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ABSTRACT 

 
In this paper, we propose a layer-based integrated real-time scheduling algorithm in a single scalable stream and an on-
line dynamic resource allocation algorithm among multiple concurrent users for scalable streaming media server over a 
network with packet loss and variable delay. The layer-based real-time scheduling algorithm efficiently schedules the 
packets in the buffer of the scalable streaming media server for transmission. The on-line resource allocation algorithm 
can allocate the server’s resource among all the concurrent streams fairly and improve the playback quality in client. 
Simulation results show that our proposed algorithms outperform the frame-based scheduling algorithm and the off-line 
resource allocation algorithm in various situations with different round-trip times, channel errors, etc. The low 
complexity of the proposed algorithms also enables them to be applied in real-time applications. 
 
Keywords: real-time scheduling; scalable streaming; resource allocation; fine granularity scalable (FGS); streaming 
server  
 

1. INTRODUCTION 
 
Recent advances in multimedia computing and communication technologies have made it feasible to provide real-time 
media streaming services over the Internet. Due to the wide variation of available bandwidth and transmission errors 
over the Internet and the variety of end user devices, it is desirable to design  a media streaming–oriented coding 
scheme that can adapt to the channel conditions and the user devices. The server should be able to adapt to the timing 
constraints of streaming media data and the time-varying network conditions. If the media data does not arrive at user 
end in time, the playback will be paused, which is annoying to human ears and eyes. Scalable/layered encoding has 
been believed to be promising to cope with the heterogeneity of user access rates and fluctuation of available bandwidth 
in video streaming. For instance, the MPEG-4 FGS coding scheme, which has been accepted as a part of MPEG-4 
standard [1][2], further provides fine granular scalability. It consists of one non-scalable coded base layer and one or 
multiple bitplane-encoded scalable enhanced layers. Fine granularity is implemented by decoding the enhancement 
stream at any point. It differs from all the previous layered video coding schemes where only limited layers are 
available. Another advantage of FGS is that the bit rate can be adjusted at transmission time with very fine granularity 
and very little complexity.  

In a streaming media system, the server packetizes the coded scalable/layered streams into some packets and then 
sends them to the client through various networks. Bitstreams at different layers have different contributions to the 
playback quality obtained in client. Therefore, it is an important problem how we select and schedule packets delivery 
of a scalable streaming media over a lossy network. The optimized scheduling of layered streaming media delivery was 
first proposed by Podolsky et al. [4], who adopt the Markov chain to analyze and find the optimal packets transmission 
and retransmission policies. Chou et al. [5] and Miao et al. [6] also addressed the same problem with a rate-distortion 
analysis.  

The resources in a streaming server include CPUs, memories, and storage devices [7]. Since the server resources, 
especially the bandwidth or throughput of the server, are limited, only a limited number of concurrent clients with the 
QoS requested can be served. It is very important to fairly allocate the server resource to multiple concurrent scalable 
video streams. Floyd et al. [8], Arulambalam et al. [9] and Zhang et al. [10] proposed network bandwidth allocation 
algorithms, but they did not take into account the limitation of the server resources.  

In this paper, we propose a layer-based integrated real-time packet scheduling algorithm for a single scalable 
stream and an on-line resource allocation algorithm among multiple concurrent streams for the scalable streaming 
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media server over network with packet losses and delay variations. The real-time packet scheduling algorithm, by 
determining how to transmit/retransmit the packets subjects to a given time, improves the utility of the bandwidth and 
smoothes the playback quality in client. The on-line resource allocation algorithm allots the server resource to the 
concurrent streams fairly and dynamically, and improves the total playback quality in client.  

The rest of this paper is organized as follows. Section 2 briefly introduces the framework of FGS video coding and 
the architecture of the scalable streaming system. Section 3 presents the layer-based scheduling algorithm for the 
scalable layered streaming. Section 4 describes the on-line fair resource allocation algorithm in a streaming server. 
Section 5 gives some experimental results and comparisons among different algorithms. Section 6 concludes this paper. 

