
Real-time Scheduling and On-line Resource Allocation
on Scalable Streaming Media Server

Kui Gao1,2, Wen Gao1,2, Simin He1, Yuan Zhang2,3

1Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100080, China
2Graduate School, Chinese Academy of Sciences, Beijing 100039, China

3Beijing Broadcasting Institute, Beijing 100024, China
E-mail:{kgao, wgao, smhe, yzhang}@jdl.ac.cn

ABSTRACT

In this paper, we propose a layer-based integrated real-time scheduling algorithm in a single scalable stream and an on-
line dynamic resource allocation algorithm among multiple concurrent users for scalable streaming media server over a
network with packet loss and variable delay. The layer-based real-time scheduling algorithm efficiently schedules the
packets in the buffer of the scalable streaming media server for transmission. The on-line resource allocation algorithm
can allocate the server’s resource among all the concurrent streams fairly and improve the playback quality in client.
Simulation results show that our proposed algorithms outperform the frame-based scheduling algorithm and the off-line
resource allocation algorithm in various situations with different round-trip times, channel errors, etc. The low
complexity of the proposed algorithms also enables them to be applied in real-time applications.

Keywords: real-time scheduling; scalable streaming; resource allocation; fine granularity scalable (FGS); streaming
server

1. INTRODUCTION

Recent advances in multimedia computing and communication technologies have made it feasible to provide real-time
media streaming services over the Internet. Due to the wide variation of available bandwidth and transmission errors
over the Internet and the variety of end user devices, it is desirable to design a media streaming–oriented coding
scheme that can adapt to the channel conditions and the user devices. The server should be able to adapt to the timing
constraints of streaming media data and the time-varying network conditions. If the media data does not arrive at user
end in time, the playback will be paused, which is annoying to human ears and eyes. Scalable/layered encoding has
been believed to be promising to cope with the heterogeneity of user access rates and fluctuation of available bandwidth
in video streaming. For instance, the MPEG-4 FGS coding scheme, which has been accepted as a part of MPEG-4
standard [1][2], further provides fine granular scalability. It consists of one non-scalable coded base layer and one or
multiple bitplane-encoded scalable enhanced layers. Fine granularity is implemented by decoding the enhancement
stream at any point. It differs from all the previous layered video coding schemes where only limited layers are
available. Another advantage of FGS is that the bit rate can be adjusted at transmission time with very fine granularity
and very little complexity.

In a streaming media system, the server packetizes the coded scalable/layered streams into some packets and then
sends them to the client through various networks. Bitstreams at different layers have different contributions to the
playback quality obtained in client. Therefore, it is an important problem how we select and schedule packets delivery
of a scalable streaming media over a lossy network. The optimized scheduling of layered streaming media delivery was
first proposed by Podolsky et al. [4], who adopt the Markov chain to analyze and find the optimal packets transmission
and retransmission policies. Chou et al. [5] and Miao et al. [6] also addressed the same problem with a rate-distortion
analysis.

The resources in a streaming server include CPUs, memories, and storage devices [7]. Since the server resources,
especially the bandwidth or throughput of the server, are limited, only a limited number of concurrent clients with the
QoS requested can be served. It is very important to fairly allocate the server resource to multiple concurrent scalable
video streams. Floyd et al. [8], Arulambalam et al. [9] and Zhang et al. [10] proposed network bandwidth allocation
algorithms, but they did not take into account the limitation of the server resources.

In this paper, we propose a layer-based integrated real-time packet scheduling algorithm for a single scalable
stream and an on-line resource allocation algorithm among multiple concurrent streams for the scalable streaming

Visual Communications and Image Processing 2003, Touradj Ebrahimi, Thomas Sikora,
Editors, Proceedings of SPIE Vol. 5150 (2003) © 2003 SPIE · 0277-786X/03/$15.00

544

media server over network with packet losses and delay variations. The real-time packet scheduling algorithm, by
determining how to transmit/retransmit the packets subjects to a given time, improves the utility of the bandwidth and
smoothes the playback quality in client. The on-line resource allocation algorithm allots the server resource to the
concurrent streams fairly and dynamically, and improves the total playback quality in client.

