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A PROOF OF THE GÖTTSCHE-YAU-ZASLOW FORMULA

YU-JONG TZENG

Abstract. Let S be a complex smooth projective surface and L be a line bundle on
S. Göttsche conjectured that for every integer r, the number of r-nodal curves in |L|
is a universal polynomial of four topological numbers when L is sufficiently ample. We
prove Göttsche’s conjecture using the algebraic cobordism group of line bundles on
surfaces and degeneration of Hilbert schemes of points. In addition, we prove the the
Göttsche-Yau-Zaslow Formula which expresses the generating function of the numbers
of nodal curves in terms of quasi-modular forms and two unknown series.

1. Introduction

1.1. Main results. Consider a line bundle L on a complex projective smooth surface
S. This paper attempts to answer the following question: how many reduced curves
have exactly r simple nodes and no higher singularities in a generic r-dimensional linear
system of |L|? Equivalently, how many r-nodal curves in |L| pass through dim|L| − r
points in general position?

Göttsche [Go98] conjectured that for every r, the numbers of r-nodal curves are given
by universal polynomials of four topological numbers: L2, LK, c1(S)

2 and c2(S) provided
that the line bundle L is (5r − 1)-very ample (i.e. H0(S,L) → H0(L|ξ) is surjective for

every ξ ∈ S[5r]). These polynomials are universal in the sense that they only depend
on r and are independent of the surface and line bundle. Our first result is an algebro-
geometric proof of Göttsche’s conjecture.

Theorem 1.1 (Göttsche’s conjecture). For every integer r ≥ 0, there exists a universal
polynomial Tr(x, y, z, t) of degree r with the following property: given a smooth projective
surface S and a (5r−1)-very ample (5-very ample if r = 1) line bundle L on S, a general
r-dimensional sublinear system of |L| contains exactly Tr(L

2, LK, c1(S)
2, c2(S)) r-nodal

curves.

Since the numbers of nodal curves for all line bundles on P2 and for primitive classes
on K3 surfaces have been determined ([CH98], [BL00]), all coefficients of Tr can be com-
puted by solving linear equations. Moreover, one can combine all universal polynomials
as coefficients to define a generating function. Inspired by the Yau-Zaslow formula,
Göttsche [Go98] conjectured the closed form of this generating function, which we call
the Göttsche-Yau-Zaslow formula.

Theorem 1.2 (The Göttsche-Yau-Zaslow formula). There exist universal power series
B1(q) and B2(q) such that

∑

r≥0

Tr(L
2, LK, c1(S)

2, c2(S))(DG2(τ))
r =

(DG2(τ)/q)
χ(L)B1(q)

K2
SB2(q)

LKS

(∆(τ)D2G2(τ)/q2)χ(OS)/2
,

1
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where G2 is the second Eisenstein series − 1
24 +

∑

n>0

(

∑

d|n d
)

qn, D = q d
d q and ∆(q) =

q
∏

k>0(1− qk)24.

If we write q = e2πiτ for τ on the complex upper half plane, then G2, DG2 and D2G2

are quasimodular forms in τ and ∆ is a modular form in τ . For the precise definition of
quasimodular forms, see [KZ95].

1.2. Background. On P2, the number of nodal curves is classically known as the Severi
degree Nd,g, which is the number of plane curves of degree d and genus g passing through
3d + g − 1 points in general position. This subject was studied by Ran [Ran89] and
[Ran87], using degeneration of P2 and an inductive procedure. In 1993, Kontsevich and
Manin [KM94] introduced the techniques of Gromov-Witten theory to this problem from
which they obtained a beautiful recursive formula of rational curves for all degrees. For
plane curves of a higher genus, Harris and Pandharipande [HP95] computed the Severi
degrees with at most three nodes using Hilbert schemes, and Choi [Ch96] extended the
result to at most four nodes using Ran’s method.

The counting of nodal curves of arbitrary genus g in P2 was completely solved by
Caporaso and Harris [CH98]. They defined the generalized Severi degrees Nd,g(α, β)
with tangential conditions and used deformation theory to derive recursive formulas of
Nd,g(α, β). Shortly after, Vakil [Va00] derived similar results for rational ruled surfaces.

For an arbitrary smooth projective surface, the number of nodal curves with at
most three nodes can be computed directly by standard intersection theory. In 1994,
Vainsencher [Va95] proved the existence of universal polynomials in the case of up to
six nodes. By computing the polynomials explicitly, he showed that the polynomials
only depend on L2, LK, c1(S)

2 and c2(S). Later, Kleiman and Piene [KP99] refined
Vainsencher’s approach and generalized the result to up to eight nodes. Since their
methods rely on a detailed analysis of the singularities of low codimensions, it is difficult
to generalize the methods to the case of higher number of nodes.

On algebraic K3 surfaces and primitive classes, the number of rational curves not only
can be determined but also possess a general pattern. Yau and Zaslow [YZ96] discovered
a surprising formula for the generating function in terms of the Dedekind function, which
prompts the speculation that general modular forms may be involved. In particular, the
Yau-Zaslow formula implies that the number of rational curves in an effective class C
only depends on the self-intersection number C2.

The Yau-Zaslow formula was generalized by Göttsche [Go98] to arbitrary projective
surface. Using Vainsencher and Kleiman-Piene’s numbers, Göttsche conjectured the
Göttsche-Yau-Zaslow formula which relates the generating function to quasi-modular
forms. This generating function is defined by universal polynomials, which can be viewed
as a virtual counting of nodal curves especially when the line bundle is not ample enough.
In addition, Göttsche observed that the generating function is completely determined by
the number of nodal curves on P2 and K3 surfaces; thus it can be computed by the
Severi degrees and quasi-modular forms. A reformulation of the Göttsche-Yau-Zaslow
formula gives the generating function on the number of genus g curves ([Go98] Remark
2.6) and this reformulation has been verified by Bryan and Leung [BL00] for K3 surfaces
and primitive ample line bundles.
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The Severi degrees also have interesting properties. On P2, fixing the number of
nodes and letting the degrees vary, Di Francesco and Itzykson conjectured [FI94] that the
number of plane r-nodal curves of degrees d is a polynomial in d, or the node polynomial.
Recently, Fomin and Mikhalkin [FM09] proved the polynomiality with tropical geometry
and find many interesting properties of node polynomials. Block [Bl10] generalized it to
relative node polynomials and proved that there is a formal power series which specializes
to all relative node polynomials. These results suggest that enumerating curves with
broader conditions may possess a generalized structure, which could be used to provide
answers to open problems and interpretations for known results.

We add that a symplectic proof to Göttsche’s conjecture was given by A.K. Liu [Liu00],
[Liu04], based on the work of Taubes on the equivalence of Seiberg-Witten theory and
Gromov-Witten theory. Recently another proof is also found by Kool-Shende-Thomas
[KST10], using the BPS calculus and the computation of tautological integrals on Hilbert
schemes by Ellingsrud, Göttsche and Lehn.

1.3. Multiplicative Structure. The Göttsche-Yau-Zaslow formula (Theorem 1.2) ex-
pressed the generating function in terms of quasimodular forms and two unknown series
B1(q) and B2(q). If the canonical divisor of a surface S is numerically trivial, only the
quasimodular forms appear in the generating function. Consequently, the generating
function for K3 surfaces and abelian surfaces is known. The unknown series B1(q) and
B2(q) can be determined using Caporaso and Harris’ recursive formulas of the Severi
degrees of P2. Göttsche has computed the coefficients of B1(q) and B2(q) up to degree
28. However, we are still unable to find the closed forms for B1(q) and B2(q).

Instead of indexing on (DG2)
r, we can simply use xr to define another generating

function
T (S,L) =

∑

r≥0

Tr(L
2, LK, c1(S)

2, c2(S))x
r.

Because all coefficients are universal, T (S,L) is a universal power series. Moreover,
T (S,L) is multiplicative:

Theorem 1.3 ([Go98], Proposition 2.3). Assuming the numbers of nodal curves are
given by universal polynomials, then there exist universal power series A1, A2, A3, A4

in Q[[x]]× 1 such that the generating function has the form

T (S,L) = AL2

1 ALKS
2 A

c1(S)2

3 A
c2(S)
4 .

The coefficients of Ai can be determined by Caporaso-Harris [CH98] and Vakil’s [Va00]
recursive formulas on P2 and P1 × P1 but the closed forms are unknown.

While Göttsche proved this theorem by considering disjoint union of surfaces, we
will give a different proof using algebraic cobordism in Section 4. The new proof plays
a central role in our approach because it demonstrates that universality is a result of
algebraic cobordism structure.

The difficulty in proving closed formulas of generating functions comes from the fact
that they are defined by universal polynomials, not the actual number of nodal curves.
The generating functions in Theorem 1.2 and Theorem 1.3 is well-defined for all line

1Q[[x]]× is the group of units in Q[[x]] and the group action is defined by multiplication of power
series.
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bundles even if they are trivial or negative. In this setting, the r-th coefficient of T (S,L)
equals the number of r-nodal curves of [S,L] if L is sufficiently ample relative to r.
Therefore usually only a finite number of initial coefficients honestly represent the number
of nodal curves, and after that the coefficients lack a geometric interpretation. This
difficulty will be overcome by depicting the universal polynomials as intersection numbers
dr(S,L) and work with dr(S,L) directly.

