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ABSTRACT 
The major difficulty for large vocabulary sign language or gesture 
recognition lies in the huge search space due to a variety of 
recognized classes. How to reduce the recognition time without 
loss of accuracy is a challenge issue. In this paper, a hierarchical 
decision tree is first presented for large vocabulary sign language 
recognition based on the divide-and-conquer principle. As each 
sign feature has the different importance to gestures, the 
corresponding classifiers are proposed for the hierarchical 
decision to gesture attributes. One- or two- handed classifier with 
little computational cost is first used to eliminate many impossible 
candidates. The subsequent hand shape classifier is performed on 
the possible candidate space. SOFM/HMM classifier is employed 
to get the final results at the last non-leaf nodes that only include 
few candidates. Experimental results on a large vocabulary of 
5113-signs show that the proposed method drastically reduces the 
recognition time by 11 times and also improves the recognition 
rate about 0.95% over single SOFM/HMM.  

Categories and Subject Descriptors 
I.5.2 [Pattern Recognition]: Design Methodology – Classifier 
design and evaluation; H.1.2 [Models and Principles]: 
User/Machine Systems – Human information processing. 

General Terms 
Algorithms, Design, Experimentation, Human Factors, 
Languages. 

Keywords 
Sign language recognition, gesture recognition, hierarchical 
decision tree, Gaussian mixture model, finite state machine. 

1. INTRODUCTION 
Sign language as a kind of gestures is one of the most natural 
ways of exchanging information for most deaf people. The aim of 

