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Abstract 
 
Though a point light source is more suitable to measure 
the BRDF of the surface, the natural illuminations in the 
real-world are not point light source and very complex. 
Fortunately, the complex natural illuminations exhibit 
some statistical regularity [3]. These statistical properties 
of the natural illuminations lead to predictable image 
statistics for a surface with given reflectance properties. 
We develop an algorithm for classifiying a surface 
according to its reflectance from a single photograph 
under unknown illumination by learning relationships 
between surface reflectance and certain features computed 
from the observed image. The statistics of the natural 
illuminations and the relationships learning are performed 
in frequency domain because the reflection equation is a 
rotational convolution and it is convenient to analyze it in 
space-frequency domain.  
 
Key words: illumination statistics, reflection equation, 
BRDF estimation 
 
 
1.  Introduction 
 
In the signal-processing framework proposed by 
Ramamoorthi and Hanrahan [8], the reflected light field 
(part of it is the image we see) is convolution of the 
illumination and BRDF (Bi-directional Reflectance 
Distribution Function) of the surface. The illumination is 
regarded as the input signal, the BRDF of surface is taken 
as the filter and the reflected light field is the output 
signal. According to this, a single point light source is 
suitable to measure the BRDF of the surface, because the 
input signal, a point light source is a Delta function and 
then the output is the filter, the BRDF of surface. This is 
the principle of many BRDF measurement systems, such 
as Marschner’s [6]. 
 
However, the natural illuminations in the real world are 
not point light source but highly complex, consisting of 
reflected light from every direction as well as distributed 
and localized primary light sources. Therefore estimating 
the BRDF of the surface under the natural illuminations 
makes more sense.  
 
It has been proven that the natural images exhibit 
statistical regularity, especially in the frequency and 
wavelet domains. The statistics of the natural image have 

been applied successfully in many applications such as 
image compression, image denoising and object 
recognition [2, 5, 7]. Inspired by this, we exploited the 
statistics of the natural illuminations. Fortunately, the 
natural illuminations in the real world do share some 
similar statistical properties, though they are high 
dynamic range, panoramic images. Dror has proved that 
this [3] and used it in surface reflectance estimation from 
a single photograph under unknown natural illumination 
[4]. Weiss [10] has decomposed a set of images of the 
same scene under different illumination into intrinsic 
''illumination'' and ''reflectance'' images by assuming 
statistics on the illumination images.  
 
The problem we study in this paper is as same as Dror’s et 
al. [4]. They solved the problem by learning the 
reflectance of a surface and the statistics of its image 
depending on the spatial structure of the real world 
illuminations. Our method differs from Dror’s in that we 
educed the features used for classification by exploiting 
the statistical properties of natural illumination in 
frequency based on the reflection equation. It has proved 
in [8] that BRDF estimation under unknown illumination 
was ill posed even with the knowledge of the total 
reflected light field because of the associativity of 
convolution. With statistical regularity of the natural 
illuminations (for example, the natural illuminations have 
high frequency signal as well as low frequency signal), 
estimation surface reflectance properties from a single 
photograph under natural illumination is practicable.  
 
The remainder of this paper is organized as follows. The 
statistics of the natural illumination in frequency domain 
is described in the next section. Then we introduce the 
proposed algorithm in section 3. Section 4 shows the 
experimental results. Section 5 concludes our paper and 
discusses the future work. 
 
 
2.  Natural Illumination Statistics in 

Power Spectra 
 
Many researchers have observed that 2D power spectra of 

the natural images typically fall off as 
η+2f1 , where  

represents the modulus of the frequency and 

f
η  is a small 

constant that varies from scene to scene.  
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Spherical harmonic on 3D surface is equivalent Fourier 
transform on 2D planar. Spherical harmonics form a 
countable orthonormal basis for square integrable 
functions on the sphere. Associated with each basis 
function is an order l , a nonnegative integer analogous to 
frequency. The 2  spherical harmonics of order l  
span a space that is closed under rotation. If the regularity 
observed in the natural images statistics literature carries 
over to spherical illumination maps, the average power of 

the spherical harmonics at order l  will fall off as 

1l +

η+2l1 .  

