
ar
X

iv
:1

00
9.

52
96

v1
  [

m
at

h.
C

O
] 

 2
7 

Se
p 

20
10

Cliques in graphs with bounded minimum
degree

Allan Siu Lun Lo∗

September 28, 2010

Abstract

Let kr(n, δ) be the minimum number of r-cliques in graphs with n
vertices and minimum degree δ. We evaluate kr(n, δ) for δ ≤ 4n/5
and some other cases. Moreover, we give a construction, which we
conjecture to give all extremal graphs (subject to certain conditions
on n, δ and r).

1 Introduction

Let fr(n, e) be the minimum number of r-cliques in graphs of order n
and size e. Determining fr(n, e) has been a long studied problem.
The case r = 3, that is counting triangles, has been studied by various
people. Erdős [3], Lovasz and Simonovits [7] studied the case when
e =

(
n
2

)
/2 + l with 0 < l ≤ n/2. Fisher [4] considered the situation

when
(
n
2

)
/2 ≤ e ≤ 2

(
n
2

)
/3, but it was not until nearly twenty years

later that a dramatic breakthrough of Razborov [9] established the
asymptotic value of f3(n, e) for a general e. The proof of this used
the concept of flag algebra developed in [10]. Unfortunately, it seemed
difficult to generalise Razborov’s proof even for f4(n, e). Nikiforov [8]
later gave a simple and elegant proof of the asymptotic values of both
f3(n, e) and f4(n, e) for general e. However, the asymptotic value of
fr(n, e) for r ≥ 5 have not yet been determined, and the best known
lower bounds was given Bollobás [2].

In this paper, we are interested in a variant of fr(n, e), where
instead of considering the number of edges we consider the minimum
degree. Define kr(n, δ) to be the minimum number of r-cliques in
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graphs of order n with minimum degree δ. In addition, kregr (n, δ) is
defined to be the minimum number of r-cliques in δ-regular graphs
of order n. It should be noted that there exist n and δ such that
kr(n, δ) = 0, but kregr (n, δ) > 0. For example, if r = 3, n odd and
2n/5 < δn < 2, then it is easy to show that k3(n, δ) = 0. However, a
theorem of Andrásfai, Erdős and Sós [1] states that every triangle-free
graph of order n with minimal degree greater than 2n/5 is bipartite.
Since no regular graph with an odd number of vertices can be bipartite,
kreg3 (n, δ) > 0 for n odd and 2n/5 < δ < n/2, whilst k3(n, δ) = 0. The
author [5] evaluated kreg3 (n, δ) for n ≥ 107 odd and 2n/5 +

√
n/5 ≤

δ ≤ n/2.
Let δ = (1− β)n with 0 < β ≤ 1 and p = ⌈β−1⌉ − 1. Throughout

this paper, β and βn are assumed to be a rational and an integer
respectively. Note that p is defined so that by Turán’s Theorem [11]
kr(n, (1 − β)n) > 0 for all n (such that βn is an integer) if and only
if r ≤ p + 1. Since the case β = 1 implies the trivial case δ = 0,
we may assume that 0 < β < 1. Furthermore, we consider the cases
1/(p + 1) ≤ β < 1/p separately for positive integers p. Hence, the
condition p = 2 is equivalent to 1/3 ≤ β < 1/2, that is, n/2 < δ ≤
2n/3.

Next, we definite a family G(n, β) of graphs, which gives an upper
bound on kr(n, δ), where δ = (1− β)n and integers r ≥ 3.

Definition 1.1. Let n and (1− β)n be positive integers not both odd
with 0 < β < 1. Define G(n, β) to be the family of graphs G = (V,E)
of order n satisfying the following properties. There is a partition
of V into V0, V1, . . . , Vp−1 with |V0| = (1 − (p − 1)β)n and |Vi| = βn
for 1 ≤ i ≤ p− 1, where again p = ⌈β−1⌉ − 1. For 0 ≤ i < j ≤ p− 1,
the bipartite graph G[Vi, Vj ] induced by the vertex classes Vi and Vj

is complete. For 1 ≤ i ≤ p − 1, the subgraph G[Vi] induced by Vi is
empty and G[V0] is a (1 − pβ)n-regular graph such that the number
of triangles in G[V0] is minimal over all (1 − pβ)n-regular graphs of
order |V0| = (1− (p− 1)β)n.

Note that G(n, β) is only defined if n and (1−β)n are not both odd.
Thus, whenever we mention G(n, β), we automatically assume that n
or (1 − β)n is even. Furthermore, we say (n, β) is feasible if G[V0]
is triangle-free for G ∈ G(n, β). Note that G[V0] is regular of degree
(1 − pβ)n ≤ (1 − (p − 1)β)n/2 = |V0|/2. Thus, if |V0| is even, then
G[V0] is triangle-free. Therefore, for a given β, there exist infinitely
many choices of n such that (n, β) is a feasible pair. If (n, β) is not
a feasible pair, then |V0| is odd. Moreover, it is easy to show that
k3(G[V0]) = kreg3 (n0, δ0) = o(n3), where n0 = |V0| = (1 − (p − 1)β)n,
δ0 = (1− pβ)n and kr(H) is the number of r-cliques in a graph H.
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By Definition 1.1, every G ∈ G(n, β) is (1 − β)n-regular. In par-
ticular, for positive integers r ≥ 3, the number of r-cliques in G is
exactly

kr(G) =gr(β)n
r +

(
p− 1

r − 3

)
(1− pβ)r−3nr−3k3(G[V0]),

=gr(β)n
r +

(
p− 1

r − 3

)
(1− pβ)r−3nr−3kreg3 (n0, δ0), (1)

where n0 = (1− (p − 1)β)n, δ0 = (1− pβ)n and

gr(β) =

(
p− 1

r

)
βr +

(
p− 1

r − 1

)
(1− (p− 1)β)βr−1

+
1

2

(
p− 1

r − 2

)
(1− pβ)(1− (p − 1)β)βr−2

with
(
x
y

)
defined to be 0 if x < y or y < 0. Since kreg3 (n0, δ0) = o(n3),

(1) becomes kr(G) = (gr(β) + o(1))nr. In fact, most of the time,
we consider the case when (n, β) is feasible, i.e. k3(G[V0]) = 0 and
kr(G) = gr(β)n

r. We conjecture that if (n, β) is feasible then G(n, β)
is the extremal family for kr(n, δ) with δ = (1 − β)n and 3 ≤ r ≤
p+ 1 = ⌈β−1⌉.

Conjecture 1.2. Let n and δ be positive integers. Then

kr(n, δ) ≥ gr(β)n
r,

where δ = (1 − β)n and r ≥ 3. Moreover, for 3 ≤ r ≤ p + 1 = ⌈β−1⌉
equality holds if and only if (n, β) is feasible and the extremal graphs
are members of G(n, β).

By Turán’s Theorem [11], the above conjecture is true when p = 1
or r > p + 1. If β = 1/(p + 1) and (p + 1)|n, then G(n, 1/(p + 1))
only consists Tp+1(n), the (p + 1)-partite Turán graph of order n.
Bollobás [2] proved that if (p+1)|n and e = (1− 1/(p+1))n2/2, then
fr(n, e) = kr(Tp+1(n)). Moreover, Tp+1(n) is the only graph of order
n with e edges and fr(n, e) r-cliques. Hence, it is an easy exercise to
show that Conjecture 1.2 is true when β = 1/(p + 1).

It should be noted that since G(n, β) defines a family of regular
graphs, we also conjecture that kregr (n, δ) is achieved by G ∈ G(n, β),
where δ = (1−β)n. However, we do not address the problem kregr (n, δ)
here. For the remainder of the paper, all graphs are also assumed to be
of order n with minimum degree δ = (1−β)n unless stated otherwise.
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2 Main results

By our previous observation, Conjecture 1.2 is true for the following
three cases: p = 1, r > p + 1 and δ = (1 − 1/(p + 1))n. That leaves
the situation when 3 ≤ r ≤ p+1 and δ > n/2. In Section 3, we prove
Conjecture 1.2 for n/2 < δ ≤ 2n/3, as follows.

Theorem 2.1. Let n and δ be positive integers with n/2 < δ ≤ 2n/3.
Then

k3(n, δ) ≥ g3(β)n
3,

where δ = (1 − β)n. Moreover, equality holds if and only if (n, β) is
feasible and the extremal graphs are members of G(n, β).

The ideas in the proof, which is short, form the framework for
our other results. The next simplest case is that of Kp+2-free graphs.
Notice that, by the definition of p, G must contain Kp+1’s but need
not contain Kp+2. Conjecture 1.2 is proved for Kp+2-free graphs by
the next theorem.

Theorem 2.2. Let n and δ be positive integers. Let G be a Kp+2-free
graph of order n with minimum degree δ, where δ = (1 − β)n and
p = ⌈β−1⌉ − 1. Then,

kr(G) ≥ gr(β)n
r

for positive integers r. Moreover, for 3 ≤ r ≤ p + 1 equality holds
if and only if (n, β) is feasible, and the extremal graphs are members
of G(n, β).