sign language recognition (SLR) is to provide an efficient and 
accurate mechanism to transcribe sign language into text or 
speech so that communication between deaf and hearing society 
can be more convenient. Sign language recognition, as one of the 
important research areas of human-computer interaction (HCI), 
has spawned more and more interest in HCI society. From a user's 
point of view, the most natural way to interact with a computer 
would be through a speech and gesture interface. Thus, the 
research of sign language and gesture recognition is likely to 
provide a shift paradigm from point-and-click user interface to a 
natural language dialogue-and-spoken command-based interface.  
Unlike general gestures, sign language is highly structured so that 
it provides an appealing test bed for new ideas and algorithms 
before they are applied to gesture recognition. Attempts to 
automatically recognize sign language began to appear in the 
literature in the 90's. The recognition methods usually include 
rule-based matching, artificial neural networks, and hidden 
Markov models (HMM). 
Kadous [1] demonstrated a system based on Powergloves to 
recognize a set of 95 isolated Australian sign language with 80% 
accuracy. Instance-based learning and decision-tree learning were 
adopted by the system to produce the rules of pattern. Matsuo et 
al. [2] used the similar method to recognize 38 signs from 
Japanese sign language with a stereo camera for recording three-
dimensional movements. Morphological analysis was used in their 
method to get sign language patterns. 
Fels and Hinton [3] developed a system using a Dataglove with a 
Polhemus tracker as input devices. In their system, five neural 
networks were employed for classifying 203 gestures. Kim et al. 
[4] used fuzzy min-max neural network and fuzzy logic approach 
to recognize 31 manual alphabets and 131 Korean signs based on 
Datagloves. An accuracy of 96.7% for manual alphabets and 
94.3% for the sign words were reported.  
Grobel and Assan [5] used HMM to recognize isolated signs with 
91.3% accuracy out of a 262-sign vocabulary. They extracted 2D 
features from video recordings of signers wearing colored gloves. 
HMM was also employed by Hienz and Bauer [6] to recognize 
continuous German sign language with a single color video 
camera as input. Their research was an extension of the work by 
Grobel and Assan. An accuracy of 91.7% can be achieved in 
recognition of sign language sentences with 97 signs.  
Liang and Ouhyoung [7] employed the time-varying parameter 
threshold of hand posture to determine end-points in a stream of 
gesture input for continuous Taiwan SLR with the average 
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recognition rate of 80.4% for 250 signs. In their system a 
Dataglove was used as input device and HMM was taken as 
recognition method.  
Starner et al. [8] used a view-based approach for continuous 
American SLR. They used single camera to extract two-
dimensional features and the extracted features are then taken as 
the input of HMM. The word accuracy of 92% or 98% was gotten 
when the camera was mounted on the desk or in a user’s cap in 
recognizing the sentences with 40 different signs.  
Vogler and Metaxas [9] used computer vision methods to extract 
the three-dimensional parameters of a signer’s arm motions as the 
input of HMM, and recognized continuous American sign 
language sentences with a vocabulary of 53 signs. The reported 
best accuracy is 95.83%. In addition, they used phonemes instead 
of whole signs as the basic units and achieved similar recognition 
rates to sign-based approaches over a vocabulary of 22 signs [10], 
[11]. 
From the review above, we know that most researchers focus on 
small or medium vocabulary SLR in the signer-dependent domain. 
For large vocabulary sign recognition, the major difficulty lies in 
the huge search space due to a variety of recognized classes. How 
to reduce the recognition time without loss of accuracy is a 
challenging issue. In speech recognition, phoneme-based method 
was generally employed to tackle large vocabulary problem. 
However, there is no basic unit defined in the sign’s lexical forms. 
The phonemes extracted manually or automatically were 
experimented on the small vocabulary. It is very difficult to extend 
these phonemes to act as the basic unit of whole sign language. 
Gao [12], [13] used Datagloves as input devices and HMM as 
recognition method. The system can recognize 5177 isolated signs 
with 94.8% accuracy in real time and recognize 200 sentences 
with 91.4% word accuracy in the signer-dependent domain. The 
state-tying HMM with one mixture component was employed to 
overcome the time-consuming problem due to the large 
vocabulary size. However, when this method was applied to 
signer-independent SLR, the recognition performance distinctly 
decreased. 
To overcome the difficulty from the large vocabulary size, a 
hierarchical decision tree is presented for sign language 
recognition in this paper based on the divide-and-conquer 
principle. As each sign feature has the different importance to 
gestures, the corresponding classifiers are proposed for the 
hierarchical decision to sign language attributes. One- or two- 
handed classifier with little computational cost is first used to 
eliminate many impossible candidates. The subsequent hand 
shape classifier is performed on the possible candidate space. 
SOFM/HMM classifier as a special component of hierarchical 
decision tree is employed to get the final results at the last non-
leaf nodes that only include few candidates. To alleviate the effect 
of crisp classification errors, fuzzification is introduced in the 
decision tree, i.e., the classes that cannot be robustly classified 
will not be handled at this classifier, and they simultaneously enter 
next level for further decision. Experimental results show that the 
proposed method can drastically reduce the recognition time and 
also improve the recognition performance over single 
SOFM/HMM. 
The remainder of this paper is organized as follows. In Section 2, 
we analyze sign language features. Section 3 proposes the feature 
classifiers in the hierarchical decision tree. In Section 4, the 

hierarchical decision tree for sign language recognition is 
presented. Section 5 shows experimental results. The conclusions 
are given in the last section. 

2. SIGN LANGUAGE FEATURES 
According to Stokoe's definition [14], each sign can be broken 
into four parameters: hand shape, orientation, position and 
motion. These parameters as four important features play an 
important role in sign language recognition. Furthermore, 
according to the number of participating hands in the sign 
performance, sign language can be divided into two categories: 
one-handed signs and two-handed signs. Thus, one- or two- 
handed is also one of the important features of sign language. Five 
features are respectively detailed as follows: 

Hand shapes are one of the primitives of sign language and reflect 
the information of hand configuration. They are very stable and 
can be used to distinguish most signs. In the Chinese sign 
language dictionary, there are 75 basic hand shapes extracted by 
the sign language expert.  

The orientation of the hand can be described in terms of two 
orthogonal directions - the facing of the palm, and the direction to 
which the hand is pointing. If we consider only six possible 
directions (up, down, left, right, towards the signer, away from the 
signer), then there are 15 different orientations used in Chinese 
sign language (CSL).  