The rest of this paper is organized as follows. Section 2 briefly introduces the framework of FGS video coding and
the architecture of the scalable streaming system. Section 3 presents the layer-based scheduling algorithm for the
scalable layered streaming. Section 4 describes the on-line fair resource allocation algorithm in a streaming server.
Section 5 gives some experimental results and comparisons among different algorithms. Section 6 concludes this paper.

2. SCALABLE VIDEO CODING AND ARCHTECTURE OF STREAMING SYSTEM

2.1. THE FGS VIDEO CODING

In response to the increasing demand on streaming video applications over the best-effort Internet, the coding objective
for streaming video is changed to optimize the video quality for a wide range of bit rates. Fine granularity scalable (FGS)
video coding [1][2] has been accepted by MPEG-4 as an amendment to the traditional non-scalable MC-DCT approach
for streaming video profile. The basic idea of FGS video streaming is to code a raw video sequence into a base layer
substream and one or multiple enhancement layer substreams. An FGS encoder, using the motion-compensated DCT
coding to be compatible with other standards, such as MPEG-2, MPEG-4, H.263 and H.264, etc., generates a base-layer
video to reach the lower bound of the bit-rate range. Then the encoder uses bitplane coding to represent the
enhancement streams. The enhancement layer is to code the difference between the original picture and the
reconstructed picture using bit-plane coding of the DCT coefficients. The bitstream of the FGS enhancement layers may
be truncated into any number of bits per picture/frame after encoding is completed. The decoder should be able to
reconstruct an enhancement video from the base layer and the truncated enhancement-layer bitstreams. The
enhancement-layer video quality is proportional to the number of bits decoded by the decoder for each picture/frame.
Figure 1 shows conceptually such a framework. In an FGS coding scheme, the base layer and all enhancement layers in
predicted frame are always predicted from the reconstructed version of the base layer in the reference frame. The fine
scalable characteristic of FGS is very important, since the same content can be accessed over heterogeneous network by
various receivers with different computing power, memory, display resolutions, etc.

 Base Layer

1st Enhancement

Layer

2nd Enhancement

Layer

3rd Enhancement

Layer

4th Enhancement

Layer
 1 2 3 4 5
 Frames

Figure 1. The FGS framework

2.2. THE ARCHITECTURE OF A SCALABLE STREAMING SYSTEM

A typical streaming system consists of clients and servers over a network. Figure 2 shows the architecture of a scalable
streaming media system. Each client may make real-time requests for scalable streaming. The client requests are sent to
the server via network connections, which also serve for transmission of media data. To satisfy the performance
requirements of each client, a scalable streaming server must employ an admission control algorithm to determine
whether the server can guarantee the QoS (Quality of Service) requirements of a new client without violating the

Proc. of SPIE Vol. 5150 545

performance requirements of the clients already being serviced. If a new request is admitted, the server will read the
data from the storage devices, packetize them, and feed them into the server’s transmission buffers. The server selects
one packet at a time from those buffers and sends it over the lossy channel. Some packets may be lost, damaged or
delayed (delayed packets are also considered lost if they exceed their playback delay). At the client end, the lost or
damaged packets are reported to the server via a feedback channel. For a video streaming session, it is desirable to
adjust its sending rate according to the perceived congestion level in the network and the resource available in the server.
Through this adjustment, a suitable loss level can be maintained and resources of network and server can be shared
fairly among connections. The receiver monitors the network condition and gathers related information; while the
sender changes its sending rate according to the available network bandwidth estimated from the packet loss rate, RTT
(round-trip-time), and RTO (retransmission timeout) values. A retransmitted packet typically has an extra delay of one
or more RTTs, and cannot be guaranteed to arrive at the client on time. In addition, even if there is still time to
retransmit at a given time, a decision needs to be made on whether this packet should be retransmitted or not. Therefore,
a streaming server needs to simultaneously provide services to multiple concurrent users and guarantee the quality of
service for each client. It must efficiently perform two tasks: (1) the scheduler determines the order of serving the set of
requests from all the data in the transmission buffers; and (2) the resource allocator allocates the server resource to
concurrent users according to the network and server conditions. We adopted a real-time packet scheduling algorithm
for the scheduler and an on-line resource allocation algorithm for the resource allocator. The details are described as
following.