Theorem 2.2 is proved in Section 5, after some notations and basic
inequalities have been set up in Section 4. It shows that the difficult in
proving Conjecture 1.2 is in handling (p+ 2)-cliques. We discuss this
situation in Section 6 for the case p = 3, and by a detailed analysis of
5-cliques in Section 7, proving Conjecture 1.2 for 2n/3 < δ ≤ 3n/4,
as follows.

Theorem 2.3. Let n and δ be positive integers with 2n/3 < δ ≤ 3n/4.
Then

kr(n, δ) ≥ gr(β)n
r,

for positive integers r and δ = (1 − β)n. Moreover, for 3 ≤ r ≤ 4
equality holds if and only if (n, β) is feasible and the extremal graphs
are members of G(n, β).

This theorem is the hardest in the paper. We have in fact proved
Conjecture 1.2 for 3n/4 < δ ≤ 4n/5 by a similar argument. It is
too complicated to be included in this paper, but it can be found
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in [6]. For each positive integer p ≥ 5, it is likely that by following the
arguments in the proof of Theorem 2.3 one could construct a proof for
Conjecture 1.2 when (1− 1/p)n < δ ≤ (1− 1/(p + 1))n.

We give two more results in support of Conjecture 1.2 in Section 8
and Section 9. The first is that for every positive integer p, Conjec-
ture 1.2 holds for a positive proportion of values of δ.

Theorem 2.4. For every positive integer p, there exists a (calculable)
constant ǫp > 0 so that if n and δ are positive integers such that
(1− 1/(p + 1)− ǫp)n < δ ≤ (1− 1/(p + 1))n, then

kr(n, δ) ≥ gr(β)n
r,

for positive integers r and δ = (1 − β)n. Moreover, for 3 ≤ r ≤ p+ 1
equality holds if and only if (n, β) is feasible and the extremal graphs
are members of G(n, β).

Finally, using a different argument, we can show that Conjec-
ture 1.2 holds in the case r = p + 1 (the largest value of r for which
r-cliques are guaranteed).

Theorem 2.5. Let n and δ be positive integers. Then

kp+1(n, δ) ≥ gp+1(β)n
p+1,

where δ = (1 − β)n and p = ⌈β−1⌉ − 1. Moreover, equality holds
if and only if (n, β) is feasible and the extremal graphs are members
of G(n, β).

3 Proof of Theorem 2.1

Here we prove Theorem 2.1, that is Conjecture 1.2 for n/2 < δ ≤ 2n/3,
so 1/3 ≤ β < 1/2 and p = 2.

Proof of Theorem 2.1. Let G be a graph of order n with minimum
degree δ. Since G has at least δn/2 = (1− β)n2/2 edges,

(1− 2β)βnk2(G) ≥ (1− 2β)(1 − β)βn3/2 = g3(β)n
3.

Thus, in proving the inequality in Theorem 2.1, it is enough to show
that k3(G) ≥ (1− 2β)βnk2(G).

For an edge e, define d(e) to be the number of triangles containing e
and write D(e) = d(e)/n. Clearly,

n
∑

e∈E(G)

D(e) =
∑

d(e) = 3k3(G).

5



In addition, D(e) ≥ 1− 2β for each edge e, because each vertex in G
misses at most βn vertices. Since β < 1/2, D(e) > 0 for all e ∈ E(G)
and so every edge is contained in a triangle. Let T be a triangle in G.
Similarly, define d(T ) to be the number of 4-cliques containing T and
write D(T ) = d(T )/n. We claim that

∑

e∈E(T )

D(e) ≥ 2− 3β +D(T ). (2)

Let ni be the number vertices in G with exactly i neighbours in T for
i = 0, 1, 2, 3. Clearly, n = n0 + n1 +n2 + n3. By counting the number
of edges incident with T , we obtain

3(1− β)n ≤
∑

v∈V (T )

d(v) = 3n3 + 2n2 + n1 ≤ 2n3 + n2 + n. (3)

On the other hand, n3 = d(T ) and n2 + 3n3 =
∑

e∈E(G) d(e). Hence,
(2) holds. Notice that if equality holds in (2) then d(v) = (1−β)n for
all v ∈ T .

For an edge e, define D−(e) = min{D(e), β}. We claim that

∑

e∈E(T )

D−(e) ≥ 2− 3β (4)

for every triangle T . If D(e) = D−(e) for each edge e in T , then (4)
holds by (2). Otherwise, there exists e0 ∈ E(T ) such that D(e0) 6=
D−(e0). This means that D−(e0) = β. Recall that for the other two
edges e in T , D(e) ≥ 1 − 2β, so

∑
D−(e) ≥ β + 2(1 − 2β) = 2 − 3β.

Hence, (4) holds for every triangle T .
Next, by summing (4) over all triangles T in G, we obtain

n
∑

e∈E(G)

D−(e)D(e) =
∑

T

∑

e∈E(T )

D−(e) ≥ (2− 3β)k3(G). (5)

We are going to bound
∑

D−(e)D(e) above in terms of
∑

D(e), which
is equal to 3k3(G)/n, by the following proposition.

Proposition 3.1. Let A be a finite set. Suppose f, g : A → R with
f(a) ≤ M and g(a) ≥ m for all a ∈ A. Then

∑

a∈A

f(a)g(a) ≤ m
∑

a∈A

f(a) +M
∑

a∈A

g(a) −mM |A|,

with equality if and only if for each a ∈ A, f(a) = M or g(a) = m.

Proof. Observe that
∑

a∈A(M − f(a))(g(a) −m) ≥ 0.
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Recall that D(e) ≥ 1 − 2β and D−(e) ≤ β. By Proposition 3.1
taking A = E(G), f = D−, g = D, M = β and m = 1− 2β, we have

n
∑

e∈E(G)

D(e)D−(e) ≤ (1− 2β)n
∑

e∈E(G)

D−(e) + βn
∑

e∈E(G)

D(e)− (1− 2β)βnk2(G)

≤ (1− β)n
∑

e∈E(G)

D(e)− (1− 2β)βnk2(G) (6)

n
∑

e∈E(G)

D(e)D−(e) ≤ 3(1− β)k3(G) − (1− 2β)βnk2(G). (7)

After substitution of (7) into (5) and rearrangement, we have

k3(G) ≥ (1− 2β)βk2(G)n.

Thus, we have proved the inequality in Theorem 2.1.
Now suppose equality holds, i.e. k3(G) = (1 − 2β)βk2(G)n. This

means that equality holds in (6), so (since β < 1/2) D(e) = D−(e) for
all e ∈ E(G). Because equality holds in (4),

∑
e∈E(T )D(e) = 2−3β for

triangles T . Hence, D(T ) = 0 for every triangle T by (2), so G is K4-
free. In addition, by the remark following (2), G is (1 − β)n-regular,
because every vertex lies in a triangle asD(e) > 0 for all edges e. Since
equality holds in Proposition 3.1, either D(e) = 1 − 2β or D(e) = β
for each edge e. Recall that equality holds for (2), so every triangle T
contains exactly one edge e1 with D(e1) = β and two edges, e2 and
e3, with D(e2) = D(e3) = 1 − β. Pick an edge e with D(e) = β and
let W be the set of common neighbours of the end vertices of e, so
|W | = βn. Clearly W is an independent set, otherwise G contains
a K4. For each w ∈ W , d(w) = (1 − β)n implies N(w) = V (G)\W .
Therefore, G[V (G)\W ] is (1−2β)n-regular. If there is a triangle T in
G[V (G)\W ], then T ∪w forms a K4 for w ∈ W . This contradicts the
assumption that G is K4-free, so G[V (G)\W ] is triangle-free. Hence,
G is a member of G(n, β) and (n, β) is feasible. Therefore, the proof
is complete.

4 Degree of a clique

Denote the set of t-cliques inG[U ] byKt(U) and write kr(U) for |Kr(U)|.
If U = V (G), we simply write Kr and kr.

Define the degree d(T ) of a t-clique T to be the number of (t+1)-
cliques containing T . In other words, d(T ) = |{S ∈ Kt+1 : T ⊂ S}|. If
t = 1, then d(v) coincides with the ordinary definition of the degree for
a vertex v. If t = 2, then d(uv) is the number of common neighbours
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of the end vertices of the edge uv, that is the codegree of u and v.
Clearly,

∑
T∈Kt

d(T ) = (t + 1)kt+1 for t ≥ 1. For convenience, we
write D(T ) to denote d(T )/n.

Recall that p = ⌈β−1⌉ − 1 and 1/(p + 1) ≤ β < 1/p. Let G0 ∈
G(n, β) with (n, β) feasible. Let T be a t-clique in G0. It is natural to
see that there are three types of cliques according to |T∩V0|. However,
if we consider d(T ), then there are only two types. To be precise

D(T ) =

{
1− tβ if |V (T ) ∩ V0| = 0, 1 and

(p − t+ 1)β if |V (T ) ∩ V0| = 2,

for T ∈ Kt(G0) and 2 ≤ t ≤ p+ 1. Next, define the functions D+ and
D− as follows. For a graph G with minimum degree δ = (1 − β)n,
define

D−(T ) = min{D(T ), (p − t+ 1)β}, and

D+(T ) = D(T )−D−(T ) = max{0,D(T ) − (p− t+ 1)β}

for T ∈ Kt and 1 ≤ t ≤ p + 1. We say that a clique T is heavy
if D+(T ) > 0. The graph G is said to be heavy-free if and only if
G does not contain any heavy cliques. Now, we study some basic
properties of D(T ), D−(T ) and D+(T ).