 

2. SCALABLE VIDEO CODING AND ARCHTECTURE OF STREAMING SYSTEM 
 
2.1. THE FGS VIDEO CODING 
 
In response to the increasing demand on streaming video applications over the best-effort Internet, the coding objective 
for streaming video is changed to optimize the video quality for a wide range of bit rates. Fine granularity scalable (FGS) 
video coding [1][2] has been accepted by MPEG-4 as an amendment to the traditional non-scalable MC-DCT approach 
for streaming video profile. The basic idea of FGS video streaming is to code a raw video sequence into a base layer 
substream and one or multiple enhancement layer substreams. An FGS encoder, using the motion-compensated DCT 
coding to be compatible with other standards, such as MPEG-2, MPEG-4, H.263 and H.264, etc., generates a base-layer 
video to reach the lower bound of the bit-rate range. Then the encoder uses bitplane coding to represent the 
enhancement streams. The enhancement layer is to code the difference between the original picture and the 
reconstructed picture using bit-plane coding of the DCT coefficients. The bitstream of the FGS enhancement layers may 
be truncated into any number of bits per picture/frame after encoding is completed. The decoder should be able to 
reconstruct an enhancement video from the base layer and the truncated enhancement-layer bitstreams. The 
enhancement-layer video quality is proportional to the number of bits decoded by the decoder for each picture/frame. 
Figure 1 shows conceptually such a framework. In an FGS coding scheme, the base layer and all enhancement layers in 
predicted frame are always predicted from the reconstructed version of the base layer in the reference frame. The fine 
scalable characteristic of FGS is very important, since the same content can be accessed over heterogeneous network by 
various receivers with different computing power, memory, display resolutions, etc.  
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Figure 1. The FGS framework 

 
2.2. THE ARCHITECTURE OF A SCALABLE STREAMING SYSTEM 
 
A typical streaming system consists of clients and servers over a network. Figure 2 shows the architecture of a scalable 
streaming media system. Each client may make real-time requests for scalable streaming. The client requests are sent to 
the server via network connections, which also serve for transmission of media data. To satisfy the performance 
requirements of each client, a scalable streaming server must employ an admission control algorithm to determine 
whether the server can guarantee the QoS (Quality of Service) requirements of a new client without violating the 
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performance requirements of the clients already being serviced. If a new request is admitted, the server will read the 
data from the storage devices, packetize them, and feed them into the server’s transmission buffers. The server selects 
one packet at a time from those buffers and sends it over the lossy channel. Some packets may be lost, damaged or 
delayed (delayed packets are also considered lost if they exceed their playback delay). At the client end, the lost or 
damaged packets are reported to the server via a feedback channel. For a video streaming session, it is desirable to 
adjust its sending rate according to the perceived congestion level in the network and the resource available in the server. 
Through this adjustment, a suitable loss level can be maintained and resources of network and server can be shared 
fairly among connections. The receiver monitors the network condition and gathers related information; while the 
sender changes its sending rate according to the available network bandwidth estimated from the packet loss rate, RTT 
(round-trip-time), and RTO (retransmission timeout) values. A retransmitted packet typically has an extra delay of one 
or more RTTs, and cannot be guaranteed to arrive at the client on time. In addition, even if there is still time to 
retransmit at a given time, a decision needs to be made on whether this packet should be retransmitted or not. Therefore, 
a streaming server needs to simultaneously provide services to multiple concurrent users and guarantee the quality of 
service for each client. It must efficiently perform two tasks: (1) the scheduler determines the order of serving the set of 
requests from all the data in the transmission buffers; and (2) the resource allocator allocates the server resource to 
concurrent users according to the network and server conditions. We adopted a real-time packet scheduling algorithm 
for the scheduler and an on-line resource allocation algorithm for the resource allocator. The details are described as 
following. 
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Figure 2. The architecture of FGS video streaming system 