1.4. Approach. In this article we prove Theorem 1.3 first, and derive other Theorems
from this theorem. The main ingredients in our proof consist of the algebraic cobordism
group ω2,1, the enumerative number dr(S,L) and the moduli stack of families of ideal
sheaves. These techniques are developed in order to study the degeneration of line
bundles on surfaces, and to derive a degeneration formula for the generating functions.
As a consequence, we will prove when L is (5r − 1)-very ample, the number of nodal
curves in |L| on S only depend on the class of [S,L] in ω2,1, which can be computed by
L2, LK, c1(S)

2 and c2(S).
The algebraic cobordism theory has been developed by Levine and Pandharipande

[LP09]. They call

[X0]− [X1]− [X2] + [X3]

a double point relation if there exists a flat family of projective schemes π : X → P1

satisfying the following properties: firstly, X is smooth and X0 is the fiber over 0 ∈ P1

and is smooth. Secondly, the fiber over ∞ ∈ P1 is the union of two smooth components
X1 and X2 intersecting transversally along a smooth divisor D. Thirdly, X3 = P(1D ⊕
NX1/D) is a P1 bundle over D. Define the addition of two schemes to be the disjoint
union and the multiplication to be the Cartesian product. The algebraic cobordism ring
is defined to be the ring generated by all smooth projective schemes modulo the double
point relation.

Since the problem of counting nodal curves is about a surface S and a line bundle L
on S, we generalize Levine and Pandharipande’s construction to pairs of line bundles on
surfaces. Let Li be line bundles on Xi, we call

[X0, L0]− [X1, L1]− [X2, L2] + [X3, L3]

an extended double point relation if [X0]− [X1]− [X2] + [X3] is a double point relation,
and there exists a line bundle L on X such that Li = L|Xi for i = 0, 1, 2; L3 = η∗(L|D)
where η : X3 → D is the projection.

In [LP09], Levine and Pandharipande defined the algebraic cobordism group of sur-
faces and line bundles ω2,1 to be the vector space over Q spanned by all pairs [S,L]
modulo all extended double point relations. The subscript (2, 1) captures the dimension
of surfaces and the rank of line bundles. In Section 2, we prove ω2,1 is a four-dimensional
vector space over Q and (L2, LK, c1(S)

2, c2(S)) induces the isomorphism from ω2,1 to
Q4. Consequently, the class of [S,L] in ω2,1 is linear in L2, LK, c1(S)

2 and c2(S). Two
important bases of ω2,1 are

{[P2,O], [P2,O(1)], [P1 × P1,O], [P1 × P1,O(1, 0)]} and

{[P2,O], [P2,O(1)], [S1, L1], [S2, L2]},

where Si are K3 surfaces and Li are primitive classes on Si with L2
1 6= L2

2.
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In general, for pairs of vector bundles of rank r on smooth projective scheme of dimen-
sion n, one can define the algebraic cobordism group ωn,r. Lee and Pandharipande [LP10]
has studied the structure of ωn,r. Our result about ω2,1, although written independently,
is a special case of [LP10].

Another important ingredient of our proof is the enumerative number dr(S,L). This
number is defined by Göttsche ([Go98]) is the intersection number of a closed subscheme

W 3r of S[3r] and the 2rth Chern class of the tautological bundle of L on S[3r] i.e.

dr(S,L) =

∫

W 3r

c2r(L
[3r]).

He proved that when L is (5r − 1)-very ample, dr(S,L) equals the number of r-nodal
curves in [S,L]. Although it is difficult to compute dr(S,L) directly, we believe it is the
correct object to investigate for two reasons.

First, when a pair of smooth surface and ample line bundle degenerates to the singular
fiber, ampleness of the line bundle is usually not preserved. Without ampleness, the
universal polynomial Tr(L

2, LK, c1(S)
2, c2(S)) do not necessarily equal to the number of

r-nodal curves in [S,L]. On the contrary, the numbers dr(S,L) can be defined for every
line bundle, even if it is not ample. In the end, we will show that for every pair [S,L],
dr(S,L) is the universal polynomial Tr(L

2, LK, c1(S)
2, c2(S)).

Second, since dr(S,L) is defined as an intersection number, it has many good properties
under degeneration. Suppose π : X → P1 defines a double point relation and U is a
Zariski open set of P1 such that all fibers are smooth except π−1(∞). J. Li and B. Wu

[LW] constructed a moduli stack X [n] → U , which is the moduli stack of rank one stable
relative ideal sheaves in the family XU = X ×P1 U → U . For each integer n, the moduli
stack X [n] → U can be viewed as a family of Hilbert schemes of n points on fibers. The

generic fiber of X [n] → U at ∞ 6= t ∈ U is the Hilbert scheme X
[n]
t and the special fiber

is the union of products of relative Hilbert schemes

n
⋃

k=0

(X1/D)[k] × (X2/D)[n−k].

For each r ∈ N, recall dr(S,L) is defined to be

∫

W 3r

c2r(L
[3r]) . The closed subscheme

W 3r in S[3r] can be extended globally to a family of closed subschemes W3r in X [3r].
In addition, if L is a line bundle on X , then its restriction on U similarly defines a
tautological bundle L[n] on X [n] for each n. Thus on X [3r], the intersection of c2r(L

[3r])

and W [3r] defines a family of zero cycles. Consider an extended double point relation
[X0, L0]− [X1, L1]− [X2, L2]+ [X3, L3]. By rational equivalence of the fibers of W 3r over
0 and ∞, we show the generating function

φ(S,L)(x) =

∞
∑

r=0

dr(S,L)x
r

satisfies the following degeneration formula

φ(X0, L0) = φ(X1/D,L1)φ(X2/D,L2)

where φ(Xi/D,Li) is the “relative” generating function.
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The relation of absolute generating function φ can be computed by applying the
degeneration formula on several families to eliminate the relative functions, which is

φ(X0, L0) =
φ(X1, L1)φ(X2, L2)

φ(X3, L3)
.

Thus φ induces a group homomorphism from the algebraic cobordism group ω2,1 to
(Q[[x]]×, · ). Consequently, Theorem 1.3 is proved and dr(S,L) equals the universal
polynomial Tr(L

2, LK, c1(S)
2, c2(S)) for all smooth projective surfaces S and line bundles

L. Since dr(S,L) equals the number of r-nodal curves when L is (5r − 1)-very ample,
Theorem 1.1 is proved as a corollary.

The generating function in Theorem 1.2 is

γ(S,L)(q) =
∑

r∈Z

Tr(L
2, LK, c1(S)

2, c2(S))(DG2(τ))
r = φ(S,L)(DG2).

Therefore this generating function also induces a homomorphism from ω2,1 to Q[[q]]×.
Since Bryan and Leung [BL00] have computed γ(S,L)(q) on generic K3 surfaces and
primitive classes, we shall use a different basis

{[P2,O], [P2,O(1)], [S1, L1], [S2, L2]}

of ω2,1, where Si are K3 surfaces and Li are primitive classes on Si with L2
1 6= L2

2. By
Theorem 1.3, γ(S,L)(q) is a weighted product of γ(P2,O), γ(P2,O(1)), γ(S1, L1) and
γ(S2, L2). This proves Theorem 1.2. See Section 4 for more details about proofs and
computation.

1.5. Outline. In Section 2 we construct the algebraic cobordism group ω2,1 and study
its structure. We prove ω2,1 is a four dimensional vector space and L2, LK, c1(S)

2, c2(S)
are invariants of extended double point relations. Therefore we can describe all bases of
ω2,1 and degenerate any [S,L] to basis elements.

Section 3 is dedicated to the enumerative number dr(S,L) and its generating function
φ(S,L)(x). The main result in this section is a degeneration formula about φ(S,L)(x)
for pairs satisfying an extended double point relation.

Finally, in Section 4 we combine the techniques developed in Section 2 and 3 to prove
Theorem 1.1, 1.2 and Theorem 1.3. We express the infinite series Ai and Bi as the
weighted product of generating functions on P2, P1 × P1, and K3 surfaces.

1.6. Acknowledgments. I am very grateful to my advisor Jun Li for his supervision,
advice, and guidance during my Ph.D. years in Stanford. His contribution of time, ideas
and patience is invaluable to me. Special thanks also to Ravi Vakil for teaching me lots
of things and great contribution to Stanford’s algebraic geometry group. Moreover, I
thank Lothar Göttsche for the explanation of his approach and Rahul Pandharipande
for useful suggestions.

1.7. Notation and Convention.

(1) All surfaces are assumed to be complex, projective, smooth and algebraic.
(2) An r-nodal curve is a reduced connected curve that has exactly r nodes and no

other types of singularity.
(3) We always denote by [S,L] a pair of a smooth projective surface S and a line

bundle L on S.
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(4) The number of r-nodal curves in a pair [S,L] means the number of r-nodal curves
in a generic r-dimensional linear system of |L| on S.

2. The algebraic cobordism group ω2,1

2.1. Outline. Degeneration methods have been applied widely in algebraic geometry.
The general principle is that, if desired properties on general spaces is preserved under
degenerations, then it can be verified by studying well-understood spaces.

To count the number of nodal curves, only degenerating surfaces is not sufficient.
Instead, we consider the degeneration of pairs [S,L] where S is a smooth projective
surface and L is a line bundle on S. In Section 14.4 of [LP09], Levine and Pandharipande
defined the algebraic cobordism theory ω2,1 for surfaces and line bundles. In this section
we will find its dimension, bases and invariants2. The study of ω2,1 has been extended
to schemes of any dimension and vector bundles of arbitrary rank in [LP10]. Therefore
the result in this section become a special case of [LP10]. We keep our proof in order to
make this article self-contained and provide an elementary argument.

2.2. Algebraic cobordism.

Definition 2.1. Suppose [Xi, Li] are pairs of smooth projective surfaces and line bundles
for i = 0, 1, 2, 3. The extended double point relation is defined by

[X0, L0] = [X1, L1] + [X2, L2]− [X3, L3](2.1)

with the assumption that there exists a flat family of surfaces π : X → P1 and a line
bundle L on X which satisfies the following properties:

(1) π−1(∞) = X1 ∪D X2 is a union of two irreducible smooth components, and they
intersect transversally along a smooth divisor D;

(2) X is smooth and of pure dimension three; the morphism π is smooth away from
the fiber π−1(∞);

(3) the fiber over 0 ∈ P1 equals X0, by (2) it is a irreducible smooth projective
surface;

(4) Li is the restriction of L on Xi for i = 0, 1, 2;
(5) X3 is P(OD ⊕NX1/D)

∼= P(NX2/D ⊕OD), η : X3 → D is the bundle morphism,
and L3 = η∗(L|D).