Lemma 4.1. Let 0 < β < 1 and p = ⌈β−1⌉ − 1. Suppose G is a
graph of order n with minimum degree (1− β)n. Suppose S ∈ Ks and
T ∈ Kt(S) for 1 ≤ t < s. Then

(i) D(S) ≥ 1− sβ,

(ii) D(S) ≥ D(T )− (s− t)β,

(iii) for s ≤ p+ 1, D+(T ) ≤ D+(S) ≤ D+(T ) + (s− t)β,

(iv) if T is heavy and s ≤ p+ 1 then S is heavy, and

(v) if T is not heavy and s ≤ p + 1, then D+(S) ≤ (s − t)β. In
particular, if t = s− 1 ≤ p, then D+(S) ≤ β.

Moreover, G is Kp+2-free if and only if G is heavy-free.

Proof. For each v ∈ S, there are at most βn vertices not joined to v.
Hence, D(S) ≥ 1 − sβ, so (i) is true. Similarly, consider the vertices
in S\T , so (ii) is also true. If s ≤ p+1 and D+(T ) > 0, then we have

D+(S) + (p− s+ 1)β ≥D(S)

≥D(T )− (s− t)β

=D+(T ) + (p− t+ 1)β − (s− t)β,
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so the left inequality of (iii) is true. Since D(S) ≤ D(T ), the right
inequality of (iii) is also true by the definition of D+(S) and D+(T ).
Hence, (iv) and (v) are true by the left and right inequality in (iii)
respectively. Notice that D(U) = D+(U) for U ∈ Kp+1. Hence, by
(iv), G is Kp+2-free if and only if G is heavy-free.

Now we prove the generalised version of (2), that is, the sum of
degrees of t-subcliques in a s-clique.

Lemma 4.2. Let 0 < β < 1. Let s and t be integers with 2 ≤ t < s.
Suppose G is a graph of order n with minimum degree (1−β)n. Then

∑

T∈Kt(S)

D(T ) ≥ (1− β)s

(
s− 2

t− 1

)
− (t− 1)

(
s− 1

t

)
+

(
s− 2

t− 2

)
D(S)

for S ∈ Ks. Moreover, if equality holds, then d(v) = (1 − β)n for
all v ∈ S.

Proof. Let ni be the number of vertices with exactly i neighbours in S.
The following three equations :

∑

i

ni = n, (8)

∑

i

ini =
∑

v∈V (S)

d(v) ≥ s(1− β)n, (9)

∑

i

(
i

t

)
ni =

∑

T∈Kt(S)

D(T )n, (10)

follow from a count of the number of vertices, edges and (t+1)-cliques
respectively. Next, by considering (t − 1)

(
s−1
t

)
(8) −

(
s−2
t−1

)
(9) + (10),

we have

∑

T∈Kt(S)

D(T )n ≥
(
(1− β)s

(
s− 2

t− 1

)
− (t− 1)

(
s− 1

t

))
n+

∑

0≤i≤s

xini,

where xi =
(
i
t

)
+(t−1)

(
s−1
t

)
− i

(
s−2
t−1

)
. Notice that xi = xi+1+

(
s−2
t−1

)
−(

i
t−1

)
≥ xi+1 for 0 ≤ i ≤ s− 2. For i = s− 1, we have

xs−1 =

(
s− 1

t

)
+ (t− 1)

(
s− 1

t

)
− (s− 1)

(
s− 2

t− 1

)

= t

(
s− 1

t

)
− (s− 1)

(
s− 2

t− 1

)
= 0.
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For i = s, ns = D(S)n and

xs =

(
s

t

)
+ (t− 1)

(
s− 1

t

)
− s

(
s− 2

t− 1

)

=t

(
s− 1

t

)
+

(
s− 1

t− 1

)
− s

(
s− 2

t− 1

)

=(s− t+ 1)

(
s− 1

t− 1

)
− s

(
s− 2

t− 1

)

=(s− t+ 1)

(
s− 2

t− 2

)
− (t− 1)

(
s− 2

t− 1

)

=

(
s− 2

t− 2

)
.

In particular, if equality holds in the lemma, then equality holds in (9).
This means that d(v) = (1− β)n for all v ∈ S.

Most of the time, we are only interested in the case when s = t+1.
Hence, we state the following corollary.

Corollary 4.3. Let 0 < β < 1. Suppose G is a graph or order n with
minimum degree (1− β)n. Then

∑

T∈Kt(S)

D(T ) ≥ 2− (t+ 1)β + (t− 1)D(S)

for S ∈ Kt+1 and integer t ≥ 2. Moreover, if equality holds, then
d(v) = (1− β)n for all v ∈ S. �

In the next lemma, we show that the functions D in Lemma 4.2
can be replaced with D−.

Lemma 4.4. Let 0 < β < 1 and p = ⌈β−1⌉ − 1. Let s and t be
integers with 2 ≤ t < s ≤ p+ 1. Suppose G is a graph of order n with
minimum degree (1− β)n. Then, for S ∈ Ks

∑

T∈Kt(S)

D−(T ) ≥ (1− β)s

(
s− 2

t− 1

)
− (t− 1)

(
s− 1

t

)
+

(
s− 2

t− 2

)
D−(S).

Proof. SinceD+(S) ≥ D+(T ) for every T ∈ Kt(S) by Lemma 4.1 (iii),
there is nothing to prove by Lemma 4.2 if there are at most

(
s−2
t−2

)

heavy t-cliques in S. Now suppose there are more than
(
s−2
t−2

)
heavy t-

cliques in S. In particular, S contains a heavy t-clique, so S is itself
heavy with D−(S) = (p + 1 − s)β by Lemma 4.1 (iv). Thus, the
right hand side of the inequality is

(
s
t

)
(1 − tβ) +

(
s−2
t−2

)
((p + 1)β − 1).

By Lemma 4.1 (i) we have that D−(T ) ≥ (1 − tβ) for T ∈ Kt(S).
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Furthermore, by Lemma 4.1 (iv) D−(T ) = (p− t+ 1)β if T is heavy,
so summing D−(T ) over T ∈ Kt(S) gives

∑

T∈Kt(S)

D−(T ) ≥ k+t (S)(p − t+ 1)β +

((
s

t

)
− k+t (S)

)
(1− tβ)

=

(
s

t

)
(1− tβ) + k+t (S)((p + 1)β − 1).

This completes the proof of the lemma.

Define the function D̃ : Kt+1 → R such that

D̃(S) =
∑

T∈Kt(S)

D−(T )−
(
2− (t+ 1)β + (t− 1)D−(S)

)

for S ∈ Kt+1 and 2 ≤ t ≤ p. Hence, for s = t + 1, Lemma 4.4 gives
the following corollary.

Corollary 4.5. Let 0 < β < 1 and p = ⌈β−1⌉ − 1. Let t be integer
with 2 ≤ t ≤ p. Suppose G is a graph of order n with minimum
degree (1− β)n. Then D̃(S) ≥ 0 for S ∈ Kt+1. �

Next, we bound
∑

S∈Kt+1
D̃(S) from above using Proposition 3.1.

Lemma 4.6. Let 0 < β < 1 and p = ⌈β−1⌉ − 1. Let t be an integer
with 2 ≤ t ≤ p. Suppose G is a graph of order n with minimum
degree (1− β)n. Then

∑

S∈Kt+1

D̃(S) ≤
(
t− 1 + (p − 2t+ 2)(t+ 1)β

)
kt+1 + (t− 1)

∑

S∈Kt+1

D+(S)

−(1− tβ)(p− t+ 1)βnkt − (t− 1)(t+ 2)
kt+2

n
− (1− tβ)n

∑

T∈Kt

D+(T ).

Moreover, equality holds if and only if for each T ∈ Kt, either D−(T ) =
1− tβ or D−(T ) = (p− t+ 1)β.

Proof. Notice that the sum D̃(S) over S ∈ Kt+1 is equal to

∑

S∈Kt+1

∑

T∈Kt(S)

D−(T )− (2− (t+ 1)β)kt+1 − (t− 1)
∑

S∈Kt+1

D−(S).

(11)

Consider each each term separately. Since D(S) = D−(S) +D+(S),

∑

S∈Kt+1

D−(S) =
∑

S∈Kt+1

D(S)−
∑

S∈Kt+1

D+(S) =
(t+ 2)kt+2

n
−

∑

S∈Kt+1

D+(S).

11



By interchanging the order of summations, we have
∑

S∈Kt+1

∑

T∈Kt(S)

D−(T ) = n
∑

T∈Kt

D−(T )D(T ),

and by Proposition 3.1 taking A = Kt, f = D−, g = D, M = (p− t+
1)β and m = 1− tβ

≤(1− tβ)n
∑

T∈Kt

D−(T ) + (p − t+ 1)βn
∑

T∈Kt

D(T )− (1− tβ)(p − t+ 1)βnkt

=(1 + (p− 2t+ 1)β)n
∑

D(T )− (1− tβ)n
∑

D+(T )− (1− tβ)(p− t+ 1)βnkt

=(1 + (p− 2t+ 1)β)(t + 1)kt+1 − (1− tβ)n
∑

D+(T )− (1− tβ)(p − t+ 1)βnkt.

