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ARRANGEMENTS, MULTIDERIVATIONS, AND

ADJOINT QUOTIENT MAP OF TYPE ADE

MASAHIKO YOSHINAGA

Abstract. The first part of this paper is a survey on algebro-
geometric aspects of sheaves of logarithmic vector fields of hyper-
plane arrangements. In the second part we prove that the relative
de Rham cohomology (of degree two) of ADE-type adjoint quotient
map is naturally isomorphic to the module of certain multideriva-
tions. The isomorphism is obtained by the Gauss-Manin derivative
of the Kostant-Kirillov form.

1. Introduction

We begin with an example to illustrate how the structure of the
module of logarithmic vector fields D(A) is related to combinatorial
problems of a hyperplane arrangement A. Let A be a collection {Hij |
1 ≤ i < j ≤ n} of hyperplanes Hij = {(x1, . . . , xn) ∈ Kn | xi − xj =
0} ⊂ Kn, where K is a fixed field. According to the field K, several
enumerative problems appear for the complement M(A) = Kn \

⋃
Hij.

(i) If K = Fq is a finite filed, then the complement M(A) is a finite
set, of |M(A)| = q(q − 1)(q − 2) . . . (q − n+ 1).

(ii) If K = R is the real numbers, then each connected component
of M(A) (the chamber) is expressed by the inequality xi1 <
xi2 < · · · < xin , where (i1, . . . , in) is a permutation of (1, . . . , n).
There are n! chambers.

(iii) If K = C is the complex numbers, then M(A) is an affine com-
plex variety of dimC = n. Using the fibration (x1, . . . , xn) 7−→
(x1, . . . , xn−1) and the Leray-Hirsch theorem, the Poincaré poly-
nomial is computed as

∑
i bi(M(A))ti = (1 + t)(1 + 2t) . . . (1 +

(n− 1)t).

The formulas in (i)-(iii) are similar in appearance. The general theory
of arrangements [23] tells us that these invariants are combinatorial.
Namely, they are determined from the poset L(A) of subspaces ob-
tained as intersections. Computations of the characteristic polynomial
χ(A, t) ∈ Z[t] unify these enumerative problems.
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We also consider derivations

δp =

n∑

i=1

xpi ∂i,

(∂i =
∂
∂xi

) with p = 0, 1, . . . , n− 1. These satisfy

(1) δp(xi − xj) = xpi − x
p
j ∈ (xi − xj),

for all i, j and the determinant of coefficients

(2) det




1 x1 x21 . . . xn−1
1

1 x2 x22 . . . xn−1
2

...
...

...
. . .

...
1 xn x2n . . . xn−1

n


 =

∏

1≤i<j≤n

(xj − xi)

is the product of defining equations. The properties (1) and (2) guar-
antee that the module

D(A) = {δ ∈ DerS | δ(xi − xj) ∈ (xi − xj), ∀i, j}

is a free module over S = K[x1, . . . , xn] with basis δ0, . . . , δn−1 (this
is Saito’s criterion [25]). Remarkably, the decomposition of D(A) into
a direct sum of rank one free modules implies the product formulas
(i)–(iii) above (Terao’s factorization theorem [38]). More generally, the
algebraic structure of D(A) determines the characteristic polynomial
χ(A, t) by Solomon-Terao’s formula [35] (see also §2.2 below).
The graded S-module D(A) can also be considered as a coherent

sheaf D̃(A) on projective space Pn−1. This fact enables us to employ
algebro-geometric methods to study A. The structures of these sheaves
contain information on A.
The purpose of this paper is to survey algebro-geometric aspects of

D(A) and give some related results. The paper is organized as fol-
lows. In §2, we start with recalling basic notions on logarithmic vector
fields for a Cartier divisor. We also introduce the module D(A,m)
of logarithmic vector fields for an arrangement with multiplicity (mul-
tiarrangements) in §2.2. In general, the logarithmic vector fields for
multiarrangements are much more difficult to analyze than simple ar-
rangements. However, freeness of rank ℓ simple arrangements is closely
related to freeness of rank ℓ − 1 multiarrangements. We will describe
freeness criteria for these objects in §2.3–§2.4. In §2.5, we give a new
necessary condition for a 3-dimensional arrangement to be free, in terms
of plane curves. In §3, we will review results on freeness of Coxeter mul-
tiarrangements. Coxeter arrangements are the best understood class
of multiarrangements. In §4, we will give two applications of freeness
of Coxeter multiarrangements. The first concerns the adjoint quotient
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map χ : g → g// ad(G) of a simple Lie algebra g of ADE-type. To
describe the relative de Rham cohomology of χ, the module D(A,m)
naturally appears. In the second application, we will give another proof
for the freeness of An-Catalan arrangements, which was first proved by
Edelman and Reiner [15].
Acknowledgements. The author deeply thanks Professor Kyoji Saito.

Parts of this article (especially §4.1) were done under his supervision.
This work was supported by JSPS Grant-in-Aid for Young Scientists
(B) 20740038.

2. Algebraic Geometry of logarithmic vector fields

2.1. Sheaf of logarithmic vector fields. Let X be a smooth com-
plex variety andD ⊂ X a Cartier divisor. Let U ⊂ X be an open subset
of X . Suppose that there exists h ∈ Γ(U,OX) such that U ∩D = {h =
0}. Let δ ∈ Γ(U, TX) be a section of the tangent sheaf on an open
subset U ⊂ X (i.e., a holomorphic vector field on X). The section δ
is said to be logarithmic tangent to D if δh ∈ h · OU . The sheaf of
vector fields logarithmic tangent to D is denoted by TX(− logD). The
sheaves of logarithmic forms are also similarly defined as

Ωp
X(logD) = {ω ∈

1

h
Ωp

X | ω ∧ dh is holomorphic }.

They were introduced by K. Saito in [25]. He proved that they are
reflexive sheaves and if TX(− logD) (or Ω1

X(logD)) is locally free then
Ωp

X(logD) =
∧pΩ1

X(logD). We also note that if dimX = 2, TX(− logD)
is a locally free sheaf.

Example 2.1. Let X = P2
C = ProjC[z0, z1, z2]. Using the Euler se-

quence ([21])

0 −→ OP2 −→ OP2(1)3 −→ TP2 −→ 0,

we have the following.

(1) If D0 = {z0 = 0} ⊂ P2. Then TP2(− logD0) ∼= OP2(1)2.
(2) If D1 = {z0z1 = 0} ⊂ P2. Then TP2(− logD1) ∼= OP2(1)⊕OP2.
(3) If D2 = {z0z1z2 = 0} ⊂ P2. Then TP2(− logD2) ∼= O

2
P2.

(4) If D3 = {z20 + z21 + z22 = 0} ⊂ P2. Then TP2(− logD3) ∼=
TP2(−1). (Sketch:

⊕
d Γ(TP2(− logD3)(d)) is generated by δ0 =

z2∂1 − z1∂2, δ1 = −z2∂0 + z0∂2 and δ2 = z1∂0 − z0∂1 with a
relation z0δ0 + z1δ1 + z2δ2 = 0 this induces a resolution which
is isomorphic to shifted Euler sequence.)

The examples above, TX(− logD) is always a uniform sheaf. How-
ever for “generic” divisors of higher degrees, we obtain “generic” sheaves.
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We can sometimes recover the original divisorD from the sheaf TPn(− logD).
(Dolgachev and Kapranov called this type of result a “Torelli-type”
theorem in [14].) Let us recall two results in this direction. First one
is due to Dolgachev and Kapranov, concerning the case of a union of
generic hyperplanes.

Theorem 2.2. [14] Let m ≥ 2n + 3 and Ai = {Hi1, Hi2, . . . , Him}
(i = 1, 2) be arrangements of generic m hyperplanes Hik ⊂ Pn

C in n-
dimensional projective space. We denote the union by ∪A =

⋃
H∈AH.

If

TPn(− log(∪A1)) ∼= TPn(− log(∪A2)),

then ∪A1 = ∪A2.