   
                      (a)                                         (b) 

 

 
We computed spherical harmonic coefficients for every 
illumination map and obtained average power at each 
order l  as the mean of squares of the coefficients at that 
order. The statistics was done on the nine illumination 
maps in Debevec’s Light Probe Image Gallery 
(http://www.debevec.org/Probes/) and 200 nodes in MIT 
city scan project acquired by Teller et al.  
(http://city.lcs.mit.edu/data). The illumination maps in 
Debevec’s Light Probe Image Gallery include four indoor 
settings and five outdoor settings. The illumination maps 
in MIT city scan project are the environments in MIT 
campus. 

                                             (c) 

 

 
Figure 1 shows the relationship between average power 
and harmonic order for two illumination maps, one 
outdoor illumination and one indoor illumination, when 
pixel value is proportional to luminance. The fit line is 

η+2lk

2(

.We can see the power of R, G, and B channels of 
the illumination maps, outdoor or indoor, are almost the 
same, that is, the illuminations in the real world is 
approximate white. All the two images have power 
spectra that lie close to the fit line (the slope is 

)η+− )on log-log axes. But the match between the fit 
line and the actual power spectra in (d) is not as good as 
that in (c). This is because the illumination map in (b) 
contains intense, localized light sources that dominate the 
power spectrum and have smooth power spectra that 
remain flat at low frequencies before falling off at higher 
frequencies.  Dror [3] has proved that if the brightest pixel 
values in these illumination maps are clipped, the match 
will be better. 

                      (d) 
Figure 1: Spherical harmonic power spectra and the fit line 
of illumination maps. (a): an outdoor illumination map;  
(b): an indoor illumination map; (c) and (d) are the power 
spectra and the fitting line of (a) and (b). η  is 0.65 for (c) 
and 0.31 for (d).  
   The great majority of other illumination maps in both 

databases exhibit similar behavior. The differences 
between the power spectra of the illumination maps in 
MIT campus are smaller because they are all urban 
outdoor environments.  

3.  The Proposed Method 
 
We first introduce the reflectance model and its 
representation in frequency domain in section 3.1 and 
then we educe the features to classify surface reflectance 
in section 3.2.  

 
Two extreme illuminations are uniform light source and a 
single point light source.  In the case of uniform source, 
only the power of first order is not zero; as for the single 
point light source, the average power of every order is 
same ( π41 ). But we observe that these two cases are 
rare in the real-world.  

 
3.1 Reflectance model  
 
We select Ward’s parameterized reflectance model from 
computer graphics to gain insight into the relationship 
between illumination statistics, surface reflectance and  
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surface image statistics. The Ward reflectance model [9] 
is:  
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Where δ is the angle between the surface normal and a 

vector bisecting the incident and reflected directions. dρ  
is the fraction of incident energy reflected by the diffuse 

component and sρ  is the fraction of energy reflected by 
the specular component. σ  is surface roughness 
measured as the standard deviation of surface slope. 
Higher σ implies a more blurred specular component. σ  
is usually small for real materials, i.e., 2.0≤σ . 
 

For diffuse component, lρ
)

 are the spherical harmonics 
coefficients of the BRDF function θ ′cos . The analytic 

formulae of lρ
)

 are given by [1, 8]: 
40 πρ =) , 31 πρ =)  

oddll ,1,0 >=ρ) , 

[ ] 






×

−+
−

×
+

=
−

2

12

)!2/(2
!

)1)(1(
)1(

4
122

l
l

ll
l

l

l

l π
πρ)

evenl ,1>  

(2) 

)
It can be shown that  lρ  vanishes for odd values of l , 

and even terms fall off very rapidly as l .  
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As for specular component, the spherical harmonics 

coefficients of the BRDF with 1=sρ can be 
approximated as [8]: 

])(exp[ 2lll σρ −≈Λ ) . (3)
The coefficients fall off as a Gaussian with width of order 

σ1 . The specular component of BRDF behaves in the 
frequency domain like a Gaussian filter, with the filter 
width controlled by the roughness. When 0=σ , the 
coefficients of every order are equal to .  lΛ
 
3.2 Relationship between image statistics and 
surface reflectance  
 
In the signal-processing framework [8], the illumination is 
regarded as input signal, the BRDF of surface is taken as 
filter and the image is the output signal. Surface 
reflectance classifying is analogical to estimate filter 
given the output signal. If the input signal has some 
statistical properties, the problem is solvable to some 
extent.  
As the reflection equation is rotation rotational 
convolution, it is natural to analyze it in frequency-space. 
We computed the average power Spectra of the reflected 

light field B . One problem is that spherical harmonics 
transformation is global spatial support but only one 
image is available. As we don’t make any bias for view 
direction, it is reasonable to map the image to the back 
part of the reflected light field. 

l

 
We deduce the features to classify surface reflectance 
according to its parameters based on the signal-processing 
framework as follows. 
 

