal form (12) with ∗̄ = 1 whose δ-vector

coincides with (δ0, δ1, . . . , δd). �

Remark 5.2. From the above proof, we can see that when
∑d

i=0 δi = 4, all the

possible δ-vectors can be obtained by simplices. This is also true for all δ-vectors

with
∑d

i=0 δi ≤ 3, from the proof of Theorem 0.1 in [4]. However, when
∑d

i=0 δi = 5,

the δ-vector (1, 3, 1) cannot be obtained from any simplex, while it is a possible

δ-vector of a 2-dimensional integral polygon. In fact, suppose that (1, 3, 1) can be

obtained from a simplex. Since min{i : δi 6= 0, i > 0} = 1,max{i : δi 6= 0} = 2 and

min{i : δi 6= 0, i > 0} = 3 −max{i : δi 6= 0}, the assumption of [5, Theorem 2.3] is

satisfied. Thus the δ-vector must be shifted symmetric, a contradiction.
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