 
3. LAYER-BASED INTEGRATED REAL-TIME SCHEDULING ALGORITHM 

 
Scalable streaming media have timing constraints because of their sensitivity to delay and jitter. Retransmission can be 
used to recover the lost packets over a best-effort network [7]. We want to find a packet transmission policy to select 
the packets to be transmitted or retransmitted at any given time during a streaming session, so to improve the playback 
quality in client. Due to the delivery deadline constraint, not all lost packets can be recovered by retransmission. 
However, if the server schedules a packet to be sent much earlier than its playback time, this packet will have more 
chances to be retransmitted before it is too late for display. If a packet is not available at its expected display time at the 
receiver, it will miss its deadline. In addition, even if there is still time to retransmit a packet at a given time, a decision 
needs to be made on whether it should be retransmitted or not. Just as the description in Subsection 2.1, the base layer 
carries the most important information within the FGS coding scheme. The base layer bitstream is very sensitive to the 
channel error. If the packets of the base layer are lost, the quality of reconstructed video can be degraded severely. As 
for the enhancement layers, the residue between the original image and the reconstructed image of base layer is 
compressed with bit plane coding technique to form the enhancement bitstream. Since the bit plane coding produces an 
embedded bitstream with fine granularity scalability, the enhancement bitstream can be arbitrarily truncated to fit the 
available channel bandwidth and tolerate the channel errors. Real-time streaming playback requires the server to 
transmit the data packets prior to their playback instants (i.e., deadlines). Packets scheduling algorithms with real-time 
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deadlines, such as Earliest Deadline First (EDF) [11] can optimize the quality of the video reconstructed in client. EDF 
scheme transmits the packets in the order of their deadlines but cannot consider the features of the fine scalable video 
stream. Therefore, we propose a layer-based integrated real-time scheduling algorithm to send the packets of a scalable 
streaming.  

The layer-based integrated real-time scheduling algorithm adopts different scheduling scheme for different layer. 
The base layer bitstream is the most important information to reconstruct the video, so we adopt hard real-time 
scheduling [12] scheme to send the packets for the base layer; while the enhancement layer bitstreams give the 
enhancement quality and packets loss does not give most degraded quality, so we adopt soft real-time scheduling 
scheme [12].  

The loss impact of lower enhancement layer within a frame on video quality is much greater than that of the higher 
enhancement layers within it. As different layer has a different effect on the playback, we set the higher priority to the 
lower (more important) layer packets and set the lower priority to the higher (less important) layer. In fact, the priority 
of the packet is consistent with the distortion. Since it is very complex to compute and compare the distortion of every 
packet, we set different priority to different layer instead of distortion roughly. It simplifies the determination of how to 
order the packets in the transmission buffers. The layer-based integrated real-time scheduling algorithm combines 
considerations of layer distortion and deadlines. Thus, base layer and important enhancement layers data can be 
transmitted earlier. If it is lost, it can have more chances to be retransmitted. If several packets in the transmission buffer 
belong to the same layer, packets with earliest deadline are served first. The server transmits the lower (more important) 
layer packets in the transmit buffer as soon as possible.  The algorithm not only improves the utility of the bandwidth 
but also smoothes the playback quality. 

With the FGS coding scheme, the video content can be compressed over any desired the base layer bitrate range 
RBL and the enhancement layer bitrate REL. The total bitrate is Rtotal = RBL + REL. When the ith streaming is admitted, the 
server will set its sending rate Rs,i(t) to be no less than RBL,i(t) (i.e. RBL,i�����s,i��� ) in the interval [t, t+T), where T is 
the scheduling period. Subsequently, the server transmits packets of the enhancement layer and retransmits the lost 
packets using a bit-rate Rsoft,i(t) = Rs,i��� - RBL,i���. So the scheduling task can be divided into two parts. The server 
adopts hard real time scheduling for base layer at a sending rate of Rhard,i���� RBL,i����in the interval [t, t+T) and soft 
real-time scheduling for packets of enhancement layers and retransmitted packets at a sending rate Rsoft,i(t)�  
Let pm,n denote the packet of the nth layer in frame m. The packets are put into the transmission buffers according to the 
decoding order. The release-time am,n is the earliest time at which the packet pm,n becomes ready for scheduling in the 
transmission buffer. But the packets of different layers in the same frame have different release-time. The release-time 
am,0 of the base layer packet pm,0 is earlier than other packets of enhancement layers and the packet pm,0 will have more 
chances to be retransmitted before it is too late for display. As for the enhancement layer, the packets of more important 
layers have earlier release-time than those of less important layers (i.e. am,k ��am,l, (k�l)). Deadline dm,n  is the latest 
time at which the packet pm,n should be sent to the client, otherwise it is too late for playback. We assume that different 
layers in a frame have the same deadline dm. The schedule-time sm,n  is the time at which the scheduler sends packet pm,n 
to client. The RTT (round-trip-time) is defined as the interval from the time a packet is sent from the server to the time 
the server gets feedback of this packet from the client. The packet loss probability over the lossy channel is�. 
Information related to RTT and channel error�can be received by server via client’s feedback. The size of the packet 
pm,n is bm,n. The processing time of the packet pm,n is 
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The fulfill-time of a packet pm,n is fm,n = sm,n + cm,n. The decoding time is dtm. A packet pm,n is ready for scheduling if the 
following conditions are satisfied: the current time tcur (tcur∈[t,t+T) )is later than its release-time am,n, and its fulfill-time 
fm,n is earlier than its deadline, i.e., am,n ��tcur and tcur + cm,n ��dm. 