Resource

Allocator

Real Time

Scheduler

The 1st Stream Transmission Buffers

Real Time

Scheduler

The nth Stream Transmission Buffers

Base Layer

Enh Layers

Retransmission

Retransmission

Scalable

Video
Base Layer

Enh Layers

Client 1

Buffer

Network

Display 1

Client n

Buffer
Display n

Figure 2. The architecture of FGS video streaming system

3. LAYER-BASED INTEGRATED REAL-TIME SCHEDULING ALGORITHM

Scalable streaming media have timing constraints because of their sensitivity to delay and jitter. Retransmission can be
used to recover the lost packets over a best-effort network [7]. We want to find a packet transmission policy to select
the packets to be transmitted or retransmitted at any given time during a streaming session, so to improve the playback
quality in client. Due to the delivery deadline constraint, not all lost packets can be recovered by retransmission.
However, if the server schedules a packet to be sent much earlier than its playback time, this packet will have more
chances to be retransmitted before it is too late for display. If a packet is not available at its expected display time at the
receiver, it will miss its deadline. In addition, even if there is still time to retransmit a packet at a given time, a decision
needs to be made on whether it should be retransmitted or not. Just as the description in Subsection 2.1, the base layer
carries the most important information within the FGS coding scheme. The base layer bitstream is very sensitive to the
channel error. If the packets of the base layer are lost, the quality of reconstructed video can be degraded severely. As
for the enhancement layers, the residue between the original image and the reconstructed image of base layer is
compressed with bit plane coding technique to form the enhancement bitstream. Since the bit plane coding produces an
embedded bitstream with fine granularity scalability, the enhancement bitstream can be arbitrarily truncated to fit the
available channel bandwidth and tolerate the channel errors. Real-time streaming playback requires the server to
transmit the data packets prior to their playback instants (i.e., deadlines). Packets scheduling algorithms with real-time

546 Proc. of SPIE Vol. 5150

deadlines, such as Earliest Deadline First (EDF) [11] can optimize the quality of the video reconstructed in client. EDF
scheme transmits the packets in the order of their deadlines but cannot consider the features of the fine scalable video
stream. Therefore, we propose a layer-based integrated real-time scheduling algorithm to send the packets of a scalable
streaming.

The layer-based integrated real-time scheduling algorithm adopts different scheduling scheme for different layer.
The base layer bitstream is the most important information to reconstruct the video, so we adopt hard real-time
scheduling [12] scheme to send the packets for the base layer; while the enhancement layer bitstreams give the
enhancement quality and packets loss does not give most degraded quality, so we adopt soft real-time scheduling
scheme [12].

The loss impact of lower enhancement layer within a frame on video quality is much greater than that of the higher
enhancement layers within it. As different layer has a different effect on the playback, we set the higher priority to the
lower (more important) layer packets and set the lower priority to the higher (less important) layer. In fact, the priority
of the packet is consistent with the distortion. Since it is very complex to compute and compare the distortion of every
packet, we set different priority to different layer instead of distortion roughly. It simplifies the determination of how to
order the packets in the transmission buffers. The layer-based integrated real-time scheduling algorithm combines
considerations of layer distortion and deadlines. Thus, base layer and important enhancement layers data can be
transmitted earlier. If it is lost, it can have more chances to be retransmitted. If several packets in the transmission buffer
belong to the same layer, packets with earliest deadline are served first. The server transmits the lower (more important)
layer packets in the transmit buffer as soon as possible. The algorithm not only improves the utility of the bandwidth
but also smoothes the playback quality.