Hence, substituting these identities back into (11), we obtain the de-
sired inequality in the lemma.

By Proposition 3.1, equality holds if and only if for each T ∈ Kt,
either D(T ) = 1− tβ or D−(T ) = (p− t+ 1)β.

To keep our calculations simple, we are going to establish a few
relationships between gt(β) and gt+1(β) in the next lemma.

Lemma 4.7. Let 0 < β < 1 and p = ⌈β−1⌉ − 1. Let t be an integer
with 2 ≤ t ≤ p. Then

(t+ 1)gt+1(β) =(1− tβ)gt(β)

+
1

2

(
p− 1

t− 2

)
((p + 1)β − 1)(1 − (p − 1)β)(1 − pβ)βt−2,

(12)

gt+1(β) =
(1− tβ)(p − t+ 1)βgt(β) + (t− 1)(t+ 2)gt+2(β)

t− 1 + (t+ 1)(p − 2t+ 2)β
.

(13)

Moreover

gp(β)

gp+1(β)
=

1

β

(
1 +

βgp−1(β
′)

(1− β)gp(β′)

)
, (14)

where β′ = β/(1− β).

Proof. We fix β (and p) and write gt to denote gt(β). Pick n such that
(n, β) is feasible and let G ∈ G(n, β) with partition classes V0, V1, . . . , Vp−1

as described in Definition 1.1. Thus, for T ∈ Kt, D(T ) = 1 − tβ
or D(T ) = (p − t + 1)β. Since D(T ) = (p − t + 1)β if and only if
|V (T ) ∩ V0| = 2, there are exactly

1

2

(
p− 1

t− 2

)
(1− (p− 1)β)(1 − pβ)βt−2nt

12



t-cliques T with D(T ) = (p− t+ 1)β. Also, we have

(t+ 1)gt+1n
t+1 = (t+ 1)kt+1 = n

∑

T∈Kt

D(T ).

Hence, (12) is true, by expanding the right hand side of the above
equation. For 2 ≤ s < p, let fs and fs+1 be (12) with t = s and
t = s+1 respectively. Then (13) follows by considering (p−s+1)fs−
(s− 1)βfs+1.

Now let G′ = G\Vp−1. Notice that G′ is (1 − 2β)n-regular with
(1− β)n vertices. We observe that G′ is a member of G(n′, β′), where
n′ = (1 − β)n and β′ = β/(1 − β). Observe that ⌈β′−1⌉ − 1 = p − 1,
so 1/p ≤ β′ < 1/(p − 1). Recall that kt(G) = gt(β)n

t for all 2 ≤
t ≤ p, so kp+1(G)gp(β) = kp(G)gp+1(β)n. Similarly, kp(G

′)gp−1(β
′) =

kp−1(G
′)gp(β

′)n. By considering Kp(G) and Kp+1(G), we obtain the
following two equations :

kp+1(G) = βnkp(G
′), (15)

kp(G) = βnkp−1(G
′) + kp(G

′) = βn
gp−1(β

′)kp(G
′)

n′gp(β′)
+ kp(G

′)

=

(
1 +

βgp−1(β
′)

(1− β)gp(β′)

)
kp(G

′). (16)

By substituting (15) and (16) into kp(G)n/kp+1(G) = gp(β)/gp+1(β),
we obtain (14). The proof is complete.

5 Kp+2-free graphs

In this section, all graphs are assumed to beKp+2-free. Lemma 4.1 im-
plies that these graphs are also heavy-free. This means that D+(T ) =
0 and D(T ) ≤ (p − t + 1)β for all T ∈ Kt and t ≤ p + 1. We prove
the theorem below, which easily implies Theorem 2.2 as g2(β)n

2 =
(1− β)n2/2 ≤ k2(G).

Theorem 5.1. Let 0 < β < 1 and p = ⌈β−1⌉ − 1. Suppose G is a
Kp+2-free graph of order n with minimum degree (1− β)n. Then

ks(G)

gs(β)ns
≥ kt(G)

gt(β)nt
(17)

holds for 2 ≤ t < s ≤ p+ 1. Moreover, the following three statements
are equivalent:

(i) Equality holds for some 2 ≤ t < s ≤ p+ 1.

(ii) Equality holds for all 2 ≤ t < s ≤ p+ 1.

13



(iii) The pair (n, β) is feasible and G is a member of G(n, β).

Proof. Fix β and write gt to denote gt(β). Recall that D+(T ) = 0 for
cliques T . By Corollary 4.5 and Lemma 4.6, we have

kt+1 ≥
(1− tβ)(p − t+ 1)βnkt + (t− 1)(t+ 2)kt+2/n

t− 1 + (p− 2t+ 2)(t + 1)β
(18)

First, we are going to prove (17). It is sufficient to prove the case
when s = t+ 1. We proceed by induction on t from above. For t = p,
kp+2 = 0 and so (18) becomes

(p− 1− (p− 2)(p + 1)β)kp+1 ≥ (1− pβ)βnkp.

Since gp+2 = 0, we have kp+1/gp+1n
p+1 ≥ kp/gpn

p by (13). Hence,
(17) is true for t = p. For t < p, (18) becomes

(t− 1 + (t+ 1)(p − 2t+ 2)β)kt+1

≥(1− tβ)(p+ 1− t)βnkt + (t− 1)(t+ 2)kt+2/n

by the induction hypothesis

≥(1− tβ)(p+ 1− t)βnkt + (t− 1)(t+ 2)gt+2kt+1/gt+1. (19)

Thus, (17) follows from (13).
It is clear that (iii) implies both (i) and (ii) by Definition 1.1 and

the feasibility of (n, β). Suppose (i) holds, so equality holds in (17) for
t = t0 and s = s0 with t0 < s0. We claim that equality must also hold
for t = p and s = p+ 1. Suppose the claim is false and equality holds
for t = t0 and s = s0, where s0 is maximal. Since equality holds for
t = t0, by (17), equality holds for t = t0, . . . , s0 − 1 with s = s0. We
may assume that t = s0−1 and s0 6= p+1 and ks0+1/gs0+1n > ks0/gs0 .
However, this would imply a strictly inequality in (19) contradicting
the fact that equality holds for s = s0 and t = s0 − 1. Thus, the proof
of the claim is complete, that is, if (i) holds then equality holds in
(17) for t = p and s = p+ 1.

Therefore, in order to prove that (i) implies (iii), it is sufficient
to show that if kp+1/gp+1n

p+1 = kp/gpn
p, then (n, β) is feasible and

G is a member of G(n, β). We proceed by induction on p. It is true
for p = 2 by Theorem 3, so we may assume p ≥ 3. Since equality
holds in (17), we have equality in (18), Corollary 4.5 and Lemma 4.6.
Since D+ is a zero function, equality in Corollary 4.5 implies equality
in Corollary 4.3 and so G is (1 − β)n-regular as every vertex is a
(p + 1)-clique. In addition, for each T ∈ Kp, either D(T ) = 1− pβ or
D(T ) = β by equality in Lemma 4.6. Moreover, Corollary 4.3 implies

14



that
∑

T∈Kp(S)
D(T ) ≥ 2− (p+ 1)β for S ∈ Kp+1. Thus, there exists

T ∈ Kp(S) with D(T ) = β. Pick T ∈ Kp with D(T ) = β and let
W =

⋂{N(v) : v ∈ V (S)}, so |W | = β. Since G is Kp+2-free, W is
a set of independent vertices. For each w ∈ W , d(w) = (1 − β)n, so
N(w) = V (G)\W . Thus, the graph G′ = G[V (G)\W ] is (1 − β′)n′-
regular, where n′ = (1 − β)n, β′n′ = (1 − 2β)n and β′ = β/(1 − β).
Note that ⌈β′−1⌉ − 1 = p − 1. Since G is Kp+2-free, G

′ is Kp+1-free.
Also, kp+1(G) = βnkp(G

′) and

kp(G) =βnkp−1(G
′) + kp(G

′)
by (17)

≤ β
gp−1(β

′)kp(G
′)

gp(β′)
+ kp(G

′)

=

(
1 + β

gp−1(β
′)

(1− β)gp(β′)

)
kp(G

′)
by (14)
=

gp(β)β

gp+1(β)
kp(G

′). (20)

Hence,

gp(β)βnkp(G
′) = gp(β)kp+1(G)

by (17)
= gp+1(β)nkp(G)

by (20)

≤ gp(β)βnkp(G
′).

Therefore, we have kp(G
′)/gp(β

′)n′p = kp−1(G
′)/gp−1(β

′)n′p−1. By
the induction hypothesis, G′ ∈ G(n′, β′), which implies G ∈ G(n, β).
This completes the proof of the theorem.