Remark. We use X1/D and X2/D to emphasize the divisor D when discussing the
relative geometry on Xi.

Let M be the Q-vector space3 spanned by pairs of smooth projective surfaces and line
bundles, and let R be the subgroup spanned by all extended double point relations. We
define the algebraic cobordism group of surfaces and line bundles to be

ω2,1 = M/R.

By definition ω2,1 is a Q-vector space. We will find its dimension, its bases, and
the invariants of this degeneration theory. To find a basis of ω2,1, the central idea is

2The algebraic cobordism theory developed in this section can be carried out for surfaces are over any
field of characteristic zero.

3We use Q here because it is enough for our purpose and for simplicity. In general, the coefficients
can be Z as discussed in [LP09].
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degenerating the pairs of surfaces and line bundles [S,L] into the sum of “simpler” pairs
until the surfaces of generators become P1×P1 and P2. When Levine and Pardharipante
[LP09] first defined this group ω2,1 (which they called ω2,1(C)), They found an infinite
set of generators which consisted of all line bundles on P2, P1×P1 and the blow-up of P2

at a point. We will refine this result by showing ω2,1 is a four-dimensional vector space
and it has a basis

{[P2,O], [P2,O(1)], [P1 × P1,O], [P1 × P1,O(1, 0)]}.

During degeneration, many geometric properties are forgotten except four topological
numbers L2, LK, c1(S)

2 and c2(S), and they are the only four invariants of ω2,1. As a
result, the class of [S,L] in ω2,1 only depends on L2, LK, c1(S)

2 and c2(S). A simple
criterion to determine all bases of ω2,1 using these four numbers will be given in the end
of this section.

First we review the algebraic cobordism theory. In [LP09], Levine and Pandharipande
consider projective morphisms

π : Y → X × P1

and composition
π2 : p2 ◦ π : Y → P1

where k is a field of characteristic 0, Y is a smooth quasi-projective scheme of pure
dimension and X is a separated scheme of finite type over k. Assuming π−1

2 (∞) = A∪B
where A and B are smooth Cartier divisors intersecting transversely along D = A ∩B,

X3 = P(OD ⊗NA/D) = P(NB/D ⊗OD)

is a P1 bundle over D, and Y0 is the fiber of π2 over 0. The double point relation over
X defined by π is

[Y0 → X]− [A → X]− [B → X] + [X3 → X] .

Let M(X)+ be the free additive group generated by [M → X], where M is a quasi-
projective smooth scheme and the morphism is projective. DenoteR(X) by the subgroup
generated by all double point relations over X and ω∗(X) = M(X)+/R(X). Then
the following theorem states ω∗(X) is isomorphic to the other algebraic cobordism ring
Ω∗(X), which is constructed in [LM07].

Theorem 2.1 (Levine and Pandharipande [LP09]). There is a canonical isomorphism

ω∗(X) ∼= Ω∗(X) .

In particular, if k is a field, we denote Ω(k) to be Ω∗(Spec k) and ω∗(k) to be
ω∗(Spec k) in short. In [LM07], Levine and Morel showed that Ω∗(k) is isomorphic
to the Lazard ring L∗; it follows that L∗ is also isomorphic to ω∗(k). Furthermore, it is
well known that L∗ ⊗Z Q has a basis formed by products of projective spaces. Hence

Corollary 2.2.

ω∗(k)⊗Z Q =
⊕

λ=(λ1,...,λr)

Q[Pλ1 × . . . × Pλr ]

where the index λ belongs to Nr for some positive integer r. In particular, ω2(k) is
generated by P2 and P1×P1 over Q, i.e. all smooth projective surfaces can be degenerated
to the sum of P2 and P1 × P1 using algebraic cobordism.
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We only consider the case that X = Spec C. It is easy to see that the extended double
point relation generalizes the double point relation in dimension two.

2.3. Theorem. The following theorem is the main result of this section:

Theorem 2.3. Let S be a smooth projective surface and L be a line bundle on S, then

[S,L] = a1[P
2,O] + a2[P

2,O(1)] + a3[P
1 × P1,O] + a4[P

1 × P1,O(1, 0)](2.2)

in ω2,1, where

a1 = −L2 +
c1(S)

2 + c2(S)

3
− c2(S), a2 = L2,

a3 = L2 +
LK + L2

2
−

c1(S)
2 + c2(S)

4
+ c2(S), a4 = −L2 −

LK + L2

2
.

In other words, ω2,1 is a four dimensional vector space spanned by four elements

[P2,O], [P2,O(1)], [P1 × P1,O] and [P1 × P1,O(1, 0)] .

Moreover, (L2, LK, c1(S)
2, c2(S)) defines an isomorphism from ω2,1 to Q4.

Remark. By Theorem 2.3, the class of [S,L] in ω2,1 is uniquely determined by topological
numbers (L2, LK, c1(S)

2, c2(S)). Noether’s formula states

χ(OS) =
1

12
(c1(S)

2 + c2(S))

thus c1(S)
2+c2(S) is divisible by three and four. In addition, the Riemann-Roch formula

for L is

χ(L) = χ(OS) +
1

2
(L2 − LK)

thus L2 + LK is divisible by two. Therefore all coefficients in (2.2) are integers.

Before we prove Theorem 2.3, several lemmas are needed.

Notation. Suppose C is a smooth curve and N is a line bundle on C. We call PN to be
the P1 bundle PC(OC ⊕ N) over C and write h for the class of the tautological bundle
OPN

(1) in PicPN . Recall PicPN = η∗PicC ⊕ Zh, where η be the structure morphism
PN → C. Moreover, denote the Hirzebruch surfaces PP1(OP1 ⊕ OP1(k)) by Fk. Then
Pic Fk

∼= Zh⊕Zf , here f is the fiber class and h is the class of OFk
(1). Their intersection

numbers are

h2 = k, hf = 1, f2 = 0 .

We will abuse notation slightly by using η to denote all structure maps from projective
bundle to its base curve. The referred morphism should be clear from the text.

Lemma 2.4. Let C be a smooth curve in S, L be a line bundle on S, N be the normal
bundle of C in S and η : PN → C be the structure map. Then for any integer k,

[S,L] =[S,L⊗OS(−kC)] + [PN , η∗ (L|C)⊗OPN
(kC)]− [PN , η∗((OS(−kC)⊗ L)|C)]

in ω2,1.



10 YU-JONG TZENG

Proof. Let bl : X → S × P1 be the blowup S × P1 along C × {∞}, pr1 be the projection
from S×P1 to S and π : X → S×P1 → P1 be the composition of bl and projection to P1.
Then X is a family of surfaces with general fiber S and singular fiber π−1(∞) = S∪C PN .
In addition, let

L = bl∗pr∗1L⊗OX (−kE) ,

where E ∼= PN is the exceptional divisor of the blow up morphism. Then the desired
formula is the extended double point relation on (X ,L). �

Corollary 2.5. Every pair [S,L] in ω2,1 is equal to the sum of [S,O] and pairs on ruled
surfaces of the form PN .

Proof. Lemma 2.4 implies that we can twist the line bundle L by effective divisors so
that the remaining terms are pairs on PN . Since every line bundle on a projective surface
can be written as the difference of two very ample line bundles, the statement can be
proved by applying Lemma 2.4 with k = 1 twice . �

In Levine and Pandharipande’s algebraic cobordism theory, the classes of surfaces are
generated freely by P2 and P1 × P1 over Q. Moreover, the class of S depends only on
c1(S)

2 and c2(S) and is given by

[S] =

(

c1(S)
2 + c2(S)

3
− c2(S)

)

[P2] +

(

−
c1(S)

2 + c2(S)

4
+ c2(S)

)

[P1 × P1] .

Since extended double point relations with trivial line bundles reduce to double point
relations, similar formula also holds in ω2,1:

Lemma 2.6.

[S,O] =

(

c1(S)
2 + c2(S)

3
− c2(S)

)

[P2,O] +

(

−
c1(S)

2 + c2(S)

4
+ c2(S)

)

[P1 × P1,O]

in ω2,1.

According to Lemma 2.4 and 2.6, ω2,1 is generated by pairs on P2 and ruled surfaces
of the form PN . Consequently, in the following lemmas we concentrate on degenerating
these two kinds of pairs. A useful observation is that deformation of ruled surfaces can
be achieved by deforming the base curve C and constructing a family of P1-bundle on
each fiber.

Lemma 2.7. Suppose N and N ′ are two line bundles over a smooth curve C and x is
a closed point on C, n ∈ N. Then

[PN ′ , η∗N ⊗OPN′
(n)] =[PN ′(−x), η

∗N ⊗OPN′(−x)
(n)] + [F1,OF1(n)]− [P1 × P1,O(n, 0)]

in ω2,1.

Proof. Define X to be the blow-up of C×P1 at the closed point x×∞. X is a family of
curves whose general fiber is C and whose fiber over ∞ is isomorphic to the union of C
and exceptional curve E ∼= P1. C and E intersect at the point x. There are morphisms

X
bl
−→ C × P1 pr1

−→ C,

where bl : X → C×P1 is the blow-up morphism and pr1 : C×P1 → C is the projection.
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Let M ′ be the pullback line bundle bl∗pr∗1N
′ and consider the line bundle M ′(−E) on

X. The restriction of M ′(−E) on general fiber is N ′, on the first component of singular
fiber C is N ′(−x), on P1 is O(1), and it restricts to trivial line bundle at x.