With the FGS coding scheme, the video content can be compressed over any desired the base layer bitrate range
RBL and the enhancement layer bitrate REL. The total bitrate is Rtotal = RBL + REL. When the ith streaming is admitted, the
server will set its sending rate Rs,i(t) to be no less than RBL,i(t) (i.e. RBL,i�����s,i���) in the interval [t, t+T), where T is
the scheduling period. Subsequently, the server transmits packets of the enhancement layer and retransmits the lost
packets using a bit-rate Rsoft,i(t) = Rs,i��� - RBL,i���. So the scheduling task can be divided into two parts. The server
adopts hard real time scheduling for base layer at a sending rate of Rhard,i���� RBL,i����in the interval [t, t+T) and soft
real-time scheduling for packets of enhancement layers and retransmitted packets at a sending rate Rsoft,i(t)�
Let pm,n denote the packet of the nth layer in frame m. The packets are put into the transmission buffers according to the
decoding order. The release-time am,n is the earliest time at which the packet pm,n becomes ready for scheduling in the
transmission buffer. But the packets of different layers in the same frame have different release-time. The release-time
am,0 of the base layer packet pm,0 is earlier than other packets of enhancement layers and the packet pm,0 will have more
chances to be retransmitted before it is too late for display. As for the enhancement layer, the packets of more important
layers have earlier release-time than those of less important layers (i.e. am,k ��am,l, (k�l)). Deadline dm,n is the latest
time at which the packet pm,n should be sent to the client, otherwise it is too late for playback. We assume that different
layers in a frame have the same deadline dm. The schedule-time sm,n is the time at which the scheduler sends packet pm,n
to client. The RTT (round-trip-time) is defined as the interval from the time a packet is sent from the server to the time
the server gets feedback of this packet from the client. The packet loss probability over the lossy channel is�.
Information related to RTT and channel error�can be received by server via client’s feedback. The size of the packet
pm,n is bm,n. The processing time of the packet pm,n is



 =

=
otherstRb

timefirstatscheduledisitandniftRb
c

isoftnm

ihardnm
nm)(/

0)(/

,,

,,
, .

The fulfill-time of a packet pm,n is fm,n = sm,n + cm,n. The decoding time is dtm. A packet pm,n is ready for scheduling if the
following conditions are satisfied: the current time tcur (tcur∈[t,t+T))is later than its release-time am,n, and its fulfill-time
fm,n is earlier than its deadline, i.e., am,n ��tcur and tcur + cm,n ��dm.

The precise description of layer-based real-time integrated scheduling algorithm for delivery of scalable streaming
media over a lossy network is given below.

Layer-based real-time integrated scheduling algorithm:

Step 1: Get the current sending rate Rs,i��� from the resource allocator; compute the sending rate of the base layer; Let

Rhard,i(t)= RBL,i(t), then Rsoft,i������Rs,i��� – Rhard,i���;

Proc. of SPIE Vol. 5150 547

Step 2: Let PBL(t) ,PEL(t) and PRE(t) be the sets of ready packets with earliest deadline in the buffers of base layer,
enhancement layer and retransmission packets at the current time tcur (t ≤ tcur<���) of the ith streaming,
respectively. Compare tcur with the deadline dm of the packet Pm,n in the server transmission buffer. If the packet
deadline dm > tcur, remove the it from the buffers;

Step 3: Schedule and send the packets from PBL(t) at the sending rate Rhard,i���. And set the timeout of this packet tm,n =
tcur + RTO;

Step 4: Select the packets from PEL(t) and PRE(t) with the lowest (most important) layer and send them to the client via
the network at the sending rate Rsoft,i���. And set the timeout tm,n = tcur + RTO;

Step 5: If the server gets acknowledgement (ACK) of a packet from the client, remove the packet from the buffer; else
if a packet reaches its timeout tm,n, move it from transmission buffer into retransmission buffer, and set its release
time as the current time tcur; Go to Step 1.

In the layer-based real-time integrated scheduling algorithm, the step 3 and step 4 are performed in parallel. Since
Rhard,i(t)= RBL,i(t), all the packets in the base layer buffer can be sent and no packet misses the deadline. But some
packets of enhancement layer and retransmission buffers are discarded if they miss their deadline. The algorithm
transmits the most important packets to reconstruct the playback quality as soon as possible, so it not only improves the
utility of the bandwidth but also smoothes the playback quality.

4. FAIR RESOURCE ALLOCATION ALGORITHM

Resources in streaming server include CPUs, memories, buses and storage devices. Since resources are limited, the
streaming server can only support a limited throughput (i.e. server bandwidth). It is very important to fairly allocate the
server resource, especially the server bandwidth, to multiple concurrent scalable video streaming. Different user has
different variation of network bandwidth and bit rate of playback stream. Therefore, traditional off-line algorithms such
as round robin, priority-based scheduling cannot guarantee a large number of concurrent accesses fairly. To compensate
for the unpredictability and variability in particular streaming session, we adopt an on-line server resource allocation
algorithm for scalable video streaming server to allocate server bandwidth. The resource allocation algorithm is
responsible for allocating the fair share of the server resource among all concurrent connections simultaneously.