 Features used to distinguish Lambertian from the 
others  

 
We define two features to distinguish Lambertian (pure 
diffuse) surfaces from the others. v  is the percent of the  

average power of the first three orders ( ).v  is 
the average ratio between the average power of 
consecutive odd order and even odd for l . It is 
predictable that the value of v  of Lambertian surface are 

very large (usually larger that 99%) and the value of v  
of pure diffuse surface are close to zero. This is because 
that 

1

2,1,0=l
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lρ
)

 of Lambertian surface vanishes for odd values of 

, and even terms fall off very rapidly as l . As for 
the other surfaces, the values of v  will not so large and 

the values of v  are usually larger than 1 because the 
average power of the lower orders (odd order) is larger 
than that of the high orders (even order).  

1>l 2−

1

2

To illustrate this, the feature space of v  and v  for the 
eight surfaces is given in Figure 2. The images of the 
eight spheres and the values of their BRDF parameters are 
given in Figure 3 in section 4. The sky plastic spheres are 
close to Lambertian surface because the specuar 
component is much smaller compared with diffuse 
component (

1 2

03.078.0025.0 = ).  

 
Figure 2. The feature space of v -v . 1 2
 

 Features used to distinguish different roughness 
 
The roughness of surface controls the blur of specular 
component and it is no meaning for Lambertian surface. 
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Because lρ
)

 of diffuse component vanishes for odd 

values of l , the powers in odd orders of l  include 
only specular component. We define four features based 
on bandwidth filters for odd orders of

1> 1>

5 15<≤ l , 
, , 2515 <≤ l 35<≤ l25 4535 <≤ l  respectively. The 

definitions the four features are similar except that the 
range of l  are different. As an example, the feature v  is 
defined as: 

3
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where  is the average power of order l  of the reflected 
light field. 

lB

 
 Miscellaneous Features 

To completely distinguish the surfaces reflectance, we 
need to know the information such as dIs ρρ , 

dIdR ρρ , dIdG ρρ , and dIdB ρρ .  Therefore we 
define some other features in this subsection.  
 
The feature v  and v has some information of 1 2 dIs ρρ . 

The smaller dIs ρρ  is, the larger the value of v  is, and 

the smaller the values of v is. Because the smaller 
1

2

dIs ρρ  is, it looks more like a Lambertian surface.   

Another feature to distinguish dIs ρρ  is defined as: 
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lL Bv  . (5)

The larger the value of v  is, the larger7 dIs ρρ  is. The 

feature  also has some information about the roughness 7v
σ . The larger the value of v , the smaller 7

σ  is, i.e., the 
surface is more smoother.  
 
As for the color of the surface, that is dIdR ρρ , 

dIdG ρρ  and dIdB ρρ , we simple use the average 
power in the zero order of the respective color channel. 
This is because the color of the natural illumination is 
approximate white. 
 
 
4.  Experimental Results 
 
To test the accuracy of the classifying, we use synthetic 
images and photographs. Synthetic images are rendered 
with Ward’s Radiance package, which can be downloaded 
freely from http://radsite.lbl.gov/radiance/. The materials 
include the eight kinds of most popular materials in the 
real-world:  matte plastics, smooth plastics, rough metals, 
smooth metals. The nine illumination maps we used are 
the Debevec’s Light Probe Image Gallery. Figure 3 shows 
the rendered images of the eight spheres under the 

illumination maps in Figure 2 (b). The photographs we 
used are same with Dror’s [4] 
(http://ai.mit.edu/people/rondror/sphere_photos/).  