6 kr(n, δ) for 2n/3 < δ ≤ 3n/4

By Theorem 2.2, in order to prove Conjecture 1.2 it remains to han-
dle the heavy cliques. However, even though both Corollary 4.5 and
Lemma 4.6 are sharp by considering G ∈ G(n, β), they are not suffi-
cient to prove Conjecture 1.2 even for the case when 2n/3 < δ ≤ 3n/4
by the observation below. Let 2n/3 < δ ≤ 3n/4, 1/4 ≤ β < 1/3 and
p = 3. By Corollary 4.5 and Lemma 4.6, we have

(1 + 3β)k3 +
∑

T∈K3

D+(T ) ≥ 2(1− 2β)βnk2 +
4

n
k4 + (1− 2β)n

∑

e∈K2

D+(e),

(21)

(2− 4β)k4 + 2
∑

S∈K4

D+(S) ≥ (1− 3β)βnk3 +
10

n
k5 + (1− 3β)n

∑

T∈K3

D+(T ),

(22)

for t = 2 and t = 3 respectively. Since D− is a zero function on
4-cliques, ∑

S∈K4

D+(S) =
∑

S∈K4

D(S) = 5k5/n.
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Hence, the terms with k5 and
∑

D+(S) cancel in (22). Also, (1−2β) >
0, so we may ignore the term with

∑
D+(e) in (21). Recall that

g2(β) = (1− β)/2 and g3(β) = (1− 2β)2β. After substitution of (22)
into (21) replacing the k4 term and rearrangement, we get

k3(G) ≥ g3(β)n
3 − 4β − 1

1− β

∑

T∈K3

D+(T ).

However, (4β − 1) ≥ 0 only if β = 1/4. Hence, we are going to
strengthen both (22) and (21). Recall that (21) is a consequence of
Corollary 4.5 and Lemma 4.6 for t = 2. Therefore, the following
lemma, which is a strengthening of Corollary 4.5 for t = 2, would lead
to a strengthening of (21).

Lemma 6.1. Let 1/4 ≤ β < 1/3. Suppose G is a graph of order n
with minimum degree (1− β)n. Then, for T ∈ K3

D̃(T ) ≥
(
1− 2

29− 75β

)
4β − 1

1− 2β
D+(T )− (1− 2β)

∑

e∈K2(T )

D+(e)

D+(e) + β
.

(23)

Moreover, if equality holds then T is not heavy and d(v) = (1 − β)n
for all v ∈ T .

Proof. Let c be (1 − 2/(29 − 75β))(4β − 1)/(1 − 2β). Corollary 4.5
gives D̃(T ) ≥ 0, so we may assume that T is heavy. In addition,
Corollary 4.3 implies that

D̃(T ) +
∑

e∈K2(T )

D+(e) ≥ D+(T ). (24)

Since c < 1, we may further assume that T contains at least one heavy
edge or else (23) holds as (24) becomes D̃(T ) ≥ D+(T ) > cD+(T ).
Let e0 ∈ K2(T ) with D+(e0) maximal. By substituting (24) into (23),
it is sufficient to show that the function

f =

(
1− 1− 2β

D+(e0) + 2β

)
D̃(T )−

(
c− 1− 2β

D+(e0) + 2β

)
D+(T )

is non-negative.
First consider the case when D+(T ) ≤ 1 − 3β. Lemma 4.1 (iii)

implies D+(e0) ≤ D+(T ) ≤ 1− 3β. Hence,

1− 2β

D+(e0) + 2β
− c ≥1− 2β

1− β
− c > 0.
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Also, 1 − 2β ≤ 2β < D+(e0) + 2β. Therefore, f > 0 by considering
the coefficients of D̃(T ) and D(T ). Hence, we may assume D+(T ) >
1 − 3β. Since T is heavy, D−(T ) = β. Therefore, by the definition
of D̃, we have

D̃(T ) =
∑

e∈K2(T )

D−(e) − 2(1− β). (25)

We split into different cases separately depending on the number of
heavy edges in T .

Suppose all edges are heavy. Thus, D̃(T ) = 2(4β − 1) by (25),
because D−(e) = 2β for all edges e in T . Clearly D+(T ) = D(T )−β ≤
1− β. Hence, (23) is true as

D̃(T ) = 2(4β − 1) ≥ (4β − 1)(1 − β)/(1 − 2β) ≥ cD+(T ).

Thus, there exists an edge in T that is not heavy and D+(T ) ≤ β by
Lemma 4.1 (v).

Suppose T contains one or two heavy edges. We are going to show
that in both cases

D̃(T ) ≥ 2(D+(T )− (1− 3β)).

First assume that there is exactly one heavy edge in T . Let e1 and
e2 be the two non-heavy edges in T . Note that D−(ei) = D(ei) ≥
D(T ) = D+(T ) + β for i = 1, 2. Thus, (25) and Lemma 4.1 imply
that D̃(T ) ≥ 2(D+(T ) − (1 − 3β)). Assume that T contains two
heavy edges. Let e1 be the non-heavy edge in T . Similarly, we have
D−(e1) ≥ D+(T )+β. Recall that D+(T ) ≤ β, so (25) and Lemma 4.1
imply

D̃(T ) ≥(4β +D+(T )− (1− 3β))

=4β − 1 +D+(T )− (1− 3β) ≥ 2(D+(T )− (1− 3β)).

Since D̃(T ) ≥ 2(D+(T ) − (1 − 3β)), in proving (23), it is enough to
show that

D(e0)f =(D+(e0) + 2β)f

≥2(D+(e0) + 4β − 1)(D+(T )− (1− 3β))

− ((D+(e0) + 2β)c − (1− 2β))D+(T ) (26)

is non-negative for 0 < D+(e0) ≤ D+(T ) and 1 − 3β ≤ D+(T ) ≤ β.
Notice that for a fixed D+(T ) it is enough to check the boundary
points of D+(e0). For D+(e0) = 0, we have

D(e0)f ≥(2(3 − c)β − 1)D+(T )− 2(4β − 1)(1 − 3β)

≥(4β − 1)(D+(T )− (1− 3β)) > 0.
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For D+(e0) = D+(T ), the right hand side of (26) becomes a quadratic
function in D+(T ). Moreover, both coefficients of D+(T )

2 and D+(T )
are positive. Thus, it enough to check for D+(T ) = 1 − 3β. For
D+(T ) = D+(e0) = 1− 3β, (26) becomes

D(e0)f ≥ (1− c− (2− c)β)(1 − 3β) > 0.

Hence, we have proved the inequality in Lemma 6.1.
It is easy to check that if equality holds in (23) then D+(T ) = 0.

Thus, for all edges e in T , D+(e) = 0 by Lemma 4.1. Furthermore,
equality holds in (24), so equality holds in Corollary 4.3 as D+(T ) =
0 = D+(e). Hence, d(v) = (1 − β)n for v ∈ S. This completes the
proof of the lemma.

Together with Lemma 4.6 with t = 2, we obtain the strengthening
of (21).

Corollary 6.2. Let 1/4 ≤ β < 1/3. Suppose G is a graph of order n
with minimum degree (1− β)n. Then

(1 + 3β)k3 +
2

1− 2β

(
1− 3β +

4β − 1

29− 75β

) ∑

T∈K3

D+(T ) ≥ 2(1 − 2β)βnk2 + 4
k4
n

holds. Moreover, if equality holds, then G is (1− β)n-regular and for
each edge e, either we have D(e) = 1− 2β or D(e) = 2β. �

Note that by mimicking the proof of Lemma 6.1, we could ob-
tain a strengthening of Corollary 4.5 for t = 3. It would lead to a
strengthening of (22). However, it is still not sufficient to prove the
Conjecture 1.2 when β is close to 1/3. Instead, we prove the follow-
ing statement. The proof requires a detailed analysis of K5, so it is
postponed to Section 7.

Lemma 6.3. Let 1/4 ≤ β < 1/3. Suppose G is a graph order n with
minimum degree (1− β)n. Then

(2− 4β)k4 ≥ (1− 3β)βnk3 +

(
1− 3β +

4β − 1

29− 75β

)
n

∑

T∈K3

D+(T ).

(27)

Moreover, equality holds only if (n, β) is feasible, and G ∈ G(n, β).

By using the two strengthened versions of (21) and (22), that is,
Corollary 6.2 and Lemma 6.3, we prove the theorem below, which
implies Theorem 2.3.
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Theorem 6.4. Let 1/4 ≤ β < 1/3. Let s and t be integers with 2 ≤
t < s ≤ 4. Suppose G is a graph of order n with minimum degree (1−
β)n. Then

ks(G)

gs(β)ns
≥ kt(G)

gt(β)nt
.

Moreover, the following three statements are equivalent:

(i) Equality holds for some 2 ≤ t < s ≤ 4.

(ii) Equality holds for all 2 ≤ t < s ≤ 4.

(iii) The pair (n, β) is feasible, and G is a member of G(n, β).

Proof. Recall that p = 3 as 1/4 ≤ β < 1/3, so

g2(β) = (1− β)/2, g3(β) = (1− 2β)2β and g4 = (1− 2β)(1 − 3β)β2/2.

Note that in proving the inequality, it is sufficient to prove the case
when s = t + 1. Lemma 6.3 states that (2 − 4β)k4 ≥ (1 − 3β)βnk3.
This implies k4/g4(β)n

4 ≥ k3/g3(β)n
3 by (13) with t = 3. Hence, the

theorem is true for t = 3. For t = 2, by substituting Corollary 6.2 into
Lemma 6.3, we obtain

(1 + 3β)k3 +
2

1− 2β

(
1− 3β +

4β − 1

29− 75β

) ∑

T∈K3

D+(T ) ≥ 2(1 − 2β)βnk2

+
4

(2− 4β)n

(
(1− 3β)βnk3 +

(
1− 3β +

4β − 1

29− 75β

)
n
∑

D+(T )

)
.