For the ith streaming session, an estimate for the available network bandwidth Rnet,i(t) can be generated in the
interval [t,t+T) by the TFRC protocol [8] in the streaming system. The total bitrate (including base layer and
enhancement layers) of the streaming is Rtotal,i(t). Rloss,i(t) is the rate for sending all the retransmission packets before
their deadline in the interval [t, t+T). The ith streaming maximal available sending rate Ravi,i(t) = min(Rtotal,i(t)+ Rloss,i(t),
Rnet,i(t)) without limitation of the server resource. If the total available sending rate of all streaming is less than the
server bandwidth Us, every streaming can sent the data at it’s sending rate Ravi,i(t). If the total sending rate is larger than
the server bandwidth Us, we adopt a dynamic allocation scheme. The server find the minimum sending rate Rmin_avi(t)
from all the streaming sessions and allocate it to all the streaming. If the total allocation sending rate is larger than the
server bandwidth Us, the server will allocate equal bandwidth to each streaming. Otherwise, the server only allocates the
minimum bandwidth Rmin_avi(t) to the streaming of the minimum sending rate. Then the server allocates the residual
server bandwidth to the others iteratively. The on-line resource allocation algorithm is given as following.

On-line resource allocation algorithm:

Step 1: Let the set of the clients in a streaming server be CL(t)={C1, C2, …, Ci, …, Ck}. Let the set of the estimated

available network bandwidth of all clients in CL(t) be N(t)={ Rnet,1(t), Rnet,2(t), …, Rnet,k(t)} in the interval [t, t + T).
Rnet,i(t) (1����) can be obtained by TFRC. The set of the total bitrate (including substreams of base layer and
enhancement layers) of all the streaming is B(t)={Rtotat,1(t), Rtotal,2(t), …, Rtotal,k(t)}. The set of rate for sending all
the retransmission packets before their deadlines in the interval [t, t + T) is L(t)= { Rloss,1(t), Rloss,2(t), …, Rloss,k(t)}.

Step 2: Let the set of the maximal available sending rates is AVI(t)={Ravi,1(t), Ravi,2(t), …, Ravi,n(t)}.
Ravi,i(t) = min(Rtotal,i(t)+ Rloss,i(t), Rnet,i(t)) (1����) .

Step 3: Let Us is the available bandwidth of the server.

If s

k

i
iavi UtR ≤∑

=1
,)(, Rs,i(t)=Ravi,i(t) (1����), go to step1 waiting for next internal [t+T, t+2T).

Step 4: Select the minimal available sending rate Rmin_avi(t)= Ravi,i(t) (1����) from set AVI(t).

548 Proc. of SPIE Vol. 5150

If Rmin_avi(t)*k�Us , set Rs,1(t) = Rs,2(t) =…= Rs,k(t) = Us/k. Go to step1, waiting for next internal [t+T, t+2T).
Else, Rs,i(t) = Rmin_avi(t), remove Ci from CL(t). Go to step1.

The on-line resource allocation algorithm not only adapts the bandwidth fluctuations dynamically and utilizes the
resource for the streaming fairly, but also improves the total playback quality in client.

5. SIMULATION RESULTS

A two-state Markov model proposed by Gibert [13] is used to simulate packet losses in Internet channel. This model
can characterize the error sequences generated by data transmission channels. In good state (G) errors occur with low
probability while in bad state (B), they occur with high probability. The errors occur in cluster or bursts with relatively
long error free intervals (gaps) between them. The state transitions are shown in Figure 3 and summarized by the
following transition probability matrix:










−
−

=
ββ

αα
1

1
P

.
The average packet loss rate is:

βα
αε
+

=
.

Figure 3. Two-state Markov model for the network simulation.

Details of the model can be found in [13]. It is assumed that the sending rate can be decided by TCP-friendly Rate
Control (TFRC) protocol. The receiver monitors the network condition and gathers related information, while the
sender changes its sending rate according to the available network bandwidth estimated from the packet loss rate, round
trip time, and retransmission timeout values. The protocol uses an equation-based way to estimate available bandwidth
[8]:

)321()
8

3
3(

3

2 2pp
p

t
p

R

s
R

RTO

net

++
= ,

where s is the packet size, R is the round trip time, tRTO is the retransmission timeout value, and p is the packet loss ratio.
The sending rates in different RTTs and loss rates simulated by ns-2 [15] are shown in Table1 and Figure 4.

