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Random Spherical Triangles
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Abstract. Let ∆ be a random spherical triangle (meaning that vertices
are independent and uniform on the unit sphere). A closed-form expression
for the area density of ∆ has been known since 1867; a complicated integral
expression for the perimeter density was found in 1994. Does there exist a
closed-form expression for the latter? We attempt to answer this question from
several directions. An outcome of our work is the exact value of the perimeter
density at the point π.

A spherical triangle ∆ is a region enclosed by three great circles on the unit sphere;
a great circle is a circle whose center is at the origin. The sides of ∆ are arcs of great
circles and have length a, b, c. Each of these is ≤ π. The angle α opposite side a is
the dihedral angle between the two planes passing through the origin and determined
by arcs b, c. The angles β, γ opposite sides b, c are similarly defined. Each of these
is ≤ π too.

Define a primal triangle to be a random spherical triangle, obtained by selecting
three independent uniformly distributed points A, B, C on the sphere to be vertices.
Define a dual triangle to be a random spherical triangle, obtained by selecting
three independent uniformly distributed great circles on the sphere to be sides. More
precisely, starting with independent uniform points A′, B′, C ′ on the sphere, a dual
triangle has vertices

A =
B′ × C ′

‖B′ × C ′‖ , B =
A′ × C ′

‖A′ × C ′‖ , C =
A′ × B′

‖A′ × B′‖ .

Hence, while its vertices are not independent, the poles of a dual triangle are.
Let ∆ be a primal triangle. The area σ = α+β+ γ−π of ∆ satisfies 0 ≤ σ ≤ 2π.

The perimeter τ = a+ b+ c of ∆ satisfies 0 ≤ τ ≤ 2π. Expressions for the trivariate
density of (α, β, γ) and the trivariate density of (a, b, c) are known [1] but do not give
useful insight into the distributions of σ and τ . Crofton & Exhumatus [2] determined
the density for σ:

−(x2 − 4πx+ 3π2 − 6) cos(x)− 6(x− 2π) sin(x)− 2(x2 − 4πx+ 3π2 + 3)

16π cos(x/2)4
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for 0 < x < 2π; this formula remained obscure until it was cited in a recent paper
[3]. Unpublished work of J. N. Boots (mentioned in [1]) was also apparently relevant.
Jones & Benyon-Tinker [4, 5] determined the density for τ :

1

4π

x/2
∫

0

E
(

sin
(

t
2

))

− cos
(

x−t
2

)2
K
(

sin
(

t
2

))

√

cos
(

t
2

)2 − cos
(

x−t
2

)2
sin(t) dt

for 0 < x < 2π, where

K(ζ) =

π/2
∫

0

1
√

1− ζ2 sin(θ)2
dθ =

1
∫

0

1
√

(1− t2)(1− ζ2t2)
dt,

E(ζ) =

π/2
∫

0

√

1− ζ2 sin(θ)2 dθ =

1
∫

0

√

1− ζ2t2

1− t2
dt

are complete elliptic integrals of the first and second kind. We wonder: does there
exist a closed-form expression for this latter density? A direct evaluation of the
integral does not seem possible, yet conceivably a different geometric argument might
yield a more accessible formula. We attempt to answer this question from several
directions. Also, it is clear that the density is zero at x = 0 and diverges to infinity
at x = 2π. Numerically the density ≈ 3

√
2/32 to high precision at x = π, but a proof

via the preceding is not known. An outcome of our work is a new formula that gives
the exact value as predicted.

1. Two Coordinate Systems

We define two coordinate systems on the unit sphere that will help in our study of
triangular area and density.

1.1. Primal Coordinates. Without loss of generality, let A = (1, 0, 0) and B =
(cos(κ), sin(κ), 0) in xyz coordinates. We wish to locate the unique point C in the
upper hemisphere so that the triangle ABC satisfies α = θ, b = ρ, c = κ. See Figure
1. The parameters ρ, θ are regarded as varying while the parameter κ is fixed. Think
of rotating the equatorial disk in space so that the vector (1, 0, 0) remains fixed and
the vector (0, 1, 0) moves toward (0, 0, 1) through the angle θ. The rotation matrix
performing this motion is [6]

R =







1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)
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and

R







cos(ρ)
sin(ρ)
0





 =







cos(ρ)
sin(ρ) cos(θ)
sin(ρ) sin(θ)





 ,

which gives the point C. The three-dimensional transformation







r
ρ
θ





 7→







x
y
z





 =







r cos(ρ)
r sin(ρ) cos(θ)
r sin(ρ) sin(θ)







has Jacobian determinant

∣

∣

∣

∣

∣

∂(x, y, z)

∂(r, ρ, θ)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

cos(ρ) −r sin(ρ) 0
sin(ρ) cos(θ) r cos(ρ) cos(θ) −r sin(ρ) sin(θ)
sin(ρ) sin(θ) r cos(ρ) sin(θ) r sin(ρ) cos(θ)

∣

∣

∣

∣

∣

∣

∣

= r2 sin(ρ)

which implies that the area element in primal ρθ coordinates is sin(ρ)dρ dθ.