Therefore, the P1-bundle X = PX(O ⊕M ′(−E)) over X is a family of surfaces with
generic fiber PC(O ⊕N ′) and singular fiber PC(O ⊕N(−x)) ∪P1 F1.

Let π : X → X be the bundle map. The morphism

X
π

−→ X
bl
−→ C × P1 pr2

−→ P1

defines X as a flat family of surfaces over P1. Denote the generic fiber PC(O⊕N ′) by X0,
components of the singular fiber PC(O⊕N ′(−x)) by X1, F1 by X2 and their intersection
P1 by D. Then X is a family of surfaces which satisfies the conditions in Definition 2.1.

Next we construct a line bundle L on X . Let OX (1) be the tautological bundle of the
projective bundle X and L be π∗bl∗pr∗1N ⊗OX (n). The restriction of L on each fiber is:

L|X0
∼= η∗N ⊗OPN′

(n), L|X1 = η∗N ⊗OPN′(−x)
(n), L|X2 = OF1(n), L|D = OP1(n).

Then the desired formula is the extended double point relation on X and L. �

Every line bundle on PN ′ can be written as η∗N ⊗ OPN′
(n). We can write N ′ as

O(
∑

aixi − biyi) for some closed points xi, yi on C and positive integers ai, bi. By
using Lemma 2.7 inductively on

∑

|ai|+
∑

|bi|, pairs on PN ′ can be reduced to pairs on
PC(OC ⊕OC) ∼= C × P1 with excess terms on F1 and P1 × P1.

Furthermore, line bundles on C × P1 can also be reduced using the following lemma:

Lemma 2.8. Every pair on C × P1 can be written as the sum of pairs on P1 × P1.

Proof. Every line bundle on C × P1 is isomorphic to L ⊠ O(n) for some integer n and
line bundle L on C. Let x be a closed point on C and X be the blow-up of C × P1 × P1

at x × P1 × ∞. The third projection X → P1 defines X as a family of surface over P1

with general fiber X0
∼= C × P1 and singular fiber X1 ∪D X2 = (C × P1) ∪P1 (P1 × P1).

Let L be pr∗1L⊗ pr∗2OP1(n)⊗OX (−X2), where pri are projections to C and the first
P1.

The extended double point relation from X and L is

[C × P1, L⊠O(n)] = [C × P1, L(−x)⊠O(n)] + [P1 × P1,O(1, n)]

− [P1 × P1,O(0, n)]
(2.3)

By applying (2.3) several times, we can see that [C×P1, L⊠O(n)] is the sum of pairs
on P1 × P1 and [C × P1,OC ⊠O(n)].

On the other hand, if

[C0] = [C1] + [C2]− [C3]

is a double point relation of curves defined by a family Y , then (Y ×P1,pr∗2OP1(n)) gives
an extended double point relation

[C0×P1,pr∗2OP1(n)] = [C1×P1,pr∗2OP1(n)]+ [C2×P1,pr∗2OP1(n)]− [C3×P1,pr∗2OP1(n)].

Since every smooth curve can be degenerated to several P1’s using double point relation,
[C × P1, L⊠O(n)] is the sum of pairs on P1 × P1.

�
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From the previous lemmas, we have shown that ω2,1 is spanned by [P2,O], pairs on
P1 × P1 and [F1,O(nh)].

Lemma 2.9. The following equalities hold in ω2,1 for all integers a, b.

(1) [P1 × P1,O(a, a)] = 2[F1, ah]− [P1 × P1,O(0, a)]

(2) [P1 × P1,O(a, b)] = ab[P1 × P1,O(1, 1)] − (2ab− a− b)[P1 × P1,O(0, 1)]
+ (a− 1)(b − 1)[P1 × P1,O]

(3) [P2,O(1)] = [F1, h] + [P2,O]− [P1 × P1,O]

Proof. (1) Fix two points 0,∞ ∈ P1, consider the family bl 0×∞P1 × P1 pr2−→ P1. The
fiber over 0 is C0

∼= P1; fiber over ∞ is the union of C1 and C2, both isomorphic to
P1 and they intersect at one point. A section of the family either passes through
C1 or C2, hence induce two line bundles M1 and M2 on bl 0×∞P1 × P1 which
satisfy:

M1|C0 = O(1), M1|C1 = O(1), M1|C2 = O;

M2|C0 = O(1), M2|C1 = O, M2|C2 = O(1).

Then the composition

P(M1 ⊕M2) → bl 0×∞P1 × P1 pr2−→ P1

defines P(M1⊕M2) as a family of surfaces. Since P(M1⊕M2) is a P1-bundle over
bl 0×∞P1 × P1, the tautological bundle OP(M1⊕M2)(1) is naturally defined. The
extended double point relation from P(M1 ⊕M2) and OP(M1⊕M2)(a) is exactly

[P1 × P1,O(a, a)] = 2[F1, ah]− [P1 × P1,O(0, a)].

(2) Apply (2.3) to the case C = P1, L = O(a) and use induction on |a|, we have

[P1 × P1,O(a, b)] = a[P1 × P1,O(1, b)] − (a− 1)[P1 × P1,O(0, b)].

By using the identity on both a and b, we get

[P1 × P1,O(a, b)] = a[P1 × P1,O(1, b)] − (a− 1)[P1 × P1,O(0, b)]

=ab[P1 × P1,O(1, 1)] − (2ab− a− b)[P1 × P1,O(0, 1)] + (a− 1)(b− 1)[P1 × P1,O].

(3) Let X be the blowup of P2×P1 along pt×∞ and L be the the pullback of OP2(1)

in X
bl
→ P2 × P1 pr2→ P2. The identity we need to prove is the extended double

point relation on (X ,L) plus
(a) F1 is isomorphic to P2 with a point blown up;
(b) because the Chern numbers of F1 and P1×P1 are the same, [F1] = [P1×P1]

in the algebraic cobordism ring of schemes, hence [F1,O] = [P1 × P1,O] in
ω2,1.

�

Corollary 2.10.

[P1 × P1,O(1, 1)] = 2[P2,O(1)] − 2[P2,O] + 2[P1 × P1,O]− [P1 × P1,O(1, 0)].

Proof. This follows from Lemma 2.9 (1) and (3). �
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Next, we show that ω2,1 has four independent invariants.

Proposition 2.11. Suppose

[X0, L0] = [X1, L1] + [X2, L2]− [X3, L3]

is an extended double point relation, then

(

L2
0, L0KX0 , c1(X0)

2, c2(X0)
)

=
(

L2
1, L1KX1 , c1(X1)

2, c2(X1)
)

+
(

L2
2, L2KX2 , c1(X2)

2, c2(X2)
)

−
(

L2
3, L3KX3 , c1(X3)

2, c2(X3)
)

.

In other words, if

∑

i

[Xi, Li] =
∑

j

[Xj , Lj] in ω2,1

then

∑

i

(L2
i , LiKXi , c1(Xi)

2, c2(Xi)) =
∑

j

(L2
j , LjKXj , c1(Xj)

2, c2(Xj)).

Thus (L2, LK, c1(S)
2, c2(S)) induces an homomorphism from ω2,1 to Q4.

Proof. Recall that X3 = P(OD ⊕NX1/D) and L3 = η∗(L|D). Simple calculation shows

L2
3 = 0,

L3KX3 = (deg(L|D)f)(−2h+ (deg(NX1/D) + 2g(D) − 2)f) = −2deg(L|D),

K2
X3

= (−2h+ (deg(NX1/D) + 2g(D) − 2)f)2

= 4deg(NX1/D)− 4deg(NX1/D)− 8g(D) + 8 = −8g(D) + 8.

Because X0 and X1 ∪X2 are two fibers of X → P1, in the Chow group of X

[X0] · [X0] = 0, [X1] · [X1] = −[X2][X1] = −[D] = [X2] · [X2],

[X0][X1] = [X0][X2] = 0 .
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Then

L2
0 = c1(L)

2[X0] = c1(L)
2[X1 ∪D X2] = c1(L)

2[X1] + c1(L)
2[X2] = L2

1 + L2
2 − L2

3,

L0KX0 = c1(L)(c1(KX ) + [X0]) · [X0] = c1(L)c1(KX )[X0]

= c1(L)c1(KX )[X1 ∪D X2] = c1(L)c1(KX )[X1] + c1(L)c1(KX )[X2]

= c1(L)(c1(KX ) + [X1]− [X1])[X1] + c1(L)(c1(KX ) + [X2]− [X2])[X2]

= L1KX1 − c1(L1)[X1]
2 + L2KX2 − c1(L2)[X2]

2

= L1KX1 + c1(L1)[D] + L2KX2 + c1(L2)[D]

= L1KX1 + L2KX2 + 2deg(L|D)

= L1KX1 + L2KX2 − L3KX3 ,

K2
X0

= (c1(KX ) + [X0])
2 · [X0] = c1(KX )

2[X1 ∪D X2]

= c1(KX )
2[X1] + c1(KX )

2[X2]

= (c1(KX ) + [X1]− [X1])
2 · [X1] + (c1(KX ) + [X2]− [X2])

2 · [X2]

= K2
X1

+K2
X2

− 2(c1(KX ) + [X1]) · [X1]
2 − 2(c1(KX ) + [X2]) · [X2]

2 + 0

= K2
X1

+K2
X2

+ 2c1(KX1)[D] + 2c1(KX2)[D]

= K2
X1

+K2
X2

+ 4(2g(D) − 2)

= K2
X1

+K2
X2

−K2
X3

.

In addition, the exact sequence

0 −→ OX1∪DX2 −→ OX1 ⊕OX2 −→ OD −→ 0

implies

χ(OX0) = χ(OX1∪DX2) = χ(OX1) + χ(OX2)− χ(OD)

= χ(OX1) + χ(OX2)− (1− g(D)) = χ(OX1) + χ(OX2)− χ(OX3).

Using χ(OS) =
1
12 (K

2
S + c2(S)), we conclude

c2(X0) = c2(X1) + c2(X2)− c2(X3).