Observe that the
∑

D+(T ) terms on both sides cancel. Hence, af-
ter rearrangement, we have (1 − β)k3 ≥ 2(1 − 2β)2βnk2. Thus,
k3/g3(β)n

4 ≥ k2/g2(β)n
3 as required.

This is clear that (iii) implies (i) and (ii) by the construction
of G(n, β) and the feasibility of (n, β). Suppose (i) holds, so equality
holds for some 2 ≤ t < s ≤ 4. It is easy to deduce that equality
also holds for s = 4 and t = 3. By Lemma 6.3, (n, β) is feasible, and
G ∈ G(n, β).

7 Proof of Lemma 6.3

In this section, T , S and U always denote a 3-clique, 4-clique and
5-clique respectively. Before presenting the proof, we recall some ba-
sic facts about T , S and U . Observe that D−(S) = 0 for S ∈ K4,
so D+(S) = D(S). Recall that D̃(S) =

∑
T∈K3(S)

D−(T ) − (2 − 4β).
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Let T1, . . . , T4 be triangles in S with D(Ti) ≤ D(Ti+1) for 1 ≤ i ≤ 3.
Since D−(T ) ≤ β, we have

D̃(S) =





2(4β − 1) if k+3 (S) = 4,

4β − 1 + (D(T1)− (1− 3β)) if k+3 (S) = 3,

D(T1) +D(T2)− 2(1 − 3β) if k+3 (S) = 2,

(28)

where k+3 (S) is the number of heavy triangles in S. Also recall that
D(T ) ≥ 1 − 3β by Lemma 4.1 (i). We will often make reference to
these formulae throughout this section.

Proof of Lemma 6.3. Define the function η : K4 → R to be

η(S) = D̃(S)− 4β − 1

29− 75β

∑

T∈K3(S)

D+(T )

D+(T ) + β

for S ∈ K4. Recall that for a heavy triangle T , D(T ) = D+(T ) + β.
Thus, only heavy 3-cliques in S contribute to

∑
D+(T )/(D+(T )+β).

We now claim that it is enough to show that
∑

S∈K4
η(S) ≥ 0. If∑

S∈K4
η(S) ≥ 0, then Lemma 4.6 with t = 3 implies that

0 ≤
∑

S∈K4

η(S) =
∑

S∈K4

D̃(S)− 4β − 1

29− 75β
n

∑

T∈K3

D+(T )

≤(2− 4β)k4 − (1− 3β)βnk3 −
(
1− 3β +

4β − 1

29− 75β

)
n

∑

T∈K3

D+(T )

+ 2
∑

S∈K4

D+(S)− 10k5/n,

where the last inequality is due to Lemma 4.6 with t = 3. Observe that∑
S∈K4

D+(S) =
∑

S∈K4
D(S) = 5k5/n, so the terms with

∑
D+(S)

and k5/n cancel. Rearranging the inequality, we obtain the inequality
in Lemma 6.3.

Suppose
∑

S∈K4
η(S) < 0. Then, there exists a 4-clique S with η(S) <

0. Such a 4-clique is called bad, otherwise it is called good. The sets
of bad and good 4-cliques are denoted by Kbad

4 and Kgood
4 respectively.

In the next claim, we identify the structure of a bad 4-clique.

Claim 7.1. Let S be a bad 4-clique. Let

∆ = (1− 3β)(1 + ǫ) and ǫ = (4β − 1)/(150β2 − 137β + 30).

Then, the following hold

(i) S contains exactly one heavy edge and two heavy triangles,

(ii) 0 < D(S) < ∆,
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(iii) D(T ) + D(T ′) < 2∆, where T and T ′ are the two non-heavy
triangles in S.

Proof. Let T1, . . . , T4 be triangles in S with D(Ti) ≤ D(Ti+1) for 1 ≤
i ≤ 3. We may assume that D+(T4) > 0, otherwise S is good
by Corollary 4.5 as η(S) = D̃(S) ≥ 0. Hence, S is also heavy by
Lemma 4.1 (iv). We separate cases by the number of heavy triangles
in S.

First, suppose all triangles are heavy. Hence, D̃(S) = 2(4β − 1)
by (28). Clearly, D+(Ti) ≤ 1− β for 1 ≤ i ≤ 4, so

η(S) ≥2(4β − 1)− 4β − 1

29− 75β

∑

T∈K3(S)

D+(T )

D+(T ) + β

≥2(4β − 1)

(
1− 2(1 − β)

29− 75β

)
=

2(4β − 1)(27 − 73β)

29− 75β
≥ 0.

This contradicts the assumption that S is bad. Thus, not all triangles
in S are heavy, so 0 < D(S) ≤ β by Lemma 4.1 (v). Also, D+(T ) ≤
D+(S) = D(S) ≤ β.

Suppose all but one triangles are heavy, so D̃(S) ≥ 4β−1 by (28).
Hence,

η(S) ≥4β − 1− 4β − 1

29− 75β

∑

T∈K3(S)

D+(T )

D+(T ) + β

≥(4β − 1)

(
1− 3

29− 75β

D(S)

D(S) + β

)

≥(4β − 1)

(
1− 3

2(29 − 75β)

)
=

5(4β − 1)(11 − 30β)

2(29 − 75β)
≥ 0,

which is a contradiction.
Suppose there is only one heavy triangle, T4, in S. Corollary 4.3

implies that D̃(S)+D+(T4) ≥ 2D+(S) = 2D(S). Note that D+(T4) ≤
D+(S) = D(S), so D̃(S) ≥ D(S). Thus,

η(S) ≥D(S)− 4β − 1

29− 75β

D+(T4)

D+(T4) + β
≥ D(S)− 4β − 1

29− 75β

D(S)

D(S) + β

=

(
1− 4β − 1

(29− 75β)(D(S) + β)

)
D(S) ≥

(
1− 4β − 1

(29 − 75β)β

)
D(S) > 0.

Hence, S has exactly two heavy triangles, namely T3 and T4.
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If D(S) ≥ ∆, then

η(S) =D(T1) +D(T2)− 2(1− 3β)− 4β − 1

29− 75β

(
D+(T3)

D+(T3) + β
+

D+(T4)

D+(T4) + β

)

≥2(D(S) − (1− 3β))− 2(4β − 1)

29− 75β

D(S)

D(S) + β

>2(1 − 3β)ǫ− 2(4β − 1)

29− 75β

∆

∆+ β

≥2(1 − 3β)ǫ− 2(4β − 1)∆

(29− 75β)(1 − 2β)
= 0.

Thus, D(S) < ∆. If D(T1) +D(T2) ≥ 2∆, then D̃(S) ≥ 2(∆ − (1 −
3β)) = 2(1 − 3β)ǫ by (28). Moreover, since D+(Ti) ≤ D(S) < ∆ for
i = 3, 4,

η(S) >2(1 − 3β)ǫ− 2(4β − 1)

29− 75β

∆

∆+ β
≥ 2(1 − 3β)ǫ− 2(4β − 1)∆

(29− 75β)(1 − 2β)
= 0.

Thus, (iii) is true.
We have shown that S contains exactly two heavy triangles. There-

fore, to prove (i), it is sufficient to prove that S contains exactly
one heavy edge. A triangle containing a heavy edge is heavy by
Lemma 4.1 (iv). Since S contains two heavy triangle, there is at
most one heavy edge in S. It is enough to show that if S does not
contain any heavy edge and D(S) < ∆, then S is good, which is a
contradiction. Assume that S contains no heavy edge. Let ei = Ti∩T4

be an edge of T4 for i = 1, 2, 3. We claim that D̃(S) ≥ D+(T4). By
Corollary 4.3 taking S = T4 and t = 2, we obtain

D(e1) +D(e2) +D(e3) ≥2− 3β +D(T4)

D(e1) +D(e2) ≥2− 4β +D+(T4).

as D(e3) ≤ 2β and D−(T4) = β. By Lemma 4.1 (ii), we get

D(T1) +D(T2) ≥ D(e1) +D(e2)− 2β ≥ 2(1 − 3β) +D+(T4).

Hence, D̃(S) ≥ D+(T4) by (28). Therefore,

η(S) ≥D+(T4)−
4β − 1

29− 75β

∑

T∈K4(S)

D+(T )

D+(T ) + β

≥
(
1− 2(4β − 1)

(29 − 75β)(D+(T4) + β)

)
D+(T4)

≥
(
1− 2(4β − 1)

(29 − 75β)β

)
D+(T4) > 0

and so S is good, a contradiction. This completes the proof of the
claim.
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Since a bad 4-clique S must be heavy, that is, D(S) > 0, it is
contained in some 5-clique. A 5-clique is called bad if it contains at
least one bad 4-clique. We denote Kbad

5 to be the set of bad 5-cliques.
Define η̃(S) to be η(S)/D(S) for S ∈ K4 with D(S) > 0. Clearly,

n
∑

S∈K4

η(S) =
∑

U∈K5

∑

S∈K4(U)

η̃(S) + n
∑

S∈K4:D(S)=0

η(S). (29)

Recall that our aim is to show that
∑

S∈K4
η(S) ≥ 0. Since D(S) = 0

implies that S is good, we have η(S) ≥ 0. Hence, it is enough to show
that

∑
S∈K4(U) η̃(S) ≥ 0 for each bad 5-clique U .