The precise description of layer-based real-time integrated scheduling algorithm for delivery of scalable streaming 
media over a lossy network is given below. 
 
Layer-based real-time integrated scheduling algorithm: 
 
Step 1: Get the current sending rate Rs,i���  from the resource allocator; compute the sending rate of the base layer; Let 

Rhard,i(t)= RBL,i(t), then Rsoft,i������Rs,i��� – Rhard,i���; 
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Step 2: Let PBL(t) ,PEL(t) and PRE(t) be the sets of ready packets with earliest deadline in the buffers of  base layer, 
enhancement layer and retransmission packets at the current time tcur (t ≤ tcur<���) of the ith streaming, 
respectively. Compare tcur with the deadline dm of the packet Pm,n in the server transmission buffer. If the packet 
deadline dm > tcur, remove the it from the buffers; 

Step 3: Schedule and send the packets from PBL(t) at the sending rate Rhard,i���. And set the timeout of this packet tm,n = 
tcur + RTO; 

Step 4: Select the packets from PEL(t) and PRE(t) with the lowest (most important) layer and send them to the client via 
the network at the sending rate Rsoft,i���. And set the timeout tm,n = tcur + RTO; 

Step 5: If the server gets acknowledgement (ACK) of a packet from the client, remove the packet from the buffer; else 
if a packet reaches its timeout tm,n, move it from transmission buffer into retransmission buffer, and set its release 
time as the current time tcur; Go to Step 1. 

In the layer-based real-time integrated scheduling algorithm, the step 3 and step 4 are performed in parallel. Since 
Rhard,i(t)= RBL,i(t), all the packets in the base layer buffer can be sent and no packet misses the deadline.  But some 
packets of enhancement layer and retransmission buffers are discarded if they miss their deadline. The algorithm 
transmits the most important packets to reconstruct the playback quality as soon as possible, so it not only improves the 
utility of the bandwidth but also smoothes the playback quality. 
 

4. FAIR RESOURCE ALLOCATION ALGORITHM 
 
Resources in streaming server include CPUs, memories, buses and storage devices. Since resources are limited, the 
streaming server can only support a limited throughput (i.e. server bandwidth). It is very important to fairly allocate the 
server resource, especially the server bandwidth, to multiple concurrent scalable video streaming. Different user has 
different variation of network bandwidth and bit rate of playback stream. Therefore, traditional off-line algorithms such 
as round robin, priority-based scheduling cannot guarantee a large number of concurrent accesses fairly. To compensate 
for the unpredictability and variability in particular streaming session, we adopt an on-line server resource allocation 
algorithm for scalable video streaming server to allocate server bandwidth. The resource allocation algorithm is 
responsible for allocating the fair share of the server resource among all concurrent connections simultaneously. 