This completes the proof. �

Proof of Theorem 2.3. Although the lemmas above have implied that ω2,1 is spanned by
[P2,O], [P2,O(1)], [P1 × P1,O] and [P1 × P1,O(1, 0)], we outline our proof here as a
summary. Here we don’t keep track of the coefficients and use ∗ to indicate them. Recall
that if N is a line bundle on a smooth curve C, then PN is defined as the P1 bundle
PC(OC ⊕N) on C.
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For every pair [S,L] in ω2,1,

[S,L]

=[S,O] + pairs on ruled surfaces PN (Corollary 2.5)

= ∗ [P2,O] + ∗[P1 × P1,O] + pairs on ruled surfaces PN (Lemma 2.6)

= ∗ [P2,O] + ∗[P1 × P1,O] + pairs on C × P1 + ∗
∑

n∈Z

[F1,OF1(n)] (Lemma 2.7)

= ∗ [P2,O] + ∗[P1 × P1,O] + pairs on P1 × P1 + ∗
∑

n∈Z

[F1,OF1(n)] (Lemma 2.8)

= ∗ [P2,O] + ∗[P1 × P1,O] + ∗[P1 × P1,O(a, b)] (Lemma 2.9(1))

= ∗ [P2,O] + ∗[P1 × P1,O] + ∗[P1 × P1,O(1, 1)] + ∗[P1 × P1,O(0, 1)] (Lemma 2.9(2))

= ∗ [P2,O] + ∗[P1 × P1,O] + ∗[P2,O(1)] + ∗[P1 × P1,O(1, 0)] (Corollary 2.10)

As a result, ω2,1 are spanned by these four pairs. They are also independent because
ω2,1 has four independent invariants L2, LK, c1(S)

2 and c2(S)(Proposition 2.11). Thus

[P2,O], [P2,O(1)], [P1 × P1,O], [P1 × P1,O(0, 1)]

is a basis of ω2,1.
To prove equation (2.2), it suffices to find the coefficients. Suppose the class of [S,L]

in ω2,1 is

[S,L] = a1[P
2,O] + a2[P

2,O(1)] + a3[P
1 × P1,O] + a4[P

1 × P1,O(1, 0)] .

Since the topological numbers (L2, LK, c1(S)
2, c2(S)) of

[P2,O], [P2,O(1)], [P1 × P1,O] and [P1 × P1,O(0, 1)] are

(0, 0, 9, 3), (1,−3, 9, 3), (0, 0, 8, 4), (0,−2, 8, 4)

and (L2, LK, c1(S)
2, c2(S)) are invariants of ω2,1, we have

(L2, LK, c1(S)
2, c2(S)) = a1(0, 0, 9, 3) + a2(1,−3, 9, 3) + a3(0, 0, 8, 4) + a4(0,−2, 8, 4).

Computation shows

a1 = −L2 +
c1(S)

2 + c2(S)

3
− c2(S), a2 = L2,

a3 = L2 +
LK + L2

2
−

c1(S)
2 + c2(S)

4
+ c2(S), a4 = −L2 −

LK + L2

2
.

�

Remark. (1) From the proof of Theorem 2.3, we know a set of four elements

{[Si, Li] | i = 1, . . . , 4}

is a basis of ω2,1 if and only if the four vectors

{(L2
i , LiKSi , c1(Si)

2, c2(Si)) | i = 1, . . . , 4}

are linearly independent over R (in fact over Q is enough but we don’t need it.)
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(2) Because the two vectors (L2, LK, c1(S)
2, c2(S)) and (LK,χ(L), χ(O),K2) deter-

mine each other, (LK,χ(L), χ(O),K2) is also an invariant of ω2,1. As a result, if
for a set of four elements in ω2,1, the corresponding vectors (LK,χ(L), χ(O),K2)
are linearly independent, then the set is a basis of ω2,1.

(3) If S1, S2 are two K3 surfaces and Li are primitive classes on Si respectively. The
four numbers (LK,χ(L), χ(O),K2) of

B = {[P2,O], [P2,O(1)], [S1, L1], [S2, L2]} are

(0, 1, 1, 9), (−3, 3, 1, 9),

(

0, 2 +
L2
1

2
, 2, 0

)

,

(

0, 2 +
L2
2

2
, 2, 0

)

.

It follows that B is a basis if and only if L2
1 6= L2

2.

3. Degeneration Formula

3.1. The enumerative number dr(S,L). In this chapter we use the enumerative num-
ber dr(S,L) to study the number of nodal curves. This number dr(S,L) was defined by
Göttsche [Go98] for pairs of smooth projective surface and line bundle [S,L] and he
proved that dr(S,L) equals the number of r-nodal curves on [S,L] if L is (5r − 1)-very
ample. The goal of this chapter is to derive a degeneration formula for the generating
function

φ(S,L)(x) =

∞
∑

r=0

dr(S,L)x
r

for pairs satisfying an extended double point relation.
Let S[n] be the Hilbert scheme of n points on S, and let Zn ⊂ S×S[n] be the universal

closed subscheme with projections

pn : Zn → S, qn : Zn → S[n].

Define L[n] = (qn)∗(pn)
∗L. Because qn is finite and flat, L[n] is a vector bundle of rank

n on S[n]. Göttsche [Go98] suggested the following approach using intersection numbers
on Hilbert schemes:

Definition 3.1 ([Go98] Definition 5.1). Let W 3r
0 be the locally closed subset

{

r
∐

i=1

Spec(OS,xi/m
2
S,xi

)

∣

∣

∣

∣

∣

xi are distinct closed points on S

}

and W 3r ⊂ S[3r] be the closure of W 3r
0 (with the reduced induced structure). It is easy

to see that W 3r is birational to S[r]. Define

dr(S,L) =

∫

W 3r

c2r(L
[3r]).

For simplicity, define d0(S,L) = 1 because the number of 0-nodal curves (smooth) in
a linear system is one.

Definition 3.2. We call L k-very ample if for every zero-dimensional subscheme ξ ⊂ S
of length k + 1, the natural map H0(S,L) → H0(ξ, L⊗Oξ) is surjective.
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If L and M are very ample then L⊗k ⊗M⊗l is (k+ l)-very ample. In particular, very
ampleness implies 1-very ampleness.

We quote a result of Göttsche below:

Proposition 3.1 ([Go98], Proposition 5.2). Assume S is a smooth algebraic surface
and L is a (5r− 1)-very ample line bundle on S, then a general r-dimensional sublinear
system V ⊂ |L| contains dr(S,L) curves with precisely r-nodes as singularities.

3.2. Degeneration Formula. In Section 1.4 we explained why dr(S,L) behaves better
in families and is the right object to derive a degeneration formula. The goal of this
section is to prove the degeneration formula for dr(S,L). More explicitly, we will show
that if

[X0, L0] = [X1, L1] + [X2, L2]− [X3, L3]

is an extended double point relation, then then number of nodal curves on [X0, L0] can be
determined by the numbers on [X1, L1], [X2, L2] and [X3, L3]. As a result, it is necessary
to treat the number of curves with varied number of nodes together by considering the
generating function

φ(S,L)(x) =

∞
∑

r=0

dr(S,L)x
r.

The following theorem is the main result of this section:

Theorem 3.2. Suppose [X0, L0] = [X1, L1] + [X2, L2] − [X3, L3] is an extended double
point relation. Then

φ(X0, L0) =
φ(X1, L1) · φ(X2, L2)

φ(X3, L3)
.

In other words, φ is a homomorphism from ω2,1 to (Q[[x]]×, · ).

3.3. Moduli stack of relative ideal sheaves. The key tool is Jun Li and Baosen
Wu’s [LW] construction of the moduli stack of stable relative ideal sheaves. Let ∞ ∈ C
be a specialized point and π : X → C be a flat projective family of schemes that satisfies

(1) X is smooth and π is smooth away from the fiber π−1(∞);
(2) π−1(∞) =: X1 ∪D X2 is a union of two irreducible smooth components X1 and

X2 which intersect transversally along a smooth divisor D.

In [LW], Li and Wu defined the notion of a family of stable perfect ideal sheaves over
C and constructed I

Γ
X/C , the moduli space of stable perfect ideal sheaves of type Γ of

X → C. To make I
Γ
X/C a stack, one has to replace X by new spaces X[n] so that X

and X[n] have the same smooth fiber Xt when t 6= ∞. Over ∞, the fiber of X[n] is a
semistable model

X[n]0 = X1 ∪∆1 ∪∆2 ∪ . . .∆n−1 ∪X2,

where ∆i
∼= PD(OD ⊕ NX1/D). The objects of IΓX/C are (X/S,I) which consists of a

family X over a C-scheme S and a family of stable ideal sheaves I of type Γ on X/S.
The fibers Xs of the family X/S are required to be either smooth a fiber of X/C or a
semistable model X[n]0 for some n. Under these settings, Li and Wu proved that the
moduli space has many good properties:
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Theorem 3.3 ([LW]). The moduli stack IΓX/C is a separated and proper Deligne-Mumford

stack of finite type over C.

In our case, π : X → C is a family of surfaces and I is a family of ideal sheaves of
zero-dimensional closed subschemes of length n . For s ∈ S, when Xs is a smooth fiber
of X/C, Is is automatically perfect and stable. If Xs is a semistable model X[n]0, then
the support of Is can not lie on the intersection of two components of X[n]0 and every
component contains at least one point of the zero-set of Is.

The fibers of π[n] : InX/C → C can be described as follows:

(1) The fiber over ∞ is the union of products

∪n
k=0(X1/D)[k] × (X2/D)[n−k]

for all possible n ≥ k ≥ 0. (Xi/D)[ni] are the moduli spaces of stable relative

ideal sheaves of ni points on Xi/D. (Xi/D)[0] = pt. They are also separated and
proper Deligne-Mumford stacks (see [LW], Theorem 3.7). We denote this fiber

by (X1 ∪D X2)
[n].