Table1. The average available network bandwidth with different RTTs and loss rates (Kbytes/sec)

Loss rate 0.5%� 1%� 2%� 5%� 10%�

RTT=20ms� 1010.359� 662.8832� 397.6093� 172.0611� 70.53102�
RTT=40ms� 538.0144� 368.3213� 238.6904� 120.793� 51.11024�
RTT=80ms� 283.7569� 197.9084� 133.8039� 70.25274� 34.90544�
RTT=120ms� 194.0224� 135.8944� 92.69293� 50.98491� 27.69494�
RTT=160ms� 146.6914 102.1699 69.22119 38.96971 21.51618

The MPEG-4 FGS-MoMuSys encoder/decoder [14] is used in the simulation. The base layer is encoded with
MPEG-4, and the enhancement layer is encoded with FGS coding. Extensive simulations have been performed to test

Proc. of SPIE Vol. 5150 549

the performance of the proposed algorithms. The sequences Foreman, Coastguard and Akiyo in CIF format are used in
the simulation. They are encoded with 30 frames per second and 300 frames are encoded and transmitted. For example,
the maximum level of bitplane is 7 in the sequence Foreman, so there are 7 Enhancement layer. Different bitplane has
different size. The enhancement layer 0 (EL0) has the smallest size, yet it is most significant. The enhancement layer 6
(EL6) is the largest in size, yet it is the least significant. The average rate of base layer is 173.54 Kbps and average rate
of all enhancement layers is 18,035.59 Kbps. The packet size is 1024 bytes. The playback frame rate is 30 Hz.

In our simulations, we assumed that the server maximal throughput (i.e. the server bandwidth) is 100Mbps and the
server support 80 concurrent clients simultaneously. The channel packet loss rate varies from 0.5% to 10% and the RTT
varies from 20ms to 160ms. The utility of the server bandwidth is 100% by on-line resource allocation algorithm, while
the utility of the server bandwidth is 66.51% by round-robin resource allocation algorithm. The playback quality is
measured by PSNR of the video frames reconstructed in client based on all available packets.

loss rate=1%

0

100

200

300

400

500

600

0 50 100 150 200

time(s)

Se
nd

in
g

ra
te

(K
by

te
s/

se
c)

RTT=40ms RTT=80ms
RTT=120ms RTT=160ms

Figure 4.Comparisons of available bandwidth for different RTT connections

Table 2 shows the average PSNR for different sequences using different resource allocation algorithms under

various packet loss ratios and different sequences, where each result is obtained by averaging about 300 frames. The
layer-based integrated real-time scheduling algorithm (LBRT) is adopted to schedule the packets. It can be seen that,
overall, on-line resource allocation algorithm outperforms off-line round-robin algorithm. Figure 5 shows comparisons
of PSNR with different scheduling algorithms and resource allocation algorithms. Obviously, the layer-based integrated
real-time scheduling algorithm improves the utility of the bandwidth and smoothes the playback quality.

Table 2. Comparison performance (average PSNR in dB, RTT=20ms) with different loss rates and different sequences

(OLRA: on-line resource allocation algorithm. RR: round-robin resource allocation algorithm)

Foreman (CIF) Coastguard (CIF) Akiyo (CIF)
OLRA RR OLRA RR OLRA RR

0.5% 41.619 36.993 41.518 37.77 43.881 41.461
1% 41.565 36.971 41.454 37.754 43.836 41.457
2% 39.734 36.889 40.007 37.733 42.529 41.47
5% 36.846 36.263 37.691 37.327 41.577 41.388

Loss
rate

10% 33.748 33.748 35.457 35.457 40.792 40.792
AVG 38.7024 36.1728 39.2254 37.2082 42.523 41.3136

6. CONCLUSION

In this paper, we propose a layer-based integrated real-time scheduling algorithm and an on-line resource allocation
algorithm for scalable media streaming server. The layer-based real-time scheduling algorithm is efficient and simple
for delivery of scalable streaming media over a lossy network. The on-line resource allocation algorithm can adjust the
sending rate dynamically and fairly according to the network and server status and improves the playback quality in
client. The simulation results show that the layer-based real-time scheduling algorithm and the on-line resource
allocation algorithm outperform the frame-based scheduling algorithm and the off-line (round-robin) resource allocation

550 Proc. of SPIE Vol. 5150

algorithm in various situations with different RTTs, channel errors, etc. The studies of admission control, buffer
management, data storage and retrieval for scalable streaming server over the Internet are interesting topics for future
work.