For the ith streaming session, an estimate for the available network bandwidth Rnet,i(t) can be generated in the 
interval [t,t+T) by the TFRC protocol [8] in the streaming system. The total bitrate (including base layer and 
enhancement layers) of the streaming is Rtotal,i(t). Rloss,i(t) is the rate for sending all the retransmission packets before 
their deadline in the interval [t, t+T). The ith streaming maximal available sending rate Ravi,i(t) = min(Rtotal,i(t)+ Rloss,i(t), 
Rnet,i(t)) without limitation of the server resource. If the total available sending rate of all streaming is less than the 
server bandwidth Us, every streaming can sent the data at it’s sending rate Ravi,i(t). If the total sending rate is larger than 
the server bandwidth Us, we adopt a dynamic allocation scheme. The server find the minimum sending rate Rmin_avi(t) 
from all the streaming sessions and allocate it to all the streaming. If the total allocation sending rate is larger than the 
server bandwidth Us, the server will allocate equal bandwidth to each streaming. Otherwise, the server only allocates the 
minimum bandwidth Rmin_avi(t) to the streaming of the minimum sending rate. Then the server allocates the residual 
server bandwidth to the others iteratively. The on-line resource allocation algorithm is given as following. 
 
On-line resource allocation algorithm: 
 
Step 1: Let the set of the clients in a streaming server be CL(t)={C1, C2, …, Ci, …, Ck}. Let the set of the estimated 

available network bandwidth of all clients in CL(t) be  N(t)={ Rnet,1(t), Rnet,2(t), …, Rnet,k(t)} in the interval [t, t + T). 
Rnet,i(t) (1����) can be obtained by TFRC. The set of the total bitrate (including substreams of base layer and 
enhancement layers) of all the streaming is B(t)={Rtotat,1(t), Rtotal,2(t), …, Rtotal,k(t)}. The set of rate for sending all 
the retransmission packets before their deadlines in the interval [t, t + T) is L(t)= { Rloss,1(t), Rloss,2(t), …, Rloss,k(t)}.  

Step 2: Let the set of the maximal available sending rates is AVI(t)={Ravi,1(t), Ravi,2(t), …, Ravi,n(t)}.  
Ravi,i(t) = min(Rtotal,i(t)+ Rloss,i(t), Rnet,i(t)) (1����) . 

Step 3: Let Us is the available bandwidth of the server.  

If s

k

i
iavi UtR ≤∑

=1
, )( , Rs,i(t)=Ravi,i(t) (1����), go to step1 waiting for next internal [t+T, t+2T). 

Step 4: Select the minimal available sending rate Rmin_avi(t)= Ravi,i(t) (1����) from set AVI(t). 
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If Rmin_avi(t)*k�Us , set Rs,1(t) = Rs,2(t) =…= Rs,k(t) = Us/k. Go to step1, waiting for next internal [t+T, t+2T). 
Else, Rs,i(t) = Rmin_avi(t), remove Ci from CL(t). Go to step1. 

The on-line resource allocation algorithm not only adapts the bandwidth fluctuations dynamically and utilizes the 
resource for the streaming fairly, but also improves the total playback quality in client. 
 

5. SIMULATION RESULTS 
 
A two-state Markov model proposed by Gibert [13] is used to simulate packet losses in Internet channel. This model 
can characterize the error sequences generated by data transmission channels. In good state (G) errors occur with low 
probability while in bad state (B), they occur with high probability. The errors occur in cluster or bursts with relatively 
long error free intervals (gaps) between them. The state transitions are shown in Figure 3 and summarized by the 
following transition probability matrix: 
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Figure 3. Two-state Markov model for the network simulation. 

 
Details of the model can be found in [13]. It is assumed that the sending rate can be decided by TCP-friendly Rate 
Control (TFRC) protocol. The receiver monitors the network condition and gathers related information, while the 
sender changes its sending rate according to the available network bandwidth estimated from the packet loss rate, round 
trip time, and retransmission timeout values. The protocol uses an equation-based way to estimate available bandwidth 
[8]: 
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where s is the packet size, R is the round trip time, tRTO is the retransmission timeout value, and p is the packet loss ratio. 
The sending rates in different RTTs and loss rates simulated by ns-2 [15] are shown in Table1 and Figure 4. 