(2) I
n
X/C is smooth and π[n] is smooth away from the fiber over ∞.

(3) When t 6= ∞, the smooth fiber of InX/C over t equals X
[n]
t , the Hilbert schemes

of n points on Xt.

Therefore, InX/C can also be viewed as a family of Hilbert schemes of n points on X/C.

The following Definition-Proposition contains some facts proved in [LW].

Definition-Proposition 3.4. Let π : X → P1 be a family of surfaces described in
Definition 2.1 and U is a Zariski open set of P1 obtained by deleting those points with
singular fibers except ∞, i.e. set-theoretically,

U =
{

t ∈ P1 | the fiber X|t is smooth
}

∪ {∞}.

Then πU : XU := X ×P1 U → U is a family of surfaces with only one singular fiber X∞.

(1) Define X [n] to be I
n
XU/U and π[n] : X [n] → U to be the structure morphism.

(2) The fibers of π[n] are:

(π[n])
−1

(0) = X
[n]
0 and (π[n])

−1
(∞) = ∪n

k=0(X1/D)[k] × (X2/D)[n−k].

The inclusions are denoted by

i
[n]
0 : X

[n]
0 → X [n], i[k,n] : (X1/D)[k] × (X2/D)[n−k] →֒ X [n].

(3) Let Z
[n]
0 be the universal closed subscheme inX0×X

[n]
0 . For i = 1, 2, the universal

closed subscheme of stable relative ideal sheaves on Xi can also be constructed

as a closed subscheme of (Xi/D)× (Xi/D)[k]. We denote it by Z
[k]
i .

(4) There is a universal closed subscheme Z ⊂ XU ×X [n] with structure morphisms

Z

P
��

Q // X [n]

XU
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such that the composition πU ◦ P : Z → XU → U has fibers

Z|0 = Z
[n]
0 and

Z|∞ =
(

∪n
k=0Z

[k]
1 × (X2/D)[n−k]

)

∪
(

∪n
k=0(X1/D)[k] × Z

[n−k]
2

)

.

The inclusions are denoted by

j0 : Z
[n]
0 →֒ Z and

j
[k,n]
1 : Z

[k]
1 × (X2/D)[n−k] →֒ Z, j

[k,n]
2 : (X1/D)[k] × Z

[n−k]
2 →֒ Z,

If L is a line bundle on XU , then define L[n] = Q∗P
∗L.

(5) The projections from universal closed subscheme are

Z
[k]
i

p
[k]
1

��

q
[k]
i // (Xi/D)[k]

Xi/D

and Z
[n]
0

p
[n]
0

��

q
[n]
0 // X

[n]
0

X0

and for line bundles Li on Xi, define

L
[k]
i = (q

[k]
i )∗(p

[k]
i )∗Li , i = 0, 1, 2.

(6) π
[k,n]
1 , π

[k,n]
2 are the projections

(X1/D)[k] × (X2/D)[n−k]

π
[k,n]
1

��

π
[k,n]
2 // (X2/D)[n−k]

(X1/D)[k]

3.4. Lemmas. Next, we will present several lemmas before proving Theorem 3.2.

Lemma 3.5. Suppose we have a fibered diagram

X ×Z Y

v

��

u // X

g

��
Y

f // Z

and a vector bundle F on X. Suppose g is finite and f is a closed immersion, then

v∗u
∗F ∼= f∗g∗F .

Proof. Since the question is local on Z and g is affine, we can assume Z = SpecA,
X = SpecB and Y = SpecA/I. Then this lemma follows from simple algebra

M ⊗B (B ⊗A A/I) ∼= M ⊗A A/I

as A/I-modules. �

Lemma 3.6. The sheaves defined in 3.4 satisfy the following properties:

(1) L[n] is a vector bundle of rank 3n on X [n],

(2) L
[k]
i is a vector bundle of rank 3k on X

[k]
i , for i = 0, 1, 2.
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Proof. All the proofs are similar. The morphisms Q, qn and q
[k]
i are all finite and flat for

i = 1, 2. Therefore the functors R1Q∗, R
1(q

[n]
0 )∗ and R1(q

[k]
i )∗ are zero and the lemma

follows from the cohomology and base change theorem. �

Lemma 3.7. Recall that i
[n]
0 : X

[n]
0 →֒ X [n] and i[k,n] : (X1/D)[k] × (X2/D)[n−k] →֒ X [n]

are the inclusions of the fibers. Then

(1) (i
[n]
0 )∗L[n] = L

[n]
0 ,

(2) (i[k,n])∗L[n] = (π
[k,n]
1 )∗L

[k]
1 ⊕ (π

[k,n]
2 )∗L

[n−k]
2 .

Proof. (1) We have the commutative diagram

X
[n]
0

�

�

i
[n]
0 // X [n]

Z
[n]
0

q
[n]
0

OO

p
[n]
0

��

�

� j0 // Z

Q

OO

P

��
X0

�

� i0 // XU

Because diagram on the top satisfies the assumption of lemma 3.5,

(i
[n]
0 )∗Q∗(P

∗L) ∼= (q
[n]
0 )∗(j0)

∗(P ∗L).

Since P ◦ j0 = i0 ◦ p
[n]
0 , j∗0P

∗L ∼= (p
[n]
0 )∗i∗0L. By definition Q∗P

∗L = L[n], therefore

(i
[n]
0 )∗L[n] ∼= (q

[n]
0 )∗(p

[n]
0 )∗i∗0L

∼= (q
[n]
0 )∗(p

[n]
0 )∗L0

∼= L
[n]
0 .

(2) The following diagram is commutative:

(X1/D)[k] (X1/D)[k] × (X2/D)[n−k]
π
[k,n]
1oo �

� i[k,n]
// X [n]

Z
[k]
1

q
[k]
1

OO

p
[k]
1

��

Z
[k]
1 × (X2/D)[n−k]

pr1
oo

j
[k,n]
1 //

φ
[k]
1 =α1◦p

[k]
1 ◦pr1

��

q
[k]
1 ×id

OO

��

Z

Q

OO

P

��
X1/D

�

� α1 // X1 ∪D X2
�

� i∞ // XU
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Since P ◦(j
[k,n]
1 ) = i∞◦φ

[k]
1 , (j

[k,n]
1 )∗(P ∗L) = (φ

[k]
1 )∗(i∗∞L). Furthermore, apply Lemma

3.5 on the following diagram

(X1/D)[k] × (X2/D)[n−k] �
� i[k,n]

// X [n]

Z1 × (X2/D)[n−k] ∪ (X1/D)[k] × Z
[n−k]
2

�

�

j
[k,n]
1 ∪j

[n−k,n]
2 //

q
[k]
1 ×id∪id×q

[n−k]
2

OO

Z

Q

OO

yields

(i[k,n])∗Q∗(P
∗L) ∼= (q

[k]
1 × id ∪ id× q

[n−k]
2 )∗(j

[k,n]
1 ∪ j

[n−k,n]
2 )∗(P ∗L).

By definition Q∗P
∗L = L[n], thus

(i[k,n])∗L[n] ∼=(q
[k]
1 × id ∪ id× q

[n−k]
2 )∗

(

(j
[k,n]
1 )∗(P ∗L) ∪ (j

[n−k,n]
2 )∗(P ∗L)

)

∼=(q
[k]
1 × id ∪ id× q

[n−k]
2 )∗

(

(φ
[k]
1 )∗(i∞)∗L ∪ (φ

[n−k]
2 )∗(i∞)∗L

)

=(q
[k]
1 × id)∗

(

(φ
[k]
1 )∗(i∞)∗L

)

⊕ (id× q
[n−k]
2 )∗

(

(φ
[n−k]
2 )∗(i∞)∗L

)

,

and

(q
[k]
1 × id)∗

(

(φ
[k]
1 )∗(i∞)∗L

)

∼=(q
[k]
1 × id)∗

(

(τ
[k,n]
1 )∗(p

[k]
1 )∗(α

[k]
1 )∗(i∞)∗L

)

∼=(q
[k]
1 × id)∗

(

(τ
[k,n]
1 )∗(p

[k]
1 )∗L1

)

∼=(π
[k,n]
1 )∗(q

[k]
1 )∗(p

[k]
1 )∗L1

∼= (π
[k,n]
1 )∗L

[k]
1 .

The last isomorphism follows from applying Lemma 3.5 on the upper-left part of the
diagram. Similarly,

(id× q
[n−k]
2 )∗

(

(φ
[n−k]
2 )∗(i∞)∗L

)

∼= (π
[n−k,n]
2 )∗L

[n−k]
2 .

Thus we can conclude

(i[k,n])∗L[n] = (π
[k,n]
1 )∗L

[k]
1 ⊕ (π

[k,n]
2 )∗L

[n−k]
2 .

�

Suppose S is a smooth algebraic surface and r ∈ N. Recall that in Definition 3.1
we have defined W 3r

0 and W 3r as subschemes of S[3r]. When S = X0, (X1/D,X2/D
respectively), the corresponding closed subschemes are denoted by W 3r

X0
, (W 3r

X1/D
,W 3r

X2/D

respectively)

Lemma 3.8. There is a family of closed subschemes W3r ⊂ X [3r] such that

W3r ∩X
[3r]
0 = W 3r

X0

and

W3r ∩
(

(X1/D)[m] × (X2/D)[3r−m]
)

=

{

empty set if m is not divisible by 3,

W 3k
X1/D

×W
3(r−k)
X2/D

if m = 3k, k ∈ N
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Furthermore, W3r is flat over U via the composition W3r →֒ X [3r] → U .