The position of the hand is usually partitioned in terms of the 
signer’s hand relative to the defined three parts of his body: head, 
chest and below chest. In each part, the position can be further 
subdivided into body’s left, right and middle. In total, there are 12 
positions defined in CSL according to the hand with respect to the 
body part. 

Motion differs from the other features in that it is inherently 
temporal in nature. It is difficult to enumerate the complete range 
of possible categories used within CSL, as many signs involve 
unique tracing motions which indicate the shape of an object. For 
this research only the 13 most commonly used motions were 
defined.  

In the Chinese sign language dictionary, one-handed signs are 
always performed by right hand except for one sign “luo ma ni 
ya” by left hand. The difference between one-handed sign and 
two-handed sign is whether signer's left hand participates the 
action. In the one-handed sign performance, signer's left hand 
usually puts on the left knee and remains motionless. However, in 
the two-handed sign, left hand may either stay a fixed posture or 
perform a movement trajectory. The position and orientation 
information of left hand plays a dominant part in determining one- 
or two- handed signs. 

3. FEATURE CLASSIFIERS  
In this section, on the basis of the analysis of all the sign language 
features, Gaussian mixture model is first employed as one- or two- 
handed classifier, and then the finite state machine based method 
is proposed as hand shape classifier. At last, SOFM/HMM 
classifier as a special component of hierarchical decision tree is 
presented for tackling the signer-independent difficulties. 
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3.1 One- or Two- Handed Classifier  
Gaussian mixture model (GMM) is in essence one of the 
multivariate probability density functions. It has been successfully 
used as a classifier in a variety of applications. According to the 
estimation, one-handed sign and two-handed sign probability 
distributions can be approximately described by the GMM. The 
estimation process is designed as follows: in the training set, one- 
and two- handed signs are manually split, and then we calculate 
the frequency distributions of one- and two- handed signs at each 
point for every dimension of the vector. Figure 1 shows the 
frequency distributions of one- and two- handed signs in the x-
component value of the left hand position vector, where the value 
of x-axis is the result of the x-component value [0, 1] multiplied 
by 25, and the value of y-axis is the result of the number of the 
estimated signs with this x-axis value divided by the total number 
of one- or two- handed signs. The similar distributions are 
observed in other components of the left hand position and 
orientation vectors. From the curves of statistical results, we can 
speculate that one-handed sign and two-handed sign probability 
density can be approximated by the respective GMM. Therefore, 
in this paper, GMM is employed to determine whether a gesture is 
represented by one hand or two hands.  
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Figure 1. The frequency distributions of one- and two- handed 
signs in the x-component value of the left hand position vector 
 
GMM can be described by the mixture parameter, the mean vector 
and the covariance matrice, and formulated as },,{ Σ= µπλ . The 
probability density function of an observation x  is represented by 
the linear combination of Gaussian density: 
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the mean vector, and iΣ  is the covariance matrice.  

The parameter λ  can be trained using the Expectation-
Maximization (EM) algorithm. There are two key issues in the 
model training: initialization and the selection of training samples.  

Initialization. In the EM algorithm, the parameter λ  need to be 
initialized. However, no general theoretical framework but 
empirical or experimental appoach is employed to solve this 
problem. Here, k-means clustering is used to get the mean and 
convariance of centriods as the initialization values. 0

iπ  is 
initialized to M/1 . The mixture term M is determined according 
to the distribution of training data and the classification accuracy 
of one- or two- handed signs. In our classification experiments, M 
is set to the values from 5 to 30. From the experiments, the 
classification performance grows with the mixture term M. When 
the value is greater than 15, the classification performance doesn’t 
improve or even slightly decline but the classification time 
increases. Thus, M in the one-handed GMM and two-handed 
GMM are both set to 15, where the mixture terms are set to the 
same for the comparability of their probabilities. 
The selection of training samples. How to select typical samples 
for training one-handed and two-handed GMM is a difficult issue. 
Different training data will produce different results, that is, too 
many data will make the model training difficult to converge, and 
not enough data will train the model that cann’t be well 
generalized. Through the experiments, the following strategy is 
taken. For a one-handed sign, left hand stays motionless and its 
data are very stable, so the stablest frame is extracted from all the 
frames of this word. For a two-handed sign, if left hand is in 
motion, then all the data frames are extracted as the training data. 
If left hand is motionless, the extraction method is the same as 
one-handed signs. In all those training data, only the position and 
orientation information of left hand is used for classification.  
Classification: Given the frame sequence for one sign 