For smooth divisors D ⊂ Pn defined by a homogeneous polynomial
{f(z0, . . . , zn) = 0}, Torelli-type results are related to the following
property.

Definition 2.3. The homogeneous polynomial f(z0, . . . , zn) is said to
be Thom-Sebastiani type if there exists a linear transformation A :
Cn+1 → Cn+1 such that f(A(z0, . . . , zn)) = g(z0, . . . , zk)+h(zk+1, . . . , zn)
for some 0 ≤ k ≤ n− 1.

Theorem 2.4. [42, 43]

(i) Let D1, D2 ⊂ Pn be degree d smooth divisors which are not
Thom-Sebastiani type. Then TPn(− logD1) ∼= TPn(− logD2) if
and only if D1 = D2.

(ii) Let D1, D2 ⊂ P2 be smooth cubic curves with non-zero j-invariant
j(Di) 6= 0. Then TPn(− logD1) ∼= TPn(− logD2) if and only if
D1 = D2.

2.2. Log vector fields for multiarrangements. The main theme of
this paper is logarithmic vector fields for arrangements of hyperplanes.
Freeness is one of the important properties for arrangements. Ziegler
[55] showed that a free arrangement of rank ℓ induces several free mul-
tiarrangements of rank ℓ − 1 (see §2.4). This means that freeness of
multiarrangements will be necessary for that of simple arrangements.
Recently, several results on free simple arrangements have been gener-
alized to free multiarrangements.
Let V = Cℓ be a complex vector space with coordinate (x1, · · · , xℓ),
A = {H1, . . . , Hn} be an arrangement of hyperplanes. Let us denote
by S = C[x1, . . . , xℓ] the polynomial ring and fix αi ∈ V ∗ a defining

equation of Hi, i.e., Hi = α−1
i (0). We also put Q(A,m) =

∏n
i=1 α

m(Hi)
i

and |m| =
∑

i m(Hi).
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Definition 2.5. A multiarrangement is a pair (A,m) of an arrange-
ment A with a map m : A → Z≥0, called the multiplicity.

An arrangement A can be identified with a multiarrangement with
constant multiplicity m ≡ 1, which is sometimes called a simple ar-
rangement. With this notation, the main object is the following module
of S-derivations which has contact to each hyperplane of order m.

Definition 2.6. Let (A,m) be a multiarrangement, and define

D(A,m) = {δ ∈ DerS |δαi ∈ (αi)
m(Hi), ∀i},

and

Ωp(A,m) =

{
ω ∈

1

Q
Ωp

V

∣∣∣∣ dαi ∧ ω does not have pole along Hi, ∀i

}
,

The module D(A,m) is obviously a graded S-module. A multi-
arrangement (A,m) is said to be free with exponents (e1, . . . , eℓ) if
and only if D(A,m) is an S-free module and there exists a basis
δ1, . . . , δℓ ∈ D(A,m) such that det δi = ei. Here note that the de-
gree deg δ of a derivation δ is the polynomial degree, in other words,
deg(δf) = deg δ + deg f − 1 for a homogeneous polynomial f . An
arrangement A is said to be free if (A, 1) is free.
Let δ1, . . . , δℓ ∈ D(A,m). Then δ1, · · · , δℓ form a S-basis of D(A,m)

if and only if

δ1 ∧ · · · ∧ δℓ = c ·Q(A,m) ·
∂

∂z1
∧ · · · ∧

∂

∂zℓ
,

where c ∈ C∗ is a non-zero constant (Saito’s criterion [25]). From
Saito’s criterion, we also obtain that if a multiarrangement (A,m) is

free with exponents (e1, . . . , eℓ), then |m| =
∑ℓ

i=1 ei.

The Euler vector field θE =
∑ℓ

i=1 xi∂i is always contained in D(A).
Thus it is natural to define D0(A) := D(A)/S · θE . Since D0(A) is a

graded S-module, it determines a coherent sheaf D̃0(A) on Pℓ−1. On
the other hand, an arrangement A defines a Cartier divisor ∪A =⋃
H ⊂ Pℓ−1. The logarithmic sheaf TPℓ−1(− log(∪A)) determined by

the divisor (∪A) is related to D̃0(A) by the following formula.

TPℓ−1(− log(∪A)) ∼= D̃0(A)[+1].

From the sheaf D̃(A), we can reconstruct the graded module D(A) as

global sections Γ∗(Pℓ−1, D̃(A)) :=
⊕

d∈Z Γ(P
ℓ−1, D̃(A)). More gener-

ally, we have the following.
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Proposition 2.7. Let (A,m) be a multiarrangement. Then the natural
map

Ωp(A,m) −→ Γ∗(Pℓ−1, Ω̃p(A,m))

is an isomorphism.

Proof. We prove the surjectivity. Since
⋃ℓ

i=1 Ui = Pℓ−1, where Ui =
{zi 6= 0} ⊂ Pℓ−1, is an affine open covering, any element of right hand

side ω
Q
∈ Γ∗(Pℓ−1, Ω̃p(A,m)) can be expressed as

ω

Q
=

ω1

zd11 Q
=

ω2

zd22 Q
= · · · =

ωℓ

zdℓℓ Q
,

with ωi

Q
∈ Ωp(A,m). Using the fact that S is a UFD, it is easily seen

that ω is a regular differential form. Assume that zi and αH are linearly
independent. Taking the wedge with dαH , dαH ∧

ωi

Q
does not have pole

along H . So dαH ∧
ω
Q
= dαH ∧

ωi

z
di
i Q

. Hence dαH ∧
ω
Q
∈ Ωp(A,m). �

Combining the above proposition with a sheaf theoretic property
of reflexive sheaves, we can prove that Ωp(A,m) is determined by
Ω1(A,m) in general.

Proposition 2.8. Assume that Ω1(A1, m1) ∼= Ω1(A2, m2). Then Ωp(A1, m1) ∼=
Ωp(A2, m2).

Proof. Let us denote Ep = Ω̃p(A,m). Let U := Pℓ−1\
⋃

H,H′∈A,H 6=H′(H∩

H ′) be the complement to the union of codimension ≥ 2 strata. We
denote the inclusion map i : U →֒ Pℓ−1. The restriction i∗Ep is locally
free. Hence we have i∗Ep =

∧p i∗E1. Since Ep is reflexive, hence normal,
we have Ep = i∗(i

∗(Ep)). Thus Ep = i∗(∧
pi∗(E1)). (See [17, §1] for basic

properties of reflexive sheaves.) Thus Ep is determined by E1. Then
by Proposition 2.7, we obtain the graded module Ωp(A,m) from its
sheafification. �

The following result shows that D(A) determines the characteristic
polynomial χ(A, t). Corollary 2.10 is known as Terao’s factorization
theorem.

Theorem 2.9. [35] Denote by H(Ωp(A), x) ∈ Z[[x]][x−1] the Hilbert
series of the graded module Ωp(A). Define

(3) Φ(A; x, y) =
ℓ∑

p=0

H(Ωp(A), x)yp.

Then

(4) χ(A, t) = lim
x→1

Φ(A; x, t(1− x)− 1).
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Corollary 2.10. [38] Suppose that A is a free arrangement with expo-
nents (e1, . . . , eℓ). Then

(5) χ(A, t) =
ℓ∏

i=1

(t− ei).

The notion of freeness has a geometric interpretation. It is equivalent

to a splitting D̃(A) =
⊕ℓ

i=1O(−ei) of the sheaf D̃(A). Then the
formula (5) indicates that the characteristic polynomial is related to the
Chern polynomial ct(E) = c0(E)+c1(E)t+ . . . (recall that ct(O(−e)) =
1−et) [32]. Indeed, for locally free arrangements, Mustaţǎ and Schenck
gave a beautiful formula connecting χ(A, t) and the Chern polynomial.

Theorem 2.11. [20] If D̃(A) is a locally free sheaf on Pℓ−1, then

(6) ct(D̃0(A)) = tℓ−1χ0(A, 1/t),

where χ0(A, t) = χ(A, t)/(t− 1).