Now, we give a lower bound on η̃(S) for bad 4-cliques S. By
Claim 7.1,

η(S) ≥− 4β − 1

29− 75β

∑

T∈K3(S)

D+(T )

D+(T ) + β
≥ −2(4β − 1)

29− 75β

D(S)

D(S) + β
.

Hence,

η̃(S) ≥− 2(4β − 1)

(29 − 75β)(D(S) + β)
> − 2(4β − 1)

(29− 75β)β
. (30)

Next, we are going to bound D(S) above for S ∈ K4(U)\Kbad
4 and

U ∈ Kbad
5 . Let Sb ∈ Kbad

4 (U). Observe that S ∩Sb is a 3-clique. Then,
by Lemma 4.1 and Claim 7.1, we have

D(S) ≤ D(S ∩ Sb) = D+(S ∩ Sb) + β ≤ D(Sb) + β < ∆+ β. (31)

Recall that a bad 4-clique S contains a heavy edge by Claim 7.1 and
hence so does a bad 5-clique U . We split Kbad

5 into subcases depend-
ing on the number of heavy edges in U . The next claim studies the
relationship between the number of heavy edges and bad 4-cliques in
a bad 5-clique U .

Claim 7.2. Let U ∈ Kbad
5 with h ≥ 2 heavy edges and b bad 4-cliques.

Then b ≤ 2h/(h − 1) = 2 + 2/(h − 1). Moreover, if there exist two
heavy edges sharing a common vertex, b ≤ 3.

Proof. Define H to be the graph induced by the heavy edges in U .
Write uS for the vertex in U not in S ∈ K4(U). This defines a bijection
between V (U) and K4(U). If S is bad, uS is adjacent to all but
one heavy edges by Claim 7.1. By summing the degrees of H, 2h =∑

S∈K4(U) d(uS) ≥ b(h− 1). Thus, b ≤ 2h/(h − 1).
If there exist two heavy edges sharing a common vertex in H, then

every bad 4-clique must miss one of the vertices of these two heavy
edges. Hence, b ≤ 3.
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Claim 7.3. Let U ∈ Kbad
5 with two heavy edges. Then

∑
S∈K4(U) η̃(S) >

0.

Proof. Let e and e′ be two heavy edges in U , and let b be the number
of bad 4-cliques in U . We consider the cases whether e and e′ are
vertex disjoint or not separately. First, assume that e and e′ are
vertex disjoint. Notice that

∑
S∈Kbad

4
(U) η̃(S) > −bγ by (30), where

γ = 2(4β − 1)/(29 − 75β)β and b ≤ 4 by Claim 7.2. Also, there is
exactly one heavy 4-clique S containing both e and e′. Therefore,
it is sufficient to prove that η(S) ≥ bD(S)γ. Since S contains two
disjoint heavy edges, all triangles in S are heavy by Lemma 4.1 (iv).
Thus, D̃(S) = 2(4β − 1) by (28). Observe that T = S ∩ S′ is a
triangle for S′ ∈ K4(U)\S. Moreover, D+(T ) ≤ D+(S

′) = D(S′) by
Lemma 4.1 (iii). Hence,

η(S) ≥2(4β − 1)− 4β − 1

29 − 75β

∑

S′∈K4(U)\S

D(S′)

D(S′) + β

>(4β − 1)

(
2− 1

29− 75β

(
b∆

∆+ β
+

(4− b)(∆ + β)

∆ + 2β

))

by Claim 7.1 (ii) and (31). Therefore, η(S)− bD(S)γ is at least

(4β − 1)

(
2− 1

29− 75β

(
b∆

∆+ β
+

(4− b)(∆ + β)

∆ + 2β

))
− b(∆ + β)γ

≥(4β − 1)

(
2− 4∆

(29− 75β)(∆ + β)

)
− 4(∆ + β)γ > 0.

Thus, if U contains two vertex disjoint heavy edges,
∑

S∈K4(U) η̃(S) >

0. Similar argument also holds for the case when e and e′ share a
common vertex.

Recall that a bad 5-clique contains at least one heavy edge. Thus,
we are left with the case U ∈ Kbad

5 containing exactly one heavy edge.

Claim 7.4. Suppose U ∈ Kbad
5 with exactly one heavy edge e. Then,∑

S∈K4(U) η̃(S) > 0.

Proof. Let u1, . . . , u5 be the vertices of U with u4u5 is the heavy edge.
Write Si and ηi to be U − ui and η(Si) respectively for 1 ≤ i ≤ 5.
Similarly write Ti,j to be U − ui − uj for 1 ≤ i < j ≤ 5. Recall that
a bad 4-clique contains a heavy edge by Claim 7.1 (i). Hence, Si is a
bad 4-clique only if i ≤ 3. Without loss of generality, S1, . . . , Sb are
the bad 4-cliques in U .

Since S3 contains a heavy edge, it contains at least 2 heavy tri-
angles by Lemma 4.1 (iv). If S3 contains either three or four heavy
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triangles, then S3 is not bad by Claim 7.1 (i). By a similar argument
as in the proof of Claim 7.3, we can deduce that η3 ≥ 2γD(S3), where
as before γ = 2(4β − 1)/(29 − 75β)β. Therefore,

∑
S∈K4(U) η̃(S) > 0

as b ≤ 2. Thus, we may assume that there are exactly two heavy tri-
angles in Si for 1 ≤ i ≤ 3. By Lemma 4.1 (v), D(Si) < β for 1 ≤ i ≤ 3.
For 1 ≤ i ≤ b,

D(Ti,4) +D(Ti,5) < 2∆ = 2(1 − 3β)(1 + ǫ)

by Claim 7.1 (iii). For b < i ≤ 3, D̃(Si) = D(Ti,4)+D(Ti,5)−2(1−3β)
by (28). Thus,

D(Ti,4) +D(Ti,5) =ηi + 2(1 − 3β) +
4β − 1

29− 75β

∑

T∈K3(Si)

D+(T )

D+(T ) + β

≤ηi + 2(1 − 3β) +
γβD(Si)

D(Si) + β

≤ηi + 2(1 − 3β) + γβ/2.

After applying Corollary 4.5 to S4 and S5 taking t = 3, and adding
the two inequalities together, we obtain

2(2− 4β) ≤
∑

1≤i≤3

(D−(Ti,4) +D−(Ti,5)) + 2D−(T4,5)

2(2− 5β) ≤
∑

1≤i≤b

(D(Ti,4) +D(Ti,5)) +
∑

b<i≤3

(D(Ti,4) +D(Ti,5))

<2b(1 − 3β)(1 + ǫ) +
∑

b<i≤3

ηi + (3− b) (2(1− 3β) + γβ/2)

2(4β − 1) <2b(1 − 3β)ǫ+
∑

b<i≤3

ηi + (3− b)γβ/2 (32)

If b = 3, the above inequality becomes 2(4β−1) < 6(1−3β)ǫ < 2(4β−
1), which is a contradiction. Thus, b ≤ 2. Notice that ηi > −D(Si)γ >
−γ for 1 ≤ i ≤ b. Hence,

∑
S∈Kbad

4
(U) η̃(S) > −bγ. Also, recall that

D(Si) ≤ β for 1 ≤ i ≤ 3. It is enough to show that
∑

b<i≤3 ηi ≥ bγβ.
Suppose the contrary, so

∑
b<i≤3 ηi < bγβ. Then, (32) becomes

2(4β − 1) <2b(1− 3β)ǫ+ (3 + b)γβ/2 ≤ 4(1− 3β)ǫ+ 5γβ/2 < 2(4β − 1),

which is a contradiction. The proof of the claim is complete.

Hence, by Claim 7.3 and Claim 7.4, (29) becomes
∑

S∈K4
η(S) ≥ 0,

so the inequality in Lemma 6.3 holds. Now suppose equality holds
in Lemma 6.3. Claim 7.3 and Claim 7.4 imply that no 5 clique is
bad, so no 4-clique is bad. Furthermore, we must have η(S) = 0 for
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all S ∈ K4. It can be checked that if the definition of a bad 4-clique
includes heavy 4-cliques S with η(S) = 0, then all arguments still hold.
Thus, we can deduce that G is K5-free. Hence, G is also K5-free. By
Theorem 4 taking s = 4 and t = 3, we obtain that (n, β) is feasible
and G ∈ G(n, β).

8 Proof of Theorem 2.4

Here, we prove Theorem 2.4. Since the proof of theorem uses similar
arguments in the proof of Theorem 5.1 and Lemma 6.1, we only give
a sketch of the proof.