ToooO L21= , the probabilities of belonging to one-handed and 
two-handed signs for each frame are calculated with the trained 
GMM. The probabilities can be expressed as )( ji oP , 2,1=i , 
where 1 denotes the one-handed sign and 2 for the two-handed 
sign. The classes can be gotten through the following formula: 
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After all the training samples are classified using above method, 
the candidate words associated with one handed sign and two 
handed sign are generated, which will be used by the following 
hand shape classifier. 

3.2 Hand Shape Classifier 
Lee et al. [15] used finite state machine (FSM) to segment the 
motion of Korean sign language. Hong et al. [16] also used FSM 
to recognize gestures, where each state is modeled as a 
multivariate Gaussian function. A gesture can be described as an 
ordered sequence of hand shape states in spatial-temporal space 
and well modeled by a finite state machine, whose states consist 
of 75 basic hand shapes. The structure of an FSM is like that of an 
HMM, where each state can jump to either itself or its next state. 
FSM has the advantages of easy interpretation and faster 
classification rate, and can well solve the different frame 
alignment for the same sign. Furthermore, hand shape is very 
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stable in all the features of sign language and it plays a very 
important role in distinguishing most signs due to its distinct 
feature discrimination, so it is feasible to use it as a classifier of 
the hierarchical decision tree. Thus, in this paper, FSM-based 
method is proposed for hand shape classifier, which is regarded as 
part of the hierarchical decision tree.  
The training algorithm of FSM-based hand shape classifier is 
described as follows. 
1) Clustering. Basic hand shapes extracted by the experts from 

the dictionary of sign language are regarded as initial 
centroids, and then the k-means clustering algorithm is 
employed to get new centroids in the training set.  

2) Fuzzy vector quantization (FVQ). Fuzzy N-best results are 
outputted at each frame with new centroids. For utilizing the 
context information of sign frames to supervise the 
quantization, the Viterbi algorithm is employed to get the 
best vector quantization sequence on the fuzzy N-best results. 

3) Pattern extraction and pruning. The word patterns are 
extracted from the quantization results. Pattern to word is a 
many-to-many map, where the patterns are regarded as the 
classification criterion. For the better generalization ability, 
simple pruning is operated on the extracted patterns. 

4) Candidate word generation. Training samples are classified 
using FSM, and each branch in the classifier denotes one 
pattern. After all the samples in the training set are handled, 
the candidate word set associated with each pattern is 
generated, which will be used by SOFM/HMM classifier. 

To eliminate the effect of noise and make the extracted patterns 
have better generalization ability, two key techniques are 
employed in this algorithm: fuzzy vector quantization, and pattern 
extraction and pruning. 

3.2.1 Fuzzy vector quantization 
In the vector quantization, every frame data is independent of 
each other, so the noise will have the direct influence on the 
quantization results. However, a gesture consists of several basic 
hand shapes. The changes between hand shapes are very stable, 
that is, slow changes from one series of hand shapes to another 
series of hand shapes. This context information can be utilized to 
supervise the quantization through FVQ so that the algorithm can 
reduce the effect of noise and get the well-generalized patterns.  

Given the frame sequence for one sign ToooO L21= , where T  
denotes the frame number. Define TvvvV L21= , }75,,2,1{ L∈tv  

as one of the quantization sequence. In FVQ, the vector to  is 

quantized as not only the top scoring output but the N  top 
scoring outputs. The corresponding probability is associated with 
the N  top outputs, where 3=N . The Viterbi algorithm is 
employed to get the best vector quantization sequence among all 
the results, and formulated as: 
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and 0.1 are manually set through the experiments. 