Note that in the case ℓ ≤ 3, the local freeness is always satisfied.
Thus the Chern polynomial is essentially equivalent to χ(A, t) and
combinatorially computable [28].

2.3. Characterizing freeness. A vector bundle on P1 is always a
direct sum of line bundles (Grothendieck). The splitting of vector
bundles on Pn(n ≥ 2) is also a well studied subject, e.g., see [21].
There are several criterion to be split. The next result is known as
Horrocks’ criterion.

Theorem 2.12. Let E be a rank r holomorphic vector bundle on
Pn(n ≥ 2). The following conditions are equivalent.

(i) E =
⊕r

i=1OPn(di) for some d1, . . . , dr ∈ Z.
(ii) H i(Pn, E(d)) = 0 for ∀1 ≤ i ≤ n− 1 and ∀d ∈ Z.
(iii) (If n ≥ 3) ∃H ⊂ Pn a hyperplane such that the restriction splits

as E|H =
⊕r

i=1OH(di).

Yuzvinsky [52, 53, 54] developed sheaf theory on the intersection
lattice L(A) and gave a cohomological criterion for an arrangement A
to be free which is similar to Theorem 2.12 (ii). As an application he
proved that the set of free arrangements form a Zariski open subset in
the moduli space of all arrangements having the fixed combinatorial
type.
Here we describe a criterion similar to Theorem 2.12 (iii). We begin

with recalling Ziegler’s restriction [55].
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Choose a hyperplane H ∈ A and coordinate (z1, . . . , zℓ) such that
H = {zℓ = 0}. Define a submodule DH

0 (A) of D(A) as follows:

DH
0 (A) := {δ ∈ D(A) | δzℓ = 0}.

Lemma 2.13. D(A) = S · θE ⊕D
H
0 (A).

Proof. Let δ ∈ D(A). The assertion is obvious from δ =
(

δzℓ
zℓ

)
θE +

(
δ − δzℓ

zℓ
θE

)
. �

The arrangement A determines the restricted arrangement AH =
{H ∩ H ′ | H ′ ∈ A, H ′ 6= H} on H . The restricted arrangement AH

possesses a natural multiplicity

mH : AH −→ Z
X 7−→ ♯{H ′ ∈ A | X = H ∩H ′}.

Ziegler [55] proved that the freeness of A implies that of (AH , mH).

Theorem 2.14. [55]

(1) If δ ∈ DH
0 (A), then δ|zℓ=0 ∈ D(AH , mH).

(2) If A is free with exponents (1, e2, . . . , eℓ), then (AH, mH) is free
with exponents (e2, . . . , eℓ).

Corollary 2.15. A is free with exponents (1, e2, . . . , eℓ) if and only if
the following are satisfied.

• (AH , mH) is free with exponents (e2, . . . , eℓ).
• The restriction induces the surjection DH

0 (A) −→ D(AH, mH).

Using Corollary 2.15, we can establish a Horrocks’ type criterion for
freeness. Namely, we will characterize freeness by using the freeness
of the restriction D(AH, mH). We first consider the case ℓ = 3. By
analyzing the Hilbert series of these graded modules using the restric-
tion map and Solomon-Terao’s formula (Theorem 2.9), we have the
following.

Theorem 2.16. [51] If ℓ = 3, then the cokernel of the restriction
map is finite dimensional. Furthermore, suppose that exp(AH , mH) =
(e1, e2), then

dimC Coker = b3(C3\
⋃

i

Hi)− e1e2.

Corollary 2.17. [51] Suppose ℓ = 3. Then the following conditions
are equivalent.

• A is free with exponents (1, e2, e3).
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• χ(A, t) = (t − 1)(t − e2)(t − e3) and there exists H ∈ A such
that exp(AH , mH) = (e2, e3).

Remark 2.18. Recently a higher dimensional version of Corollary 2.17
has been obtained by Schulze [31].

The characterization in the case ℓ ≥ 4 is the following.

Theorem 2.19. [50] Suppose ℓ ≥ 4. Then an arrangement A is free
with exponents (1, e2, . . . , eℓ) if and only if there exists H ∈ A such that

(a) (AH , mH) is free with exponents (e2, . . . , eℓ), and
(b) the localization Ax = {H ∈ A | x ∈ H} is free for any x ∈

H \ {0}.

2.4. Freeness for multiarrangements. The notion of multiarrange-
ment is a natural generalization of simple arrangement. For a 2-
dimensional simple arrangement A, it is easy to construct explicit basis
of D(A). However, for the case of multiarrangements, describing an
explicit basis for D(A,m) is difficult even for ℓ = 2. Wakamiko [44]
gave an explicit basis for D(A,m) with ℓ = 2, |A| = 3. Wakefield
and Yuzvinsky [46] computed the exponents for ℓ = 2 and generic

A. Both results show that the exponents tend to (⌊ |m|
2
⌋, ⌈ |m|

2
⌉), where

|m| =
∑

H∈Am(H).

Remark 2.20. The above mentioned results remind the author results
of Dolgachev and Kapranov (cf. §2.1) and Schenck [29] on stability of
TPn(− log(∪A)). It seems natural to ask whether for generic A with

ℓ = 3, D̃(A,m) is a stable rank 3 vector bundle on P2.

Recently several results on D(A) has been generalized to multiar-
rangements. Abe, Terao andWakefield [3] proved that Solomon-Terao’s
formula (4) (and (3)) gives a polynomial χ((A,m), t) for any multiar-
rangement (A,m). The polynomial χ((A,m), t) is called the charac-
teristic polynomial of a multiarrangement (A,m), which is a basic tool
for proving non-freeness for multiarrangements.
Another important result on free multiarrangements is the Addition-

Deletion Theorem [4]. Let (A,m) be a multiarrangement. Choose a
hyperplane H0 ∈ A with m(H0) > 0. One can associate two multiar-
rangements to (A,m, H0) as follows.

• The deletion (A′, m′): A′ = A and the multiplicity m′ : A′ →
Z≥0 is defined by

m′(H) =

{
m(H) if H 6= H0,
m(H)− 1 if H = H0.
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• The restriction (A′′,m∗): A′′ = {H ∩ H0 | H ∈ A, H 6= H0}.
Let X ∈ A′′. Then X has codimension two. Thus the multi-
arrangement AX = {H ∈ A | H ⊃ X} with the multiplicity
m|AX

is free. We can choose the basis θX , ψX , ∂3, . . . , ∂ℓ with
θX /∈ αH0

· DerS and ψX ∈ αH0
· DerS. Define the multiplicity

m∗ : A′′ → Z≥0 by m∗(X) = deg θX .

The following theorem generalizes the classical Addition-Deletion the-
orem [37] to multiarrangements.

Theorem 2.21. [4] With the notations above, any two of the following
statements imply the third:

(i) (A,m) is free with exponents (d1, . . . , dℓ).
(ii) (A′,m′) is free with exponents (d1, . . . , dℓ − 1).
(iii) (A′′,m∗) is free with exponents (d1, . . . , dℓ−1).

Using Theorem 2.21, one can construct a lot of free multiarrange-
ments inductively.

2.5. Free arrangements and intersection of plane curves. In this
section we consider a 3-dimensional free arrangement A with exponents
(1, e1, e2). Choose H0 ∈ A. Then the deconing dH0

A is an affine line
arrangement in C2. Freeness of A imposes strong conditions on the
positions of intersections L2(A) := {L ∩ L

′ ∈ C2 | L, L′ ∈ dH0
A, L 6=

L′} and their multiplicities. Let µ(p) := ♯{L ∈ dH0
A | L ∋ p} − 1.

Theorem 2.22. Assume that A is free. With notation as above, there
exist plane curves C1, C2 ⊂ C2 with degrees e1 and e2 respectively such
that C1 ∩ C2 = L2(A) and the intersection multiplicity is

multp(C1, C2) = µ(p).