Sketch of Proof of Theorem 2.4. For 2 ≤ t ≤ p and 1/(p + 1) ≤ β <
1/p, define

Ap
t (β) =(t− 1)((p + 1)β − 1)Cp

t (β), and

Bp
t (β) =((p + 1)β − 1)Cp

t (β),

where Cj(β) satisfies the recurrence

Ct(β) + 1 =(p− t+ 1)βCt−1(β)

with the initial condition Cp(β) = 0 for 1/(p + 1) ≤ β < 1/p. Explic-
itly, Cp

p−j(β) =
∑

0≤i<j i!β
i−j/j! for 0 ≤ j ≤ p − 2. These functions

will be used as coefficients in corresponding statements of Lemma 6.1
for 2 ≤ t < p. Define the integer r(β) to be the smallest integer at
least 2 such that for r ≤ t ≤ p, Ap

t (β) < 1 and Bp
t (β) < (p− t)β. Let

βp = sup{β0 : r(β) = 2 for all 1/(p + 1) ≤ β < β0}
and ǫp = βp − 1/(p + 1). Observe that At(β), Bt(β) and Ct(β) are
right continuous functions of β. Moreover, both At(β) and Bt(β) tend
to zero as β tends 1/(p+1) from above, so βp > 1/(p+1) and ǫp > 0.
By mimicking the poof of Lemma 6.1, we have

D̃(S) ≥ Ap
t+1(β)D+(S)−Bp

t (β)
∑

T∈Kt(S)

D+(T )

D(T )

for S ∈ Kt+1, 1/(p + 1) ≤ β < βp and 2 ≤ t ≤ p. Then, following the
arguments in the proof of Theorem 5.1, we can deduce that

ks(G)

gs(β)ns
≥ kt(G)

gt(β)nt
+

1− tβ −Bp
t (β)

(1− tβ)(p− t+ 1)βgt(β)nt

∑

T∈Kt

D+(T )

for 2 ≤ t < s ≤ p+1 and 1/(p+1) < β ≤ βp. Since 1−tβ−Bp
t (β) ≥ 0,

the proof of theorem is completed.

Clearly, ǫp defined in the proof is not optimal. Generalising the
proof of Lemma 6.3 would lead to an improvement on ǫp.
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9 Counting (p + 1)-cliques

In this section, we are going to prove the below theorem, which implies
Theorem 2.5.

Theorem 9.1. Let 0 < β < 1 and p = ⌈β−1⌉ − 1. Suppose G is
a graph of order n with minimum degree (1 − β)n. Then, for any
integer 2 ≤ t ≤ p,

kp+1(G)

gp+1(β)np+1
≥ kt(G)

gt(β)nt
.

Moreover, for t = 2, equality holds if and only if (n, β) is feasible, and
G is a member of G(n, β).

For positive integers 2 ≤ t ≤ s ≤ p + 1, define the function φs
t :

Ks → R such that

φs
t (S) =

{
D−(S) if t = s, and
∑

U∈Ks−1(S)
φs−1
t (U) if t < s

for S ∈ Ks. Observe that for G0 ∈ G(n, β) with (n, β) feasible,

φs
t (S) =

{
(s− t)!(1 − tβ) if |V (S) ∩ V0| = 0, 1

(1− tβ)s!/t! + ((p + 1)β − 1)(s − 2)!/(t − 2)! if |V (S) ∩ V0| = 2

for s-cliques S in G0. Let Φs
t (S) = min{φs

t (S), ϕ
s
t} for S ∈ Ks and

2 ≤ t ≤ s ≤ p+ 1, where

ϕs
t = (1− tβ)s!/t! + ((p+ 1)β − 1)(s − 2)!/(t − 2)!.

to be the analogue of D− for φs
t . The next lemma gives a lower bound

on Φs
t(S) for S ∈ Ks.

Lemma 9.2. Let 0 < β < 1 and p = ⌈β−1⌉ − 1. Let G be a graph of
order n with minimum degree (1− β)n. Then,

Φs
t(S) ≥ (1− tβ)s!/t! +

(
D−(S)− (1− sβ)

)
(s− 2)!/(t − 2)!

for S ∈ Ks and 2 ≤ t < s ≤ p + 1. In particular, for s = p + 1 and
t = p

∑

S∈Kp+1

Φp+1
t (S) ≥

(
(1− tβ)

(p + 1)!

t!
− (1− (p+ 1)β)

(p − 1)!

(t − 2)!

)
kp+1.

(33)
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Proof. Fix β and t and we proceed by induction on s. The inequality
holds for s = t+ 1 by Corollary 4.5. Suppose s ≥ t+ 2 and that the
lemma is true for t, . . . , s − 1. Hence

φs
t (S) =

∑

T∈Ks−1(S)

φs−1
t (T ) ≥

∑

T∈Ks−1(S)

Φs−1
t (T )

and by the induction hypothesis,

≥
∑

T∈Ks−1(S)

(
(1− tβ)

(s− 1)!

t!
+

(
D−(T )− (1− (s− 1)β)

) (s− 3)!

(t− 2)!

)

=(1− tβ)
s!

t!
+

(s− 3)!

(t− 2)!




∑

T∈Ks−1(S)

D−(T )− s(1− (s− 1)β)




≥(1− tβ)s!/t! +
(
D−(S)− (1− sβ)

)
(s− 2)!/(t − 2)!,

where the last inequality comes from Corollary 4.5 with t = s−1. The
right hand side is increasing in D−(S). In addition, the right hand
side equals to ϕs

t only if D−(S) = (p− s+1)β. Thus, the proof of the
lemma is complete.

Now, we bound
∑

S∈Ks
Φs
t(S) from above using Proposition 3.1

to obtain the next lemma. The proof is essentially a straightforward
application of Proposition 3.1 with an algebraic check.

Lemma 9.3. Let 0 < β < 1 and p = ⌈β−1⌉ − 1. Let G be a graph of
order n with minimum degree (1− β)n. Then, for 2 ≤ t ≤ s ≤ p+ 1

∑

S∈Ks

Φs
t(S) ≤ϕs−1

t sks + 2((p + 1)β − 1)

s−1∑

i=t+1


(i− 3)!

(t− 2)!
kin

s−i

s−1∏

j=i

(1− jβ)




+ ((t+ 1)kt+1 − (p− t+ 1)βktn)n
s−t−1

s−1∏

j=t

(1− jβ).

Proof. Fix β and t. We proceed by induction on s. Suppose s = t+1.
Note that Φt+1

t (S) ≤ ∑
T∈Kt(S)

D−(T ). By Proposition 3.1, taking
A = Kt, f = D−, g = D, M = (p − t+ 1)β and m = 1− tβ,

∑

S∈Kt+1

Φt+1
t (S) ≤

∑

S∈Kt+1

∑

T∈Kt(S)

D−(T ) = n
∑

T∈Kt

D(T )D−(T )

≤(p− t+ 1)βn
∑

T∈Kt

D(T ) + (1− tβ)n
∑

T∈Kt

D−(T )− (1− tβ)(p − t+ 1)βnkt

≤(t+ 1)(1 − (p− 2t+ 1)β)kt+1 − (1− tβ)(p − t+ 1)βnkt.
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Hence, the lemma is true for s = t + 1. Now assume that s ≥ t + 2
and the lemma is true up to s− 1. By Proposition 3.1 taking A = Kt,
f = Φs−1

t , g = D, M = ϕs−1
t and m = 1− (s− 1)β, we have

∑

S∈Ks

Φs
t(S) = n

∑

T∈Ks−1

D(T )Φs−1
t (T )

≤ϕs−1
t

∑

T∈Ks−1

nD(T ) + (1− (s− 1)β)n
∑

T∈Ks−1

Φs−1
t (T )− ϕs−1

t (1− (s− 1)β)nks−1

=ϕs−1
t sks + (1− (s− 1)β)n

∑

T∈Ks−1

Φs−1
t (T )− ϕs−1

t (1− (s− 1)β)nks−1.

Next, we apply induction hypothesis on
∑

Φs−1
t (T ). Note that

(s− 1)ϕs−2
t − ϕs−1

t = 2((p + 1)β − 1)(s − 4)!/(t − 2)!.

After collecting the terms, we obtain the desire inequality.

Now we are ready to prove Theorem 9.1. The proof is very similar
to the proof of Theorem 5.1.

Proof of Theorem 9.1. We fix β and write gt to be gt(β). We pro-
ceed by induction on t from above. The theorem is true for t = p
by Lemma 9.2 and Lemma 9.3. Hence, we may assume t < p. By
Lemma 9.3,

∑
Φp+1
t (S) ≤(p+ 1)ϕp

t kp+1 + 2((p + 1)β − 1)

p∑

i=t+1


(i− 3)!

(t− 2)!
kin

p+1−i

p∏

j=i

(1− jβ)




+ ((t+ 1)kt+1 − (p− t+ 1)βnkt)n
p−t

p∏

j=t

(1− jβ),

and by the induction hypothesis

≤(p+ 1)ϕp
t kp+1 + 2((p + 1)β − 1)

p∑

i=t+1


kp+1gi

gp+1

(i− 3)!

(t− 2)!

p∏

j=i

(1− jβ)




+

(
(t+ 1)

kp+1

gp+1
gt+1 − (p − t+ 1)βnkt

)
np−t

p∏

j=t

(1− jβ).

Substitute the above inequality into (33) and rearranging to obtain
the desire inequality.

Now suppose that equality holds, so equality holds in (33). There-
fore, D(S) = D−(S) = 0 for all S ∈ Kp+1. Thus, G is Kp+2-free. By
Theorem 5.1 (n, β) is feasible, and G ∈ G(n, β). This completes the
proof of the theorem.
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