 
Table1. The average available network bandwidth with different RTTs and loss rates (Kbytes/sec) 

Loss rate 0.5%� 1%� 2%� 5%� 10%�

RTT=20ms� 1010.359� 662.8832� 397.6093� 172.0611� 70.53102�
RTT=40ms� 538.0144� 368.3213� 238.6904� 120.793� 51.11024�
RTT=80ms� 283.7569� 197.9084� 133.8039� 70.25274� 34.90544�
RTT=120ms� 194.0224� 135.8944� 92.69293� 50.98491� 27.69494�
RTT=160ms� 146.6914 102.1699 69.22119 38.96971 21.51618 

The MPEG-4 FGS-MoMuSys encoder/decoder [14] is used in the simulation. The base layer is encoded with 
MPEG-4, and the enhancement layer is encoded with FGS coding. Extensive simulations have been performed to test 
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the performance of the proposed algorithms. The sequences Foreman, Coastguard and Akiyo in CIF format are used in 
the simulation. They are encoded with 30 frames per second and 300 frames are encoded and transmitted. For example, 
the maximum level of bitplane is 7 in the sequence Foreman, so there are 7 Enhancement layer. Different bitplane has 
different size. The enhancement layer 0 (EL0) has the smallest size, yet it is most significant. The enhancement layer 6 
(EL6) is the largest in size, yet it is the least significant. The average rate of base layer is 173.54 Kbps and average rate 
of all enhancement layers is 18,035.59 Kbps. The packet size is 1024 bytes. The playback frame rate is 30 Hz.  

In our simulations, we assumed that the server maximal throughput (i.e. the server bandwidth) is 100Mbps and the 
server support 80 concurrent clients simultaneously. The channel packet loss rate varies from 0.5% to 10% and the RTT 
varies from 20ms to 160ms. The utility of the server bandwidth is 100% by on-line resource allocation algorithm, while 
the utility of the server bandwidth is 66.51% by round-robin resource allocation algorithm. The playback quality is 
measured by PSNR of the video frames reconstructed in client based on all available packets.  
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Figure 4.Comparisons of available bandwidth for different RTT connections 

 
Table 2 shows the average PSNR for different sequences using different resource allocation algorithms under 

various packet loss ratios and different sequences, where each result is obtained by averaging about 300 frames. The 
layer-based integrated real-time scheduling algorithm (LBRT) is adopted to schedule the packets. It can be seen that, 
overall, on-line resource allocation algorithm outperforms off-line round-robin algorithm. Figure 5 shows comparisons 
of PSNR with different scheduling algorithms and resource allocation algorithms. Obviously, the layer-based integrated 
real-time scheduling algorithm improves the utility of the bandwidth and smoothes the playback quality.  

 
Table 2. Comparison performance (average PSNR in dB, RTT=20ms) with different loss rates and different sequences 

(OLRA: on-line resource allocation algorithm.   RR: round-robin resource allocation algorithm) 
 

Foreman (CIF) Coastguard (CIF) Akiyo (CIF)  
OLRA RR OLRA RR OLRA RR 

0.5% 41.619 36.993 41.518 37.77 43.881 41.461 
1% 41.565 36.971 41.454 37.754 43.836 41.457 
2% 39.734 36.889 40.007 37.733 42.529 41.47 
5% 36.846 36.263 37.691 37.327 41.577 41.388 

 
Loss 
rate 

10% 33.748 33.748 35.457 35.457 40.792 40.792 
AVG 38.7024 36.1728 39.2254 37.2082 42.523 41.3136 

 
6. CONCLUSION 

 
In this paper, we propose a layer-based integrated real-time scheduling algorithm and an on-line resource allocation 
algorithm for scalable media streaming server. The layer-based real-time scheduling algorithm is efficient and simple 
for delivery of scalable streaming media over a lossy network. The on-line resource allocation algorithm can adjust the 
sending rate dynamically and fairly according to the network and server status and improves the playback quality in 
client. The simulation results show that the layer-based real-time scheduling algorithm and the on-line resource 
allocation algorithm outperform the frame-based scheduling algorithm and the off-line (round-robin) resource allocation 
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algorithm in various situations with different RTTs, channel errors, etc. The studies of admission control, buffer 
management, data storage and retrieval for scalable streaming server over the Internet are interesting topics for future 
work. 
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Figure 5. The  PSNR comparisons of different algorithms 
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