Remark 2.23. If A is a fiber-type arrangement, we can find easily
such C1 and C2 as union of lines.

Proof. Choose coordinates (z0, z1, z2) so that H0 = {z0 = 0}. We
can choose a basis θE , δ1, δ2 ∈ D(A) such that δ1z0 = δ2z0 = 0 (see
Lemma 2.13). Let α = a1z1 + a2z2 be a linear form such that the line
{α = 0} ⊂ C2 is not parallel to any line L ∈ dH0

A. By definition
δiα ∈ C[z1, z2] is a polynomial of degree ei. Note that

δiα = 0 at p ∈ C2 ⇐⇒

{
δi(p) = 0 or
δi(p) is parallel to {α = 0}.

If p /∈
⋃

L∈dH0
A L, δ1(p) and δ2(p) are linearly independent. If p ∈ L and

p /∈ L2(A), δ1(p) and δ2(p) spans the tangent space TpL. In any case,
either δ1(p)α 6= 0 or δ2(p)α 6= 0. Hence δ1(p)α = δ2(p)α = 0 precisely
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when p ∈ L2(dH0
A). Fix p ∈ L2(A) and choose the coordinate (z1, z2)

such that p = (0, 0) and {z1 = 0} ∈ dH0
A. Let Q be the product of

defining equations which contain p. Then

η1 = z1∂z1 + z2∂z2 and η2 =
Q

z1
∂z2

form a basis of D(dH0
Ap). It is easily seen that multp(η1α, η2α) =

dimC[[z1, z2]]/(η1α, η2α) = µ(p). Germs of δi at p is expressed as
δi = fi1η1 + fi2η2 with det = f11f22 − f12f21 is contained in the unit
C[[z1, z2]]×. Thus intersection multiplicity is

multp(C1, C2) = dimC[[z1, z2]]/(δ1α, δ2α) = µ(p).

�

Remark 2.24. Although there exists a free arrangement which has
non-vanishing homotopy group π2(M(A)), [16], it is challenging to see
the homotopy types of free arrangements.

2.6. An example of a non-free arrangement. Factorization of the
characteristic polynomial (Corollary 2.10) is a necessary combinatorial
condition for an arrangement to be free. However the converse is not
true. Indeed, there are non-free arrangements which have factored
characteristic polynomials.

Example 2.25. (Stanley’s example [23]) Let A = {H0, H1, . . . , H6} be
an arrangement of 7 planes in R3 defined as Figure 1 (real lines). The
characteristic polynomial is χ(A, t) = (t−1)(t−3)2. However A is not
free. We shall give three proofs.

�
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�
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�
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�
�

A
A

A
A

A
A

A
A

A
A

A
A

A

@
@

@
@

@
@

@
@

@
@

@
@

@H2 H3 H4 H5 H6

@

H1

H0

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

K

Figure 1. A = {H0, . . . , H6}

First note that by 2.10, if A is free, then the exponents should be
(1, 3, 3).
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(1) Consider another hyperplane K (dotted line). The extended
arrangement A ∪ {K} is of fiber-type and hence free with exponents
(1, 2, 5) (also easily proved by using Addition-Deletion Theorem 2.21).
Hence D(A∪{K}) has degree 2 element δ which is linearly independent
from the Euler vector field θE . By definition, δ ∈ D(A). However this
contradicts the fact that D(A) does not have a basis element of degree
≤ 2 other than θE .
(2) Consider the restriction to H0. Then (AH0, mH0) is free with

exponents (1, 5). From Corollary 2.17, A is not free.
(3) Consider the deconing dH0

A with respect to H0. If A is free,
then by Theorem 2.22, the intersections satisfy L(dH0

A) = C1 ∩ C2,
where Ci is a cubic curve. We may assume that C1 does not have H1

as a component. Then H1∩C1 consists of five points. This contradicts
Bezout theorem.

3. Coxeter multiarrangements

Coxeter multiarrangements are a well-studied class of multiarrange-
ments. Using the notion of primitive derivation, we can construct a
basis for several Coxeter multiarrangements. Here we give a brief re-
view.
The importance of the primitive derivation was first realized by K.

Saito [27] in the context of singularity theory. K. Saito’s theory of prim-
itive forms reveals that the parameter space B of semi-universal defor-
mation X → B of an isolated singularity 0 ∈ X0 possesses rich geo-
metric structures [26, 19]. On the other hand, Grothendieck-Brieskorn-
Slodowy’s theory [11] shows that for simple singularities, the semi-
universal family can be described in terms of Lie theory. In particular,
the parameter space B can be canonically identified with the Weyl
group quotient h/W of an ADE-type Cartan subalgebra h (see also
§4.1). In [27], Saito describes the flat structure for any finite reflection
group W y V in purely invariant theoretic way by using the primi-
tive derivation. Later Terao [40, 41] pulled back the theory to V via
the natural projection π : V → V/W and proved freeness of Coxeter
multiarrangements with constant multiplicity.
In this section, we will describe the structure of D(A,m) for a Cox-

eter arrangement A based on [40, 41, 49, 6].
Let V be an ℓ-dimensional Euclidean space over R with inner product

I : V × V → R. Fix a coordinate (x1, · · · , xℓ) and put S = S(V ∗) ⊗R

C = C[x1, . . . , xℓ]. Let W ⊂ O(V, I) be a finite irreducible reflection
group with the Coxeter number h. Let A be the corresponding Coxeter
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arrangement, i.e., the collection of all reflecting hyperplanes of W . Fix
a defining linear form αH ∈ V

∗ for each hyperplane H ∈ A.
It is proved by Chevalley [13] that the invariant ring SW is a poly-

nomial ring SW = C[P1, . . . , Pℓ] with P1, . . . , Pℓ are homogeneous gen-
erators. Suppose that degP1 ≤ · · · ≤ deg Pℓ. Then it is known that
degP1 = 2 < deg P2 ≤ · · · ≤ degPℓ−1 < deg Pℓ = h. Note that we may
choose P1(x) = I(x, x). Then ∂

∂Pi
(i = 1, . . . , ℓ) can be considered as a

rational vector field on V with order one poles along H ∈ A. Indeed
by using the fact

∆ := det

(
∂Pi

∂xj

)

i,j=1,...,ℓ

.
=
∏

H∈A

αH ,

we may define the action of the differential operator ∂
∂Pi

to f ∈ S by

∂f

∂Pi
=

1

∆
det




∂P1

∂x1
. . . ∂f

∂x1
. . . ∂Pℓ

∂x1
∂P1

∂x2
. . . ∂f

∂x2
. . . ∂Pℓ

∂x2

...
. . .

...
. . .

...
∂P1

∂xℓ
. . . ∂f

∂xℓ
. . . ∂Pℓ

∂xℓ




Obviously, we have ∂Pi

∂Pi
= 1 and

∂Pj

∂Pi
= 0 for i 6= j.

Definition 3.1. We denote D = ∂
∂Pℓ

and call it the primitive deriva-
tion.

Since degPi < degPℓ for i ≤ ℓ − 1, the primitive derivation D is
uniquely determined up to nonzero constant multiple independent of
the choice of the generators P1, . . . , Pℓ.
Next we define the affine connection ∇.

Definition 3.2. For a given rational vector field δ =
∑ℓ

i=1 fi
∂
∂xi

and a

rational differential k-form ω =
∑

i1,...,ik
gi1,...,ikdxi1,...,ik (where dxi1,...,ik =

dxi1 ∧ · · · ∧ dxik), define ∇δω by

∇δω =
∑

i1,...,ik

δ(gi1,...,ik)dxi1,...,ik .

Let m : A −→ {0, 1} be a map. The differentiation ∇D by the
primitive derivation changes the degree by h. This action connects
D(A,m) with D(A, 2k +m) and Ω1(A, 2k −m).

Theorem 3.3. Fix notation as above, and let k be a positive integer.