Proof. Let V be the set of points

r
∐

i=1

Spec(OS,xi/m
2
S,xi

) in X [3r] where S is a smooth

fiber of X and x1, . . . , xr are distinct closed points on S. Define W3r to be the clo-
sure of V in X [3r]. Since limit points of family in V are disjoint zero-dimensional sub-
schemes of length a multiple of three, there is neither limit point nor interior point on
(X1/D)[m] × (X2/D)[3r−m] if m is not divisible by 3.

Suppose b is a closed point in W3r, then b is the limit of points in V. As a closed
subscheme of XU [n], b is the disjoint union of zero-dimensional closed subschemes bi and
every bi is supported on a single point. If we choose small disjoint open neighborhoods
of bi, points in V approaching b in those neighborhoods are disjoint families of points in
V approaching bi for every i. Therefore it suffices to assume b is supported on a single

point p and prove b is in W 3r
X0

or W 3k
X1/D

×W
3(r−k)
X2/D

.

Suppose b is a closed point in W3r ∩X
[3r]
0 , then p is a closed point of X0. The family

XU → U is locally trivial near p. Thus there exists an analytic neighborhood of p in
XU which is a product of U1 and U2, such that U1 is open in X0 and isomorphic to an
open set of C2 and U2 is open in U . Suppose vi is a family of closed points of V with
limit b, we can assume vi is sufficiently close to b and belongs to U1 × U2. Define v′i to
be the image of vi under the first projection pr1 : U1 × U2 → U1. v′i is a disjoint union
of Spec(OU1,pr1(xi)/m

2
U1,pr1(xi)

). In addition, v′i is in U1 ⊂ X0 and the limit is still b.

Therefore we can conclude that b is in W 3r
X0

.

In the case b is on W3r∩(X1/D)[3k] for some k, the zero-dimensional closed subscheme
b belongs to a component of (X1)[m]0 for some m ∈ N. Call the component S, by
construction of the moduli stack the support p is a nonsingular point of S. Since S is
contained in the fiber of ∞ in XU [m] and the family XU [m] → U is also locally trivial
near p. We can use the projection argument again and show b is the limit of points of

the form
∐k

i=1 Spec(OS,yi/m
2
S,yi

) where y1, . . . , yk are distinct points in S. This shows b

belongs to W 3k
X1/D

. The case b ∈ W3r ∩ (X2/D)[3(r−k)] can be proved similarly.

The previous argument shows that

W3r ∩X
[3r]
0 ⊂ W 3r

X0
,

and

W3r ∩
(

(X1/D)[m] × (X2/D)[3r−m]
)

= φ if m is not divisible by 3,

W3r ∩
(

(X1/D)[m] × (X2/D)[3r−m]
)

⊂ W 3k
X1/D

×W
3(r−k)
X2/D

if m = 3k, k ∈ N.

On the other hand, W 3r
X0

is the closure of V ∩ X
[3r]
0 . This is because W3r contains

V ∩ X
[3r]
0 and is a closed set, therefore W3r must contain W 3r

X0
. Similarly, W 3k

X1/D
×

W
3(r−k)
X2/D

is the closure of V ∩
(

(X1/D)[3k] × (X2/D)[3(r−k)]
)

. Because W3r contains V ∩
(

(X1/D)[3k] × (X2/D)[3(r−k)]
)

and is closed, W 3k
X1/D

×W
3(r−k)
X2/D

is a subset of W3r. This

finished the first part of the proof.
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Since every point in V is a reduced closed point in X [3r] and V is dense in W [3r], W [3r]

is reduced. Second, for every point b in W [3r] there is a section U → W [3r] which passes
through b. Therefore W [3r] is irreducible and dominates U which implies W [3r] → U is
flat.

�

3.5. Relative generating functions.

Definition 3.3. Define

d0(Xi/D,Li) = 1, dk(Xi/D,Li) =

∫

W 3k
Xi/D

c2k(L
[3k]
i ) for k ≥ 1

and φ(Xi/D,Li)(x) =

∞
∑

k=0

dk(Xi/D,Li)x
k

to be the relative enumerative number and the relative generating function of [Xi/D,Li]
for i = 1, 2.

Proposition 3.9. Suppose [X0, L1]− [X1, L1]− [X2, L2]+ [X3, L3] is an extended double
point relation, then

φ(X0, L0) = φ(X1/D,L1) · φ(X2/D,L2).

Proof. For r ∈ N, recall X
[3r]
0 is the fiber of X [3r] over 0 and

L[3r]|
X

[3r]
0

= L
[3r]
0 , W3r ∩X

[3r]
0 = W 3r

X0
.

The fiber of X [3r] over ∞ is

X [3r]|∞ = ∪3r
m=0(X1/D)[m] × (X2/D)[3r−m] ,

L[3r]|(X1/D)[m]×(X2/D)[3r−m] = (π
[m,3r]
1 )∗L

[m]
1 ⊕ (π

[m,3r]
2 )∗L

[3r−m]
2 ,

W3r ∩ X [3r]|∞ = ∪3r
k=0W

3k
X1/D

×W
3(r−k)
X2/D

.

Recall that U is open in P1, X [3r] → U is a flat family and W3r → U is flat. Thus
[W3r|0] and [W3r

∞ ], the classes of fibers of W3r over 0 and ∞, satisfy

c2r(L
[3r])[W3r|0] = c2r(L

[3r])[W3r |∞].

c2r(L
[3r])[W3r|0] =c2r(L

[3r])[W 3r
X0

] =

∫

W 3r
X0

c2r(L
[3r]
0 ) = dr(X0, L0),
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c2r(L
[3r])[W3r|∞] = c2r(L

[3r])[∪3r
k=0W

3k
X1/D

×W
3(r−k)
X2/D

]

=

r
∑

k=0

c2r((i
[3k,3r])∗L[3r])[W 3k

X1/D
×W

3(r−k)
X2/D

]

=

r
∑

k=0

c2r

(

(π
[3k,3r]
1 )∗L

[3k]
1 ⊕ (π

[3k,3r]
2 )∗L

[3(r−k)]
2

)

[W 3k
X1/D

×W
3(r−k)
X2/D

]

=
r
∑

k=0

(

2r
∑

l=0

cl

(

(π
[3k,3r]
1 )∗L

[3k]
1

)

c2r−l

(

(π
[3k,3r]
2 )∗L

[3(r−k)]
2

)

)

[W 3k
X1/D

×W
3(r−k)
X2/D

].

For dimension reasons, the only nonzero terms are:

r
∑

k=0

(

c2k

(

(π
[3k,3r]
1 )∗L

[3k]
1

)

c2(r−k)

(

(π
[3k,3r]
2 )∗L

[3(r−k)]
2

))

[W 3k
X1/D

×W
3(r−k)
X2/D

]

=

r
∑

k=0

∫

W 3k
X1/D

c2k(L
[3k]
1 )

∫

W
3(r−k)
X2/D

c2(r−k)(L
[3(r−k)]
2 )

=
r
∑

k=0

dk(X1/D,L1) · dr−k(X2/D,L2).

Therefore for every positive integer r,

dr(X0, L0) =
r
∑

k=0

dk(X1/D,L1) · dr−k(X2/D,L2),

φ(X0, L0) = φ(X1/D,L1) · φ(X2/D,L2).

�

To obtain a formula for absolute generating function, the relative surfaces can be
closed up by adding projective bundles.

Corollary 3.10. Let [X,L] be a pair in ω2,1. Suppose D is a smooth curve in X, N is
the normal bundle of D in X and L ·D is the intersection number of c1(L) and D, then

φ(X,L) = φ(X/D,L) · φ(PN/D, (L ·D)f).

Proof. Let X be the blow up of X × P1 along D × {∞}, then X is the deformation to
the normal cone. Let π : X → X × P1 → P1 be the composition of blow-up morphism
and projection to P1. X → P1 is a smooth family of surfaces with general fiber X
and π−1(∞) = X ∪D PN . Apply Proposition 3.9 to X , then we can obtain the desired
formula.

�

For relative surfaces X1/D and X2/D, if we let the normal bundle of D in X1 be N ,
then the normal bundle of D in X2 is the dual bundle N∨. Recall

PN = P(OD ⊕N), PN∨ = P(OD ⊕N∨).
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We fix the embedded curves

D0 = P(N) ⊂ PN , D∞ = P(OD) ⊂ PN , D∨
0 = P(N∨) ⊂ PN∨ , D∨

∞ = P(OD) ⊂ PN∨ .

The curveD can be naturally embedded to the four curves in PN and PN∨. In addition,
because L1 and L2 are the restriction of line bundle L on X ,

L ·D1 = c1(L1) ∩ [X1] ∩ [X2] = c1(L) ∩ [D] ∩ [X1] ∩ [X2] = L ·D2.

This implies that in Definition 2.1, if f is the fiber class in X3 → D, the line bundle L3

equals (L1 ·D)f = (L2 · D)f = (c1(L) ∩D)f . Therefore we will also use L3 to denote
the line bundle (L1 ·D)f on PN and (L2 ·D)f on PN∨.

Corollary 3.11. Let Xi, D, PN , PN∨ be as above and in Definition 2.1. The generating
functions satisfy

φ(X1, L1) = φ(X1/D,L1) · φ(PN/D0, L3),

φ(X2, L2) = φ(X2/D,L2) · φ(PN∨/D∨
0 , L3)

Proof. Apply Corollary 3.10 to X1/D and X2/D. �

Let X0 = PN , D = D0 and X be the the blowup of PN × P1 at D × {0}. Then the
general fiber is PN and π−1(∞) = PN ∪DPN where D embeds into the first PN as D0 and
embeds into the second PN as D∞. Let L be the pullback of L3 from the composition
X → PN × P1 → PN . Proposition 3.9 implies

Corollary 3.12.

φ(PN , L3) = φ(PN/D0, L3) · φ(PN/D∞, L3).