Loss rate=2%; Foreman(CIF); RTT=20ms

33

35

37

39

41

43

0 10 20 30 40 50 60 70 80 90 100

Frame

PS
N

R
(d

B
)

LBRT+OLRA OLRA LBRT+RR

Figure 5. The PSNR comparisons of different algorithms

7. ACKNOWLEDGMENT

This work was supported by the National Fundamental Research and Development 973 Program of China under grant
No. 2001CCA03300; the National High Technology Development 863 Program of China under grants No.
2001AA112100 and No. 2002AA119010; the National Natural Science Foundation of China under grant No. 69983008;
the Knowledge Innovation Program of Chinese Academy of Sciences under grant No. KGCXZ-103.

8. REFERENCES

1. W. Li, “Overview of fine granularity scalability in MPEG-4 video standard”, IEEE Transactions on Circuit and

System for Video Technology, vol. 11, no. 3, pp. 301-317, March 2001.
2. W. Li, “Fine granularity scalability in MPEG-4 for streaming Video”, IEEE international symposium on Circuit

and System (ISCAS 2000), pp. 299-302, Geneva, May 2000.
3. F. Wu, et al, “A framework for efficient progressive fine granularity scalable video coding”, IEEE Transactions on

Circuits and Systems for Video Technology, vol. 11, no. 3, pp. 332-344, March 2001.
4. M. Podolsky, S. McCanne and M, Vetterli. “Soft ARQ for layered streaming media”, Journal of VLSI Signal

Processing Systems, Special issue on multimedia signal processing, vol. 27, no. 1-2, pp. 81-97, February 2001.
5. P. A. Chou and Z. Miao, "Rate-distortion optimized streaming of packetized media," IEEE Transactions on

Multimedia, February 2001 (submitted), online available at: http://research.microsoft.com/~pachou/.
6. Z. Miao and A. Ortega. “Expected run-time distortion based scheduling for delivery of scalable media”, The 12th

International Packet Video Workshop (PVW 2002), Pittsburgh, PA, April 2002.
7. D. Wu, et al, “Streaming video over the Internet: approaches and directions”, IEEE Transactions on Circuits and

Systems for Video Technology, vol. 11, no. 3, pp. 282-300, March 2001.
8. S. Floyd, et al, “Equation-based congestion control for unicast applications”, SIGCOMM 2000, February 2000.
9. A. Arulambalam, X. Chen and N. Ansari, “Allocating fair rates for available bit rate service in ATM networks”,

IEEE Communications Magazine, vol. 34, no. 11, pp. 92-100, November 1996.
10. Q. Zhang, W. Zhu, and Y-Q. Zhang, ”Resource allocation for multimedia streaming over the Internet”, special

issue on Multimedia over IP in IEEE Translations on Multimedia, vol. 3, no. 3, pp. 339-355, September 2001.
11. C. Liu and J. Layland, “Scheduling algorithms for multiprogramming in hard-real-time environment,” Journal of

the Association for Computing Machinery, vol. 20, no. 1, pp. 46-61, January 1973.
12. G.C. Buttazzo, “Hard real-time computing systems: predictable scheduling algorithms and applications”, Kluwer

Academic Publishers, 1997.

13. J.R. Yee and E. J. Weldon. “Evaluation of the performance of the error-correcting codes on a Gilbert channel”,
IEEE Transactions on Communications, vol. 43, no. 8, pp. 2316-2323, August 1995.

14. “ISO/IEC 14496-5:2001/FDAM1”, ISO/IEC JTC1/SC29/WG11/N4711, Jeju Island, March 2002.
15. ns-2 network simulator. http://www.isi.edu/nsnam/ns, 2002.

Proc. of SPIE Vol. 5150 551

	SPIE Proceedings
	MAIN MENU
	Conferences
	Search
	Close