(1) The map

Φk : D(A,m)(kh) −→ Ω1(A, 2k −m)

δ 7−→ ∇δ∇
k
DdP1
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gives an S-isomorphism of graded modules.
(2) The map

Ψk : D(A,m)(−kh) −→ D(A, 2k +m)

δ 7−→ ∇δ∇
−k
D E

gives an S-isomorphism of graded modules.

Corollary 3.4. For a {0, 1}-valued multiplicity m : A → {0, 1} and
an integer k > 0, the following conditions are equivalent.

• (A,m) is free with exponents (e1, . . . , eℓ).
• (A, 2k +m) is free with exponents (kh + e1, . . . , kh+ eℓ).
• (A, 2k −m) is free with exponents (kh− e1, . . . , kh− eℓ).

If m ≡ 0, then (A,m) is free with exponents (0, . . . , 0). Hence
(A, 2k) is free with exponents (kh, kh, . . . , kh). If m ≡ 1, then (A,m)
is free with exponents (e1, . . . , eℓ), where ei = deg Pi − 1 (by [25, 27]).
Hence (A, 2k + 1) is free with exponents (e1 + kh, . . . , eℓ + kh). In
particular, Coxeter multiarrangements with constant multiplicities are
free [40].
The primitive derivation acts on W -invariant forms. The following

will be used in the next section.

Theorem 3.5. [41] With notation as above, the set of W -invariant
derivations D(A, 2k+1)W is a free SW -module. Furthermore, if k > 0,

∇ ∂
∂Pi

D(A, 2k+1)W ⊂ D(A, 2k−1)W ,∇ ∂
∂Pℓ

D(A, 2k+1)W = D(A, 2k−1)W .

Remark 3.6. Recently Theorem 3.3 and Corollary 3.4 are generalized
for m : A −→ {−1, 0,+1} by Abe [1].

4. Applications of freeness of D(A,m)

In this section we will describe two applications of freeness ofD(A,m).

4.1. Relative de Rham cohomology of adjoint quotient maps.

Let g be a simple Lie algebra of type ADE over C. The categorical
quotient map χ : g → B := g//G of the adjoint group action on g

is called the adjoint quotient map. The purpose of this section is to
investigate the OB-module structure of the relative de Rham cohomol-
ogy H2(Ω•

χ) (see below the definition of Ω•
χ) of χ : g → B through an

action of vector fields DerB on B (the Gauß-Manin connection).
The study of the relative de Rham cohomology for an affine mor-

phism goes back to E. Brieskorn [10] who proved the coherence of rel-
ative de Rham cohomology for any polynomial map f : Cn → C with
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isolated critical point 0 ∈ Cn (and M. Sebastiani proved OC-freeness of
rank µ, where µ is the Milnor number of f). Further, K. Saito proved
the freeness for the semi-universal deformation F : X → B := Cµ of an
isolated hypersurface singularity defined by f . More precisely, he gave
an isomorphism between a certain submodule of vector fields DerB on
B and Hn(Ω•

X/B). The isomorphism is given by the following corre-
spondence, we first fix a special cohomology class ζ called a primitive
form, then for given vector field δ ∈ DerB take a lift up δ̃ ∈ DerX of
the vector field on the total space X , and differentiate ζ by δ̃, we have
a new cohomology class Lδ̃ζ , where L is the Lie derivative. On the
other hand, the semi-universal deformation of a simple singularity is
constructed by using the adjoint quotient map χ of type ADE [11, 33].
Indeed, if we restrict the map χ to a certain affine subspace X ⊂ g,
we have the semi-universal deformation of a simple singularity. In this
case H. Yamada [48] showed that the restriction of the Kostant-Kirillov
form ζ to X becomes the primitive form which generates the relative
de Rham cohomology H2(Ω•

X/B) by differentiation by means of vector
fields δ ∈ DerB.
Let us introduce some notation. Let g a simple Lie algebra over C

(later we will restrict g to ADE-type). Let g = h⊕
⊕

α∈Φ gα, (Φ ⊂ h∗)
a Cartan decomposition with respect to a Cartan algebra h with ℓ =
dim h, G the adjoint group of g and T the maximal torus of G with Lie
algebra h. We denote by W the Weyl group NG(T )/T . The classical
Chevalley’s restriction theorem states that the restriction ρ : C[g] →
C[h] of polynomial functions induces an isomorphism

(7) C[g]G
∼=
−→ C[h]W

of algebras of invariants. We also denote C[h] = S and SW = C[P1, . . . , Pℓ]
as in §3. The categorical quotient of the adjoint action is B = g//G ∼=
h//W ∼= SpecSW . We call the quotient map χ : g → B the adjoint
quotient map as mentioned above. The construction is summarized in
the following diagram.
(8)

g C[g]
↓ ↑

V = h
π
−→ h/W = B = g//G , S ←֓ SW = C[B] = C[g]G.

Definition 4.1. Define the relative de Rham complex Ω•
χ for the adjoint

quotient map χ : g→ B by

Ω•
χ =

Ω•
g

χ∗Ω1
B ∧ Ω•−1

g

=
Ω•

g∑ℓ
i=1 dPi ∧ Ω•−1

g

.
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By the formula d(P ·ω) = dP ∧ω+P ·dω, the differential dχ : Ω•
χ →

Ω•+1
χ is a SW -module homomorphism. Hence the cohomology group

Hk(Ω•
χ) possesses S

W -module structure.
Let D ⊂ B be the set of critical points of the quotient map π : h→

B. It is proved in [25] that π induces an isomorphism

D(A)W
∼=
−→ DerB(− logD).

Thus for δ ∈ D(A)W , we may differentiate the Kostant-Kirillov form
ζ by δ and obtain a relative 2-form ∇δζ (which has poles along D in
general).
After Yamada’s result, it was naturally conjectured that H2(Ω•

χ) is

a free SW -module of rank ℓ.

Theorem 4.2. Let g a simple Lie algebra of type ADE, with a Cartan
subalgebra h and the Weyl group W . Let A be the corresponding Weyl
arrangement on h. The map D(A)W ∋ δ 7−→ ∇δζ induces a natural
isomorphism

H2(Ω•
χ)
∼= D(A, 5)W ,

of SW -modules.

The rest of this section is devoted to a proof of this theorem.
We first recall a result due to J. Vey [47], which is an analogue of

Weyl’s unitary trick.

Theorem 4.3. Let G be a connected reductive algebraic group over
C with a linear action on a finite dimensional C-vector space E. Let
Ω•

E be the de Rham complex of holomorphic differential forms on E
and I• the ideal of Ω• generated by differentials df1, df2, · · · , dfr, where
f1, f2, · · · , fr are G-invariant homogeneous polynomials on E. Then
the morphism

(Ω•)G/(I•)G → Ω•/I•

is a quasi-isomorphism.

By this, we can compute cohomology of Ω•
χ by using the complex

ΩG,•
g /(

∑
i dPi ∧ Ω•−1

g )G of G-invariant relative forms. Next we shall

describe ΩG,•
g .

Broer [12] considered a generalization of Chevalley’s restriction the-
orem (7) in the following setting. Let M be a finite dimensional G-
module and Mor(g,M) (resp. MorG(g,M)) the space of polynomial
(resp. G-equivariant polynomial) morphisms of g into M . It is iso-
morphic to C[g] ⊗M (resp. (C[g] ⊗M)G). For any G-module M the
restriction map ρ induces a homomorphism

ρM : MorG(g,M) −→ MorW (h,MT ).
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Since the union of all Cartan subalgebras is Zariski dense in g, ρM is
injective for all M . If M = C is a trivial G-module, ρM is bijective
because of Chevalley’s theorem. However it is not necessarily bijective
in general. Broer [12] proved that

Theorem 4.4. Let M be a G-module. Restriction induces an isomor-
phism

ρM : MorG (g,M)
∼=
−→ MorW

(
h,MT

)

if and only if the weights 2α (α ∈ Φ is a root of g) do not occur as
T -weights inM . (We shall callM small if it satisfies this assumption.)