    
          a                     b                     c                    d 

    
           e                     f                     g                     h  
Figure 3:  The synthesized images of eight spheres. The 
parameters of Ward model of the eight materials are 
follows ( σρρρρ ,,,, sdBdGdR ): (a)brown matte: 0.2, 0.1, 
0.1, 0, 0; (b) white matte: 0.7, 0.7, 0.7, 0, 0; (c) black 
plastic: 0.02, 0.02, 0.02, 0.025, 0.05; (d) blue plastic: 0.13, 
0.1, 0.3, 0.05, 0.03; (e) sky plastic: 0.42, 0.42, 0.56, 0.025, 
0; (f) old gold: 1, 0.7, 0.3, 1, 0.1; (g) gold: 0.8, 0.6, 0.3, 0.9, 
0; (h) silver: 0.7, 0.7, 0.7, 1, 0. These parameters were 
chosen such that these materials include the main popular 
material and several spheres look similar. 
 
There is ambiguity between the overall strength of 
illumination and the overall lightness of the surface. For 
example, a white matte sphere under dim illumination and 
a gray matte sphere under bright illumination will produce 
identical images. Human’s eyes can adapt to the lightness 
of the environment quickly and the exposure time of 
camera can be adjusted to have best quality image. 
Therefore it is reasonable to eliminate this ambiguity by 
normalizing the images for mean strength of the 
illumination, as measured by the mean brightness of the 
image of the white sphere.   
 
Because the number of available sample images is limited, 
we preformed a leave-one-out cross-validation. We left 
out the images under one illumination and using the 
others for training in turn. . 
 
The classifier is very simple Nearest Neighbor. Table 1 
lists the performance of synthetic images and photographs.  
It shows that the performance of the synthetic images is 
almost perfect while the performance of the real 
photographs is not so good. There are several reasons. 
The main reason is that the map for the back part of the 
sphere. The view direction of the synthesized images is 
forward and it is reasonable to map. While the view 
direction is 45 degree angle from the horizontal. The 
difference of the illumination between the upper part and 
the low part are very large while the difference between 
the frontal part and the back part is little in statistics. This 
leads large difference between the upper part and the low 
part of the reflected light field. The other reason is that the 
noises in photographs are larger than those of synthetic 
images, including the low dynamic range and the assumed 
parallel projection of photographs. It is expectable that the 
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performance of our system will be better if the entire 
reflected light field is known because no noise is 
introduced by mapping.  
 
We have not yet performed experiments on the much 
larger database, the illumination maps in MIT city scan 
project yet. As listed in [4] by Dror, the performance is 
better than that of Devevec illuminations. This is because 
the illumination maps in the database are urban 
environments and they are much more similar with each 
other. We are sure that the performance will be better in 
our systems. 

Table 1: The Results of Classifying  
Databases Our Results The Best Results 

of Dror by NN [4] 
Synthetic images 94.4% 78.8% 
Photographs 53% 67.7% 
All the four misclassifications in synthesized images are 
caused by gold and old gold. This is because they are so 
similar that the difference between the two materials is 
smaller than the difference between different 
illuminations. 
 
 
5.  Conclusion 
 
The natural illuminations in the real-world exhibit 
statistical regularity which may facilitate reflectance 
estimation under unknown illumination, an otherwise ill-
posed problem. This paper demonstrates the feasibility of 
reflectance classification from a single image in unknown 
real-world scenes based on the statistical prosperities in 
frequency of natural illumination. Although the 
performance our classification algorithm is impressive, it 
leaves a number of open research questions. 
 
First, we have not solved the problem in an explicitly 
Bayesian manner. While we have analyzed the 
relationship between illumination statistics, image 
statistics, and reflectance, we do not translate the results 
directly to an optimal technique for reflectance 
classification. We would like to put our classification 
method on a more rigorous theoretical foundation.  
 
Second, we believe that significant performance gains 
may be attained through the use of a more general feature 
set. We are focusing on space-frequency analysis and the 
features used in this paper are all based on power spectra 
of the image. Spherical harmonics transformation is time 
consuming due to its global spatial support. The view 
point and view direction the photographs of Dror’s [4] 
make that it is not suitable to map the image to the back 
of the sphere therefore the performance descends 
compared with the synthesized images. It is more 
advisable to use wavelet coefficients for this purpose 
because wavelet localizes in both space and frequency 
domain. Some other features base on the pixels intensity 
used in Dror’s [4] could be also incorporated into our 
classification scheme. 
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