Emission probability of the frame to  being quantized as tv  is 

defined: 
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Euclidean distance between the vector to  and the centroid tv . 

Through this method, the context information of sign frames is 
fully utilized to supervise the vector quantization, so we can 
alleviate the effect of the noise data and get the consistent 
quantization results. 

3.2.2 Pattern extraction and pruning 
Pattern extraction is performed as follows. After the previous step 
– fuzzy vector quantization – processing, the quantized sequences 
are so regular that the classification patterns can be directly 
extracted from the quantization results according to the duration 
of hand shape. If the duration is greater than four frames, then this 
hand shape is regarded as one of the pattern states, otherwise 
regarded as the noise and discarded. 
However, the extracted pattern number is very large so that the 
generalization of patterns becomes delicate and the corresponding 
classification deviation is getting large. To solve this problem, the 
pruning is performed on those patterns. From the data of FVQ, if 
all the patterns are kept, the total number of the classification 
template for all the vocabulary is about 1860. If the first three 
hand-shape states are kept, the number is about 1340. If the first 
two hand-shape states are kept, the number is about 450. If the 
first hand-shape state is kept, the number is about 75. For making 
the extracted patterns have better generalization, the number of 
classification pattern cannot get too big. Compromising the 
generalization and the classification time, the first two hand shape 
states are kept, which is in accord with the fact that most of the 
signs consist of two hand shape states. For example, three 
quantized word sequences: 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 3 4 4 4 
4, 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 3 and 1 1 1 1 1 1 1 2 2 2 2 2 4 
4 4 4 4 4 are respectively extracted as the patterns 1 2 3 4, 1 2 3 
and 1 2 4 (see in Figure 2, where 1, 2, 3 and 4 denote basic hand 
shape state). They will be pruned as one pattern 1 2, which will be 
used as the classification template. For the words with the long 
frame data, the pruning can reduce the classification time, because 
only previous parts are used to distinguish rather than the whole 
sequence. After the pruning, the patterns are regarded as the 
classification templates of FSM. 

 

  

 
Figure 2. The examples of hand shape pattern 

 
Classification: Input data are processed by fuzzy vector 
quantization, pattern extraction and pruning, then classified into 
the corresponding pattern branch through FSM. 
Similar methods are experimented with position, orientation and 
motion features. However, since the information of these features 
is not very stable, the extracted patterns for the same sign are not 
very consistent. Though the recognition time is reduced, the 
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performance cannot be improved. Thus, one- or two- handed, left 
hand shape, and right hand shape are chosen as three attributes of 
the hierarchical decision tree. 

3.3 SOFM/HMM Classifier 
Aiming at the two difficulties of signer-independent SLR—the 
model convergence difficulty caused by mass data and noticeable 
distinctions among different people data, and the lack of effective 
features extracted from different signers' data, SOFM/HMM 
classifier is presented in the paper [17].  
 
 
 

 

 
 

 
Figure 3. The architecture of SOFM/HMM 

 
The proposed method uses the self-organizing feature 
maps(SOFM) as an implicit different signers’ feature extractor for 
continuous HMM and its parameters are trained simultaneously 
with a global optimization criterion. SOFM transforms input sign 
representations into significant and low-dimensional 
representations that can be well modeled by the emission 
probabilities of HMM. Figure 3 shows its architecture. 

4. HIERARCHICAL DECISION TREES 
FOR SIGN LANGUAGE RECOGNITION 
A general decision tree [18], [19], [20] consists of root nodes, 
non-leaf nodes and leaf nodes, where each leaf node denotes a 
class. The input data include the values of different attributes and 
these values are initially put in the root node. By asking questions 
about the attributes, the decision tree splits the values into 
different child nodes. At last, which class the input data belongs 
to is decided at the leaf node. Decision trees are, by their nature, 
readily interpretable and well-suited to classification problems. 
They are also remarkable for their ability to combine diverse 
information sources.  