We need this theorem to describe the set of G-invariant differential
forms Ω•,G

g on g below. By definition the set of all differential p-forms

on g is Ωp
g = C[g]⊗

p
∧ g∗. Thus we apply Theorem 4.4 for M =

p
∧ g∗.

If p = 1, since g ∼= g∗ by Killing form, the T -weights of g∗ are nothing
but the roots of g, so g∗ is small. Thus we have an isomorphism

ρ1 : Ω
1,G
g
∼= (C[h]⊗ h∗)W ∼= Ω1,W

h .

It follows from a result of Solomon [34] that

(9) π∗ : Ωp
B

∼=
−→ Ωp,W

h .

Thus we conclude that G-invariant 1-forms Ω1,G
g on g are nothing but

pull back χ∗Ω1
B of 1-forms on B. In particular, Ω1,G

χ = 0, we have

(10) H2(Ω•,G
χ ) ∼= Ker(dχ : Ω2,G

χ → Ω3,G
χ ).

From the classification of simple root systems, it is easily seen that

M =
2
∧ g∗ is small if and only if g is of type ADE, since the set of

weights of
2
∧ g∗ is

{0} ∪ Φ ∪ {α+ β|α, β ∈ Φ, α 6= β}.

Furthermore, (
2
∧ g∗)T ∼=

2
∧ h∗⊗(

2
∧ h⊥)T is a direct sum decomposition

of W -submodules. From (9), we obtain,

Proposition 4.5. Let g be a simple Lie algebra of type ADE. Then

(11) Ω2,G
g
∼= χ∗Ω2

B ⊕ Ω2,G
χ .

(12) ρ2 : Ω
2,G
χ

∼=
−→

(
C[h]⊗ (

2
∧ h⊥)T

)W

.

By Proposition 4.5, we can identify G-invariant relative 2-forms Ω2,G
χ

with the submodule (C[h] ⊗ (
2
∧ h⊥)T )W of Ω2,G

g . Now we define two

submodules Hχ ⊂ H
′
χ ⊂ Ω2,G

g which are related to H2(Ω•
χ).
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Definition 4.6.

(13) Hχ := {ω ∈ Ω2,G
χ | dgω ∈

∑

i

dPi ∧ Ω2,G
g },

(14) H′
χ := {ω ∈ Ω2,G

χ | dgω ∧ dP1 ∧ · · · ∧ dPℓ = 0 in Ω3+ℓ
g },

where C[g]G = C[P1, · · · , Pℓ].

By (10) and definition above,

(15) Hχ
∼= H2(Ω•,G

χ )

and obviously Hχ ⊂ H
′
χ. Later it will be proved that Hχ $ H′

χ.
Let eα ∈ gα (α ∈ Φ) be non-zero root vectors such that I([eα, e−α], h) =

α(h) (for all α ∈ Φ, h ∈ h), where I(•, •) is the Killing form, and

e∗α ∈ g∗α be the dual basis. Then each element of (C[h] ⊗ (
2
∧ h⊥)T )W

can be expressed in the form

ω =
∑

α∈Φ+

fα · e
∗
α ∧ e

∗
−α ∈

(
C[h∗]⊗ (

2
∧ h⊥)T

)W

.

Since ω is W -invariant, if we apply the simple reflection sα ∈ W with
respect to a root α ∈ Φ+, to ω we have sαfα = −fα. Hence fα is
divisible by α.
Next let us recall the definition of the Kostant-Kirillov form. The

Kostant-Kirillov form ζ is a symplectic form on the (co)adjoint orbit
G · x ⊂ g of x ∈ g. Let Y, Z ∈ g. Then [Y, x] = d

dt

∣∣
t=0

ad(etX)x ∈
Tx(G · x). For two tangent vectors [Y, x], [Z, x] ∈ Tx(G · x), the 2-form
ζ is given by the formula

ζ([Y, x], [Z, x]) = I(x, [Y, Z]),

where [Y, Z] is the bracket in g.

Proposition 4.7. By restricting the Kostant-Kirillov form ζ to h, we
have the following expression

(16) ρ2(ζ) = −
∑

α∈Φ+

e∗α ∧ e
∗
−α

α
.

Proof. Let h ∈ h \
⋃
Hα. We compute ζ([eα, h], [eβ, h]) in two ways.

First, using the property [h, eα] = α(h)eα, we have ζ([eα, h], [eβ, h]) =
α(h)β(h)ζ(eα, eβ). On the other hand, using the definition of ζ , we
have ζ([eα, h], [eβ, h]) = I(h, [eα, eβ]). Note that it is non-zero only if
β = −α, and in this case, we have I(h, [eα, e−α]) = α(h). Hence we
have ζ(eα, e−α) =

−1
α(h)

, which implies (16). �
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The generic fiber of χ : g → B is isomorphic to G/T , which is
homotopy equivalent to the flag manifold of G. We recall the Borel-
Hirzebruch description of the de Rham cohomology of G/T in degree 2
[9]. A G-invariant differential form on G/T can be seen as a G-invariant

section of the vector bundle
•
∧ T ∗(G/T ). Hence the evaluation at the

base point [T ] ∈ G/T induces an isomorphism

(17) λ : Ω•,G
G/T

∼=
−→

(
•
∧ T ∗

[T ](G/T )
)T
∼=
(

•
∧ h⊥

)T
.

For degree 2, the above map induces the isomorphism Ω•,G
G/T
∼= (∧2h⊥)T =⊕

α∈Φ+(gα⊕g−α). Using the map λ, we can show thatH2(G/T,C) ∼= h.

Theorem 4.8. [9]

ω : h −→ Ω2,G
(G/T )

h 7−→
∑
α∈Φ

α(h) · λ−1(e∗α ∧ e
∗
−α)

induces an isomorphism of C-vector spaces h
∼=
−→ H2(G/T,C). In

particular, ω(h) is closed,

(18)
∑

α∈Φ

α(h) · dλ−1(e∗α ∧ e
∗
−α) = 0.

Next we consider the relative de Rham cohomology for the projection

pr : h×G/T → h.

We may consider G acts on each fiber of pr from the left. Since Ω2
pr
∼=

C[h]⊗Ω2
G/T , the set of G-invariant relative 2-forms Ω2

pr is described by
the following isomorphism

(19) 1⊗ λ : Ω2
pr

∼=
−→ C[h]⊗ (

2
∧ h⊥)T .

By definition and Theorem 4.8,

H2(Ω•
pr)
∼= C[h]⊗H2(Ω•

(G/T ))
∼= C[h]⊗ h ∼= Derh .

The isomorphism is given by

Theorem 4.9.

(20)

1⊗ ω : Derh −→ C[h]⊗ Ω2,G
(G/T )

∼= Ω2,G
pr

δ 7−→ (1⊗ ω)δ =
∑
α∈Φ

(δα) · λ−1(e∗α ∧ e
∗
−α)

induces a C[h]-module isomorphism Derh ∼= H2(Ω•
pr), where δα is the

differentiation of a function α by a vector field δ.
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We define a submodule Hpr ⊂ Ω2,G
(G/T )×h

as

Hpr :=

{∑

α∈Φ

(δα) · λ−1(e∗α ∧ e
∗
−α) ∈ Ω2,G

(G/T )×h

∣∣∣∣∣ δ ∈ Derh

}
.

From the decomposition Ω2,G
(G/T )×h

=
⊕

i+j=2

Ωi,G
G/T ∧ Ωj

h and Ω2,G
pr
∼=

C[h]⊗ Ω2,G
G/T , we may consider

(21) Ω2,G
(G/T )×h

⊃ Ω2,G
pr ⊃ Hpr

(
∼= H2(Ω•

pr)
)
.

Let x1, · · · , xℓ be a coordinate system of h, then Hpr has another ex-
pression as in (14):

(22) Hpr =
{
ω ∈ Ω2,G

pr

∣∣ dω ∧ dx1 ∧ · · · ∧ dxℓ = 0 in Ω3+ℓ,G
(G/T×h)

}
.