Now we are ready to prove Theorem 3.2

Proof of Theorem 3.2. From Proposition 3.9 and its corollaries:

φ(X0, L0) = φ(X1/D,L1) · φ(X2/D,L2),

φ(X1/D,L1) · φ(PN/D0, L3) = φ(X1, L1),

φ(X2/D,L2) · φ(PN∨/D∨
0 , L3) = φ(X2, L2),

φ(PN , L3) = φ(PN/D0, L3) · φ(PN/D∞, L3).

There is a canonical isomorphism between PN and PN∨ which maps D∞ ⊂ PN to
D0 ⊂ PN∨ and keeps the line bundle L3 unchanged. This implies

φ(PN∨/D∨
0 , L3) = φ(PN/D∞, L3).

Then the theorem is proved by multiplying all equations.
�
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4. Universality Theorems and Generating functions

4.1. Outline. In this Section, we will prove Theorem 1.1, Theorem 1.2 and Theorem
1.3 by combining the degeneration formula (Theorem 3.2) with the structure of algebraic
cobordism group ω2,1 (Theorem 2.3).

Recall that for any smooth projective surface S and line bundle L on S, we defined
and studied the enumerative number dr(S,L) and generating function

φ(S,L)(x) =

∞
∑

r=0

dr(S,L)x
r

in Section 3. By Theorem 3.2, this function φ induces a homomorphism from ω2,1 to
(Q[[x]]×, · ). Theorem 2.3 proves that ω2,1 is four-dimensional and the only invariants
are L2, LK, c1(S)

2 and c2(S). Combining these two results, we show that φ(S,L)(x)
only depends on these four topological numbers and has a multiplicative structure.

4.2. Proof of Theorem 1.3 and Theorem 1.1.

Proposition 4.1. There exist four series A1, A2, A3 and A4 in Q[[x]]× such that

φ(S,L)(x) = AL2

1 ALKS
2 A

c1(S)2

3 A
c2(S)
4 .

More explicitly,

A1(x) = φ(P2,O)−1φ(P2,O(1))φ(P1 × P1,O)
3
2φ(P1 × P1,O(1, 0))−

3
2 ,

A2(x) = φ(P1 × P1,O)
1
2φ(P1 × P1,O(1, 0))−

1
2 ,

A3(x) = φ(P2,O)−
1
3φ(P1 × P1,O)−

1
4 ,

A4(x) = φ(P2,O)−
2
3φ(P1 × P1,O)

3
4 .

Proof. By Theorem 2.3, the class of [S,L] in ω2,1 is

[S,L] = a1[P
2,O] + a2[P

2,O(1)] + a3[P
1 × P1,O] + a4[P

1 × P1,O(1, 0)](4.1)

where

a1 = −L2 +
c1(S)

2 + c2(S)

3
− c2(S), a2 = L2,

a3 = L2 +
LK + L2

2
−

c1(S)
2 + c2(S)

4
+ c2(S), a4 = −L2 −

LK + L2

2
.

Since the generating function φ is a homomorphism from ω2,1 to (Q[[x]]×, · ) (Theorem
3.2). We obtain

φ(S,L)(x) = φ(P2,O)a1φ(P2,O(1))a2φ(P1 × P1,O)a3φ(P1 × P1,O(1, 0))a4 .

Plugging in the values of ai and grouping the functions according to L2, LK, c1(S)
2 and

c2(S) complete the proof. �

Another way to prove Proposition 4.1 is using the following diagram
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Q[[x]]×

ω2,1
(L2, LK, c1(S)2, c2(S))

φ

BB���������������
Q4

[[7
7

7
7

7
7

7

Since φ is a homomorphism and ω2,1 → Q4 is an isomorphism, they induce a homo-
morphism from Q4 to Q[[x]]×. This implies φ(S,L)(x) is an universal power series in L2,
LK, c1(S)

2 and c2(S). Furthermore, let the the image of the standard basis ei of Q
4 be

Ai, then the commutative diagram implies

φ(S,L)(x) = AL2

1 ALKS
2 A

c1(S)2

3 A
c2(S)
4 .

Remark. One can see the same proof is still valid if we replace

{[P2,O], [P2,O(1)], [P1 × P1,O], [P1 × P1,O(1, 0)]}.

by any basis of ω2,1. Thus the four series A′
is can also be expressed in the generating

function φ of any basis.

Corollary 4.2. The enumerative number dr(S,L) is a universal polynomial of degree r
in L2, LK, c1(S)

2 and c2(S) for all projective smooth surfaces S and line bundles L on
S.

Proof. For all pairs [S,L], dr(S,L) is the coefficient of xr in

φ(S,L)(x) = AL2

1 ALKS
2 A

c21(S)
3 A

c2(S)
4 .

After expanding the series, one can see that the coefficient of xr in φ(S,L)(x) is a
universal polynomial of (L2, LK, c1(S)

2, c2(S)) of degree r. �

Next, we prove Göttsche’s conjecture:

Theorem 1.1. For every integer r ≥ 0, there exists a universal polynomial Tr(x, y, z, t)
of degree r with the following property: given a smooth projective surface S and a (5r−1)-
very ample (5-very ample if r = 1) line bundle L on S, a general r-dimensional sublinear
system of |L| contains exactly Tr(L

2, LK, c1(S)
2, c2(S)) r-nodal curves.

Proof. dr(S,L) is always a universal polynomial of degree r for all line bundles L on S.
If L is (5r− 1)-very ample, Proposition 3.1 shows dr(S,L) equals the number of r-nodal
curves in [S,L]. Thus the number of r-nodal curves in [S,L] is given by a universal
polynomial of degree r when L is (5r − 1)-very ample. �

Corollary 4.3. The generating functions φ(S,L)(x) and T (S,L)(x) (defined in Section
1.3 as

∑∞
r=0 Tr(L

2, LK, c1(S)
2, c2(S))x

r) are equal.

Theorem 1.3. There exist universal power series A1, A2, A3, A4 in Q[[x]]× such that
the generating function T (S,L) has the form

T (S,L) = AL2

1 ALKS
2 A

c1(S)2

3 A
c2(S)
4 .

Proof. This follows from Proposition 4.1 and Corollary 4.3. �
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4.3. Proof of the Göttsche-Yau-Zaslow Formula. Let τ be on the complex upper
half plane, q = e2πiτ . The Eisenstein series

G2(τ) :=
−1

24
+
∑

n>0





∑

d|n

d



 qn

is a quasi-modular form. Denote by D the differential operator D := 1
2πi

d
dτ = q d

dq . Since

the ring of quasimodular forms is closed under differentiation, DG2 and D2G2 are also
quasi-modular. In addition, let

∆(τ) = q
∏

k>0

(1− qk)24 = η(τ)24

where η(τ) is the Dedekind η function, ∆(τ) is a modular form. We define the generating
function

γ(S,L)(q) =
∞
∑

r=0

Tr(L
2, LK, c1(S)

2, c2(S))(DG2(τ))
r.

An equivalent form of Bryan and Leung’s result ([BL00], Theorem 1.1) states that for a
generic K3 surface S and a primitive class L,

γ(S,L)(q) =
(DG2(τ)/q)

χ(L)

∆(τ)D2G2(τ)/q2
.

More generally, the generating function γ(S,L)(q) for all algebraic surfaces is given by

Theorem 1.2 (The Göttsche-Yau-Zaslow Formula). There exist universal power series
B1, B2 in q such that

∞
∑

r=0

Tr(L
2, LK, c1(S)

2, c2(S))(DG2(τ))
r =

(DG2(τ)/q)
χ(L)B1(q)

K2
SB2(q)

LKS

(∆(τ)D2G2(τ)/q2)χ(OS)/2
.

Proof. Since (K2
S , LKS , χ(L), χ(OS)) and (L2, LK, c1(S)

2, c2(S)) determine each other
by linear relations, φ(S,L) is multiplicative in (K2

S , LKS , χ(L), χ(OS)) and so as γ(S,L)(q) =
φ(S,L)(DG2). Therefore we can let

γ(S,L)(q) = B1(q)
K2

SB2(q)
LKSB3(q)

χ(L)B4(q)
χ(OS).

For all generic K3 surfaces S and primitive classes L,

γ(S,L)(q) =
(DG2(τ)/q)

χ(L)

∆(τ)D2G2(τ)/q2
.

These pairs can achieve infinitely many distinct χ(L), thus

B3(q) = DG2(τ)/q and B4(q) = (∆(τ)D2G2(τ)/q
2)1/2

and the result follows. �

Remark. Although in [BL00] they found the formula for generating function of primitive
classes on K3 surfaces with Picard number one, it is not trivial to see why the coefficients
equals our universal polynomials. For each r, we have to show that there exist infinitely
many K3 surfaces with Picard number one and primitive classes L such that L is (5r−1)-
very ample and also have distinct intersection numbers L2. It can be proved by using



A PROOF OF THE GÖTTSCHE-YAU-ZASLOW FORMULA 29

Lemma 5.3 in [KP01], which shows that on a K3 surface with Picard number one, a
primitive class L is (5r − 1)-very ample if L2 > 20r. Therefore Bryan and Leung’s
generating function is exactly φ(S,L)(x).

There is a reformulation of Theorem 1.3 given by Göttsche ([Go98], Remark 2.6),
which is the original version of Bryan and Leung’s formula.

Corollary 4.4. For all l, m, r, define

nS
r (l,m) = T S

l+χ(OS)−1−r(2l +m,m).

Then

∑

l∈Z

nS
r (l,m)ql = B1(q)

K2
SB2(q)

m(DG2(τ))
r D2G2(τ)

(∆(τ)D2G2(τ)/q2)χ(OS)/2
.

If L is sufficiently ample with respect to δ = χ(L)−1−r, then nS
r ((L

2−LKS)/2, LKS)
counts the δ-nodal curves in a general r-codimensional sublinear system of |L|. This
reformulation provides another (possibly better) way to find the closed form of B1(q)
and B2(q).
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