The hierarchical decision tree for sign language recognition is 
constructed as follows: 1) In the training set, all the training 
samples are classified using GMM, the candidate words 
associated with one-handed sign and two-handed sign are 
generated. Those words cannot be robustly classified will appear 
both in the candidate words of one-handed signs and in the 
candidate words of two-handed signs. 2) For the candidate words 
of one-handed signs, their training samples are inputted into the 
right hand shape classifier. After all the training samples are 
classified using FSM, the candidate words associated with each 
pattern are generated. Those candidates with common elements 
will be used as the candidate words of SOFM/HMM classifier. 3) 
For the candidate words of two-handed signs, the processing is 
the same as Step 2, first into left hand shape classifier, and then 
into right hand shape classifier. However, the classification results 
of left shape are used as the candidate words of right hand shape 

classifier, and the classification results of right shape are regarded 
as the candidate words of SOFM/HMM classifier.  

 

 

 

 

 

 

 

 

 

Figure 4. The hierarchical decision tree for sign language 
recognition 

 

After the hierarchical decision tree for sign language recognition 
is constructed, the architecture of the hierarchical decision tree 
and the candidates associated with every node are produced.  
Figure 4 illustrates the diagram of the hierarchical decision tree 
for sign language recognition, where each non-leaf node denotes a 
classifier associated with the corresponding word candidates, and 
each branch at a node represents one class of this classifier. There 
are common elements among adjacent branches under one node, 
and their intersection is learned by a large amount of training 
samples. The input data are first fed into one- or two-handed 
classifier, then into left hand shape classifier and right hand shape 
classifier (no left hand shape classifier for the one-handed sign 
branch), and at last into the SOFM/HMM classifier only with few 
candidates in which the final recognition results are gotten. To 
illustrate the idea more concretely, consider the sign “ai-hu” with 
a vector sequence of 48-dimensional features. The sign is firstly 
fed into GMM with its 6-dimensional feature sequence of left 
hand position and orientation information for judging one- or 
two- handed sign, and then into FSM with its 18-dimensional 
feature sequence of left hand shape information for classifying 
into one of the branches, and along this branch into FSM with its 
18-dimensional feature sequence of right hand shape information 
for classifying, along the assigned branch into SOFM/HMM with 
its 48-dimensional features for decision-making, and the final 
classes are gotten among the candidates of this SOFM/HMM 
node.  

5. EXPERIMENTS 
In our experiments, two Cybergloves and three Pohelmus 
3SPACE-position trackers are used as input devices. Two trackers 
are positioned on the wrist of each hand and another is fixed at 
signer’s back (as the reference tracker). The Cybergloves collect 
the variation information of hand shape with the 18-dimensional 
data each hand, and the position trackers collect the variation 
information of orientation, position, and movement trajectory.  
In order to extract the invariant features to signer’s position, the 
tracker at signer’s back is chosen as the reference Cartesian 
coordinate system, and the position and orientation at each hand 
with respect to the reference system are calculated and can be 