To study the relative de Rham cohomology of χ : g→ B, we consider
the following diagram

(23)
(G/T )× h

π̃
−→ g

pr ↓ ↓ χ

h
π
−→ B




(g[T ], h) 7−→ ad(g)h
↓ ↓
h 7−→ h


 .

More precisely, from diagram (23), there is a natural homomorphism

π̃∗ : H2
(
Ω•

χ

)
→֒ H2

(
Ω•

pr

)
,

which is injective because we have realized these cohomology groups
as subspaces of absolute differential forms (see (15) and (21)). We
consider the image of H2(Ω•

χ) in H2(Ω•
pr)
∼= Derh. Note that if we

define a W action on G/T × h by

w · (g[T ], h) = (gn−1
w , ad(nw)h),

where nw ∈ NG(T ) is a representative of w ∈ W = NG(T )/T , then
obviously π̃ is a W -invariant map and the pull back of differential form
(resp. relative cohomology class) on g by π̃ becomes a W -invariant
differential form (resp. W -invariant cohomology class).

(24) π̃∗Hχ ⊂ H
W
pr .

Now recall two expressions of relative 2-forms (12) in Proposition 4.5
and (19), we have a diagram:
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(25)

Ω2,G
χ

π̃∗

→֒ Ω2,G×W
pr ⊂ Ω2,G

pr

ρ2 ↓ ≀ 1⊗ λ ↓ ≀ ↓ ≀(
C[h∗]⊗ (

2
∧ h⊥)T

)W
(1⊗λ)◦π̃∗◦ρ−1

2−→

(
C[h∗]⊗ (

2
∧ h⊥)T

)W

⊂ C[h∗]⊗ (
2
∧ h⊥)T .

We compute the map (1⊗ λ) ◦ π̃∗ ◦ ρ−1
2 .

Lemma 4.10. The map (1 ⊗ λ) ◦ π̃∗ ◦ ρ−1
2 :

(
C[h∗]⊗ (

2
∧ h⊥)T

)W

→

(
C[h∗]⊗ (

2
∧ h⊥)T

)W

can be expressed as

∑

α∈Φ+

αfα · e
∗
α ∧ e

∗
−α 7−→ −

∑

α∈Φ+

α3fα · e
∗
α ∧ e

∗
−α.

Proof. The derivation of π̃ is given by

(dπ̃)([T ],h) : T([T ],h)(G/T × h) −→ Thg
||≀ ||≀

g/h⊕ h g

(X̄1, X2) 7−→ [X1, h] +X2.

Indeed

(dπ̃)([T ],h)(X̄1, X2) =
d

dt

∣∣∣∣
t=0

ad(exp(tX1))(h+ tX2) = [X1, h] +X2,

In particular g/h⊕ h ∋ (ēα, 0) 7−→ −α(h)eα ∈ gα. Hence we have

π̃∗(e∗α) = −α(h)e
∗
α , π̃

∗(e∗−α) = α(h)e∗−α.

�

Example 4.11. From Proposition 4.7 and the preceding lemma, the
pull back of the Kostant-Kirillov form ζ is

π̃∗(ζ) =
∑

α∈Φ+

α · λ−1(e∗α ∧ e
∗
−α)

Using the Euler vector field θE :=
∑ℓ

i=1 xi
∂
∂xi

, it is expressed as π̃∗(ζ) =

(1⊗ ω)(θE).

As a corollary of Lemma 4.10, we can characterize the image of the
map π̃∗ : Ω2,G

χ → Ω2,G×W
pr .
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Corollary 4.12.

(1⊗λ)◦π̃∗(Ω2,G
χ ) =

{ ∑

α∈Φ+

Fα · e
∗
α ∧ e

∗
−α

∣∣∣∣∣ Fα can be divisible by α3

}W

.

Proof. If
∑

α∈Φ+ Fα · e
∗
α ∧ e

∗
−α is contained in the left hand side above,

Fα have to be divisible by α3 from the preceding lemma. Conversely,
if Fα is divisible by α3 for all α ∈ Φ+, it is the image of

ρ−1
2

(∑

α∈Φ+

Fα

α2
· e∗α ∧ e

∗
−α

)
∈ Ω2,G

χ .

�

Here it is possible to characterize the image of π̃∗. We have a diagram
deduced from (25),

(26)
Hχ ⊂ H

′
χ

π̃∗

→֒ HW
pr ⊂ Hpr

(1⊗ ω)−1 ↓ ≀ ↓ ≀
DerWh ⊂ Derh .

Combining (20) and Corollary 4.12, we have

Theorem 4.13. (1⊗ ω)−1 ◦ π̃∗ induces an isomorphism

H′
χ
∼= D(A, 3)W .

Proof. For any δ ∈ DerWh , since

d ((1⊗ ω)δ) ∧ dP1 ∧ · · · ∧ dPℓ = Q · d ((1⊗ ω)δ) ∧ dx1 ∧ · · · ∧ dxℓ

= 0,

(1⊗ ω)δ ∈ π̃∗H′
χ if and only if δα is divisible by α3 for all α ∈ Φ+. �

Now we are in a position to prove our main result.

Theorem 4.14. (1⊗ ω)−1 ◦ π̃∗ induces an isomorphism

Hχ
∼= D(A, 5)W .

Hence H2(Ω•
χ) is a free C[B]-module of rank ℓ.

Proof. Suppose η ∈ Hχ and put π̃∗η =
∑

α∈Φ(δα) · λ
−1(e∗α ∧ e

∗
−α) for

δ ∈ D(A, 3)W , then by definition there exist η1, · · · , ηℓ ∈ Ω2,G
g such

that

dη =

ℓ∑

i=1

dPi ∧ ηi.
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Applying the operator d and multiplying by dP1∧ · · · ∧ d̂Pi ∧ · · · ∧ dPℓ,

dP1 ∧ · · · ∧ dPi ∧ · · · ∧ dPℓ ∧ dηi = 0.

Hence ηi ∈ H
′
χ for all i = 1, · · · , ℓ and π̃∗ηi =

∑
α∈Φ(δiα) ·λ

−1(e∗α∧e
∗
−α)

for some δi ∈ D(A, 3)W . Using (18), we have

dπ̃∗η =
∑

α∈Φ

d(δα) ∧ λ−1(e∗α ∧ e
∗
−α)

=
∑

α∈Φ

∑

i

∂

∂Pi

(δα)dPi ∧ λ
−1(e∗α ∧ e

∗
−α)

=
∑

α∈Φ

∑

i

(
(∇ ∂

∂Pi

δ)α
)
dPi ∧ λ

−1(e∗α ∧ e
∗
−α),

and δi = ∇ ∂
∂Pi

δ. By Theorem 3.5, η ∈ Hχ if and only if δ ∈ D(A, 5)W .

�

4.2. Freeness of An-Catalan arrangements. As another applica-
tion, we prove that Catalan arrangements of type A are free.
Let (x1, . . . , xn, z) be a coordinate of Cn+1. (The cone of) Catalan

arrangement Catn is defined by

z ×
∏

1≤i<j≤n

((xi − xj)(xi − xj − z)(xi − xj + z)) = 0.

The terminology “Catalan arrangement” comes from the fact that the
number of chambers divided by 2n! is equal to n-th Catalan number.
See [7] for more combinatorial aspects of Catn. (Note that the definition
of Catn in this article is the coning of that of [7].)

Theorem 4.15. The Catalan arrangement Catn is free with exponents
(0, 1, n+ 1, n+ 2, . . . , 2n− 1).

Remark 4.16. This result was first proved by Edelman and Reiner
[15] using Addition-Deletion Theorem 2.21. It can be also proved by
using the freeness of D(A, 3) and Theorem 2.19. We give another
proof which is also based on the freeness of D(A, 3). However, instead
of using Theorem 2.19, we will directly show the existence of basis of
D(Catn) by invariant theoretic arguments.

Lemma 4.17. For non-negative integers p, i ≥ 0, define a symmetric

polynomial Fp,i(x1, x2) of two variables by Fp,i :=
xp+1

1
−xp+1

2

x1−x2
· (x1−x2)

2i.
Then

C[x1, x2]S2 =
⊕

p,i≥0

C · Fp,i.
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Proof. Let F (x1, x2) be a homogeneous symmetric polynomial. We will
prove F is expressed a linear combination {Fp,i} by induction on deg F .
If deg F = 1, then F = x1 + x2 = F1,0. Consider the case deg F ≥ 2. If
F (x, x) = 0, then we have F = (x1−x2)

2 ·G(x1, x2) with G symmetric.
Thus by inductive hypothesis, G is a linear combination of {Fp,i}, and
so is F . Suppose F (x, x) = axn 6= 0. Consider G(x1, x2) = F− a

n+1
Fn,0.

Then G(x, x) = 0, and is reduced to the previous case. Thus C[x1, x2]S2

is spanned by {Fp,i}. By computing the Hilbert series, we have (note
that degFp,i = p+ 2i)

H(C[x1, x2]S2, t) =
1

(1− t)(1− t2)
≤ H(

∑
C·Fp,i, t) ≤

1

(1− t)(1− t2)
.

We conclude that {Fp,i} forms a basis. �

Let S = C[x1, . . . , xn]. We consider a subgroup S2 × Sn−2 ⊂ Sn

which acts {x1, x2} and {x3, . . . , xn} respectively.

Lemma 4.18.

SS2×Sn−2 = C[x1, x2]S2 · SSn .

Proof. The inclusion ⊇ is clear. For the reverse inclusion, we first note
that

SS2×Sn−2 = C[x1, x2]S2 ⊗ C[x3, . . . , xn]Sn−2 .

As is well known, SSn is generated by xk1 + · · · + xkn (k ≥ 0) as a
C-algebra. Thus

xk3 + · · ·+ xkn = (xk1 + · · ·+ xkn)− (xk1 + xk2) ∈ C[x1, x2]S2 · SSn.

�

Combining Lemma 4.17 and 4.18, we have.

Lemma 4.19.

SS2×Sn−2 =
∑

p,i≥0

SSn · Fp,i.

Now we prove Theorem 4.15. DenoteH0 = {z = 0} and αij = xi−xj .
The restriction (AH0, mH0) is equal to (An−1, 3). From the result of §3,
(AH0, mH0) is free with exponents (0, n+1, . . . , 2n−1). We can choose
basis η1, . . . , ηn ∈ D(AH0, mH0)Sn from Sn-invariant vector fields. By
definition, ηi(x1 − x2) = (x1 − x2)

3Gi, and Gi ∈ S
S2×Sn−2 . By Lemma

4.19, there exist symmetric polynomials Bp,r
i ∈ S

Sn such that

(27) Gi =
∑

p,r≥0

Bp,r
i · Fp,r.
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With Bp,r
i and Sn-invariant vector field δp =

∑n
i=1 x

p
i ∂i, let us define

(28) η̃i := ηi −
∑

p,r≥0

z2r+2Bp,r
i δp+1.

Then η̃1, . . . , η̃n and θE =
∑n

i=1 xi∂i + z∂z form a basis of D(Catn).
Indeed, they are linearly independent over C[x1, . . . , xn, z] (since ηi’s
are independent), and

η̃i(α12 ± z) = η̃iα12

= η(x1 − x2)−
∑

p,r≥0

z2r+2Bp,r
i (xp+1

1 − xp+1
2 )

= (x1 − x2)
3Gi −

∑

p,r≥0

z2r+2Bp,r
i (xp+1

1 − xp+1
2 ).

The last polynomial is divisible by z2 − α2
12. Indeed, put z = ±α12 in

the last formula, we have from (27)

= (x1 − x2)
3Gi −

∑

p,r≥0

(x1 − x2)
2r+2Bp,r

i (xp+1
1 − xp+1

2 )

= (x1 − x2)
3

(
Gi −

∑

p,r≥0

(x1 − x2)
2rBp,r

i

xp+1
1 − xp+1

2

x1 − x2

)

= (x1 − x2)
3

(
Gi −

∑

p,r≥0

Bp,r
i Fp,r

)

= 0.

Since η̃i is Sn-invariant, η̃iαjk is divisible by αjk(α
2
jk − z

2) for any j, k.
This completes the proof.

5. Concluding remarks and open problems

One of the central problems in the theory of hyperplane arrange-
ments is to decide to what extent the structure of an arrangement is
determined by the combinatorics of the arrangement.

Problem 5.1. Let A1 and A2 be central arrangements in Kℓ. Assume
that L(A1) ≃ L(A2). Does the freeness of A1 imply the freeness of A2?

The above (by Terao [39]) is a long standing problem, even for the
case ℓ = 3, since the beginning of this area. Note that several variants
of this problem are known to have counter examples:

• A1 and A2 are multiarrangements ([55]),
• A1 and A2 are defined over different fields ([56]),
• A1 and A2 are line-conic arrangements ([30]).
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There are several characterizations for 3-arrangements to be free via
Ziegler’s restriction map (§2.3 and see [2] for recent developments).
However the author does not know the answer to the following.

Problem 5.2. Does the converse to Theorem 2.22 hold?

As in §4.1 the modules of multiderivations naturally appear in the
study of relative de Rham cohomology groups for the adjoint quotient
map χ : g → h/W . However the idea of the proof of Theorem 4.2
works only for the type ADE and the cohomology of degree 2.

Problem 5.3. Study the structure of the relative de Rham cohomology
group Hk(Ωχ) as S

W -module.

The structures of H2(Ωχ) for non simply laced cases are expected to
be related with the module of derivations with a non constant multi-
plicity. Similarly higher degree cases are expected to be related with
the module of higher derivations Dk(A, m) defined in [3].
Postnikov and Stanley [24] observed curious properties of the charac-

teristic polynomials that for some truncated affine Weyl arrangements,
the all roots of the characteristic polynomial have the same real part
(“Riemann hypothesis”). By Solomon-Terao’s formula (Theorem 2.9),
the characteristic polynomial is determined by the module D(A). It
would be natural to expect curious behaviours of the characteristic
polynomial reflect the structure of D(A). The following question posed
by Athanasiadis ([7, Question 6.5]) is still challenging.

Problem 5.4. Are there any natural algebraic structures of D(A)
which cause Riemann hypothesis?

For instance, is the “functional equation” ([24, (9.12)]) deduced from
the self duality (up to degree shift) D0(A) ≃ D0(A)[−d]

∨ of certain
module?
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Manuscripta Math. 2 (1970) 103–161.

[11] E. Brieskorn, Singular elements of semi-simple algebraic groups. Actes du
Congrès International des Mathématiciens (Nice, 1970), Tome 2, pp. 279–284.

[12] A. Broer, The sum of generalized exponents and Chevalley’s restriction theo-
rem for modules of covariants. Indag. Math. (N.S.) 6 (1995), no. 4, 385–396.

[13] C. Chevalley, Invariants of finite groups generated by reflections. Amer. J.
Math. 77 (1955), 778–782.

[14] I. Dolgachev, M. Kapranov, Arrangements of hyperplanes and vector bundles
on P

n. Duke Math. J. 71 (1993), no. 3, 633–664.
[15] P. H. Edelman, V. Reiner, Free arrangements and rhombic tilings. Discrete

Comput. Geom. 15 (1996), no. 3, 307–340.
[16] P. H. Edelman, V. Reiner, Not all free arrangements are K(π, 1). Bull. Amer.

Math. Soc. (N.S.) 32 (1995) 61-65.
[17] R. Hartshorne, Stable reflexive sheaves. Math. Ann. 254 (1980), 121–176.
[18] M. Lehn, Y. Namikawa, Ch. Sorger, Slodowy Slices and Universal Poisson

Deformations. Preprint, arXiv:1002.4107
[19] A. Matsuo, Summary of the theory of primitive forms. Topological field theory,

primitive forms and related topics (Kyoto, 1996), 337–363, Progr. Math., 160,
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