One- or two- handed Hand shape 
SOFM/HMM Class
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taken as invariant features. By this transformation, the data are 
composed of a relative three-dimensional position vector and a 
three-dimensional orientation vector for each hand, which don’t 
change with the signer position and orientation. In the case of two 
hands, a 48-dimensional vector is formed, including the hand 
shape, position and orientation vector. The data from different 
signers are calibrated by some fixed postures performed by each 
signer. In our experiments the 14 postures that can represent the 
min-max value ranges of the corresponding sensor are defined. As 
each component in the vector has different dynamic range, its 
value is normalized to [0,1]. 
All experiments were carried on the large vocabulary with 5113 
signs. Experimental data consist of 61356 samples over 5113 
signs from 6 signers with each performing signs twice. The 
vocabulary is taken from the Chinese sign language dictionary. 
One group data from 6 signers represented by A-F are referred to 
as the registered test set (Reg) and the other 11 group data are 
used as the training samples. Using the approach of cross 
validation test, 10 group data samples from 5 signers are used as 
the training samples and the other signer data represented by A-F 
are referred to as the unregistered test set (Unreg). 
The first experiment is to test the recognition performances on 
large vocabulary signer-independent SLR respectively with HMM, 
SOFM/HMM and decision tree. SOFM/HMM is special case of 
hierarchical decision tree, that is, only SOFM/HMM classifier is 
used to recognize sign language.  
Figure 5 shows the test results of HMM, SOFM/HMM and 
decision tree, where solid lines and dashed lines respectively 
denote the results of Reg and UnReg. HMM have 3 states and 5 
mixture components and SOFM/HMM has 3 states and 5 initial 
SOFM neurons. The average recognition rates of 87.3% for 
HMM, 90.5% for SOFM/HMM and 91.6% for decision tree are 
observed for Reg. For UnReg, the average recognition rates of 
80.0%, 82.9% and 83.7% are obtained, respectively. 
SOFM/HMM is more suited for signer-independent SLR because 
SOFM implicitly extracts the different signers’ features. 
Therefore, SOFM/HMM has better performance than 
conventional HMM. 
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Figure 5. The recognition results of different methods 

On basis of SOFM/HMM, hierarchical tree increases the 
recognition accuracy by 1.1% on the registered test set and by 
0.8% on the unregistered test set in the experiments. This may be 
due to the following reasons. First, in an integrated hierarchical 
decision tree framework, different features can be further 

researched individually, and their discriminations can be fully 
utilized through different feature classifiers. Second, fuzzy 
classification alleviates the loss of crisp classification of decision 
tree through allowing the partitions with common elements.  
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Figure 6. The recognition time of different methods 

The second experiment is to test the recognition time on large 
vocabulary signer-independent SLR with SOFM/HMM and 
decision tree. The approach of cross validation test is employed 
both in the registered test set and in the unregistered test set. All 
experiments are performed on the PIV1600 (512M Memory) PC. 
Figure 6 shows the recognition time of SOFM/HMM and decision 
tree on the vocabulary of 5113 signs, where solid lines and dashed 
lines respectively denote the results of Reg and UnReg. We define 
s/w as second per word. For the registered test set, the average 
recognition time of 2.922 (s/w) for SOFM/HMM and 0.268 (s/w) 
for decision tree are observed. For the unregistered test set, the 
average recognition time of 2.910 (s/w), 0.258 (s/w) are obtained, 
respectively. The average recognition time of SOFM/HMM and 
decision tree are respectively 2.916 second per word and 0.263 
second per word in the registered and unregistered test sets. 
Experiments illustrate that hierarchical tree dramatically reduces 
the recognition time by 11 times over single SOFM/HMM. In the 
hierarchical decision tree, the feature classifiers of one- or two- 
handed and hand shape with little computational cost are first 
employed to eliminate the impossible candidates, and then the 
complex classifier of SOFM/HMM is performed on the previous 
candidates. Thus, this coarse-to-fine hierarchical decision leads to 
the dramatic reduction of computational complexity and 
recognition time.  

6. CONCLUSIONS  
In this paper, a hierarchical decision tree is first presented for 
5113-gesture vocabulary SLR in signer-independent field. As 
each sign feature has the different importance to gestures, GMM-
based classifier and FSM-based classifier are respectively 
proposed for the features of one- or two- handed and hand shape 
to eliminate the impossible candidates. SOFM/HMM classifier is 
employed to get the final results at the last non-leaf nodes that 
only include few candidates. Experimental results show 
hierarchical decision tree has an average recognition rate of 
91.6% on the registered test set and 83.7% on the unregistered test 
set over a 5113-sign vocabulary. The average recognition time is 
0.263 second per word. Experiments also show the proposed 
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method drastically reduces recognition time by 11 times and also 
improves the recognition rate about 0.95% over single 
SOFM/HMM. Future work will focus on large vocabulary 
continuous SLR. 
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