1.2. Dual Coordinates. Without loss of generality, let A = (1, 0, 0) and B =
(cos(ρ), sin(ρ), 0) in xyz coordinates. It seems (at first glance) that we should locate
the unique point C in the upper hemisphere so that the triangle ABC satisfies α = κ,
β = θ, c = ρ. See Figure 2. The parameters ρ, θ are regarded as varying while the
parameter κ is fixed.

Let us examine the great circle containing A, C. It must also contain the point
(0, cos(κ), sin(κ)), since this is the image of (0, 1, 0) after rotation through angle κ.
Hence a normal vector is V = (1, 0, 0)× (0, cos(κ), sin(κ)) = (0,− sin(κ), cos(κ)).

Let us examine the great circle containing B, C. Think of rotating the equato-
rial disk in space so that the vector (cos(ρ), sin(ρ), 0) remains fixed and the vector
(sin(ρ),− cos(ρ), 0) moves toward (0, 0, 1) through the angle θ. The rotation matrix
performing this motion is [6]

S =







cos(ρ)2 + (1− cos(ρ)2) cos(θ) cos(ρ) sin(ρ)(1− cos(θ)) − sin(ρ) sin(θ)
cos(ρ) sin(ρ)(1− cos(θ)) sin(ρ)2 + (1− sin(ρ)2) cos(θ) cos(ρ) sin(θ)

sin(ρ) sin(θ) − cos(ρ) sin(θ) cos(θ)







and

S







sin(ρ)
− cos(ρ)

0





 =







sin(ρ) cos(θ)
− cos(ρ) cos(θ)

sin(θ)





 .

For example, if ρ = π/2, the image of (1, 0, 0) after rotation through angle θ is
(cos(θ), 0, sin(θ)). As another example, if ρ = 0, the image of (0,−1, 0) after rotation
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through angle θ is (0,− cos(θ), sin(θ)). Hence the great circle must contain the point
(sin(ρ) cos(θ),− cos(ρ) cos(θ), sin(θ)) and a normal vector is

W =







cos(ρ)
sin(ρ)
0





×







sin(ρ) cos(θ)
− cos(ρ) cos(θ)

sin(θ)





 =







sin(ρ) sin(θ)
− cos(ρ) sin(θ)

− cos(θ)





 .

The point C is orthogonal to the two normal vectors and at unit distance from the
origin, equivalently, C = (V ×W )/ ‖V ×W‖.

Now, in fact, this is more than what is required. We need only (on second glance)
specify the great circle containing B, C and this is done via locating W or −W . The
three-dimensional transformation







r
ρ
θ





 7→







x
y
z





 =







−r sin(ρ) sin(θ)
r cos(ρ) sin(θ)

r cos(θ)







has Jacobian determinant r2 sin(θ), which implies that the area element in dual ρθ
coordinates is sin(θ)dρ dθ. Perhaps this is obvious by duality. It is good, however, to
see the supporting geometric details.

2. Four Approaches

We illustrate using four different trigonometric identities and the above two coordi-
nate systems. More possible approaches will be mentioned in a later section.

2.1. Primal Area. As in section [1.1], assume that the triangle ABC satisfies
α = θ, b = ρ, c = κ. These three parameters are related to area σ as follows:

tan
(

ρ

2

)

= cot
(

κ

2

)

csc
(

θ − σ

2

)

sin
(

σ

2

)

.

A proof appears in section [6.1]. For fixed σ and κ, define

f(θ) =







π if 0 ≤ θ < σ/2,

2 arctan
[

cot
(

κ

2

)

csc
(

θ − σ

2

)

sin
(

σ

2

)]

if σ/2 ≤ θ ≤ π

then the conditional probability, given c, is

P {area ≤ σ |c = κ} =
1

2π

π
∫

0

f(θ)
∫

0

sin(ρ)dρ dθ

=
1

2π

σ/2
∫

0

π
∫

0

sin(ρ)dρ dθ +
1

2π

π
∫

σ/2

f(θ)
∫

0

sin(ρ)dρ dθ
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=
1

2π





σ +

π
∫

σ/2

(1− cos(f(θ)))dθ





 .

This result can be experimentally verified by generating many primal triangles ABC
with c = κ, and then plotting all pairs (θ, ρ) corresponding to triangles with area
≤ σ. The scatterplot fills the region [0, π]× [0, π] except for the portion lying above
the curve ρ = f(θ).

We will later discuss [3.1] how the unconditional probability P {area ≤ σ} is eval-
uated exactly, for arbitrary σ. The method is quite long and intricate.

Here is a quick method for evaluating not probability, but instead density, at
σ = π. We start with the conditional density

d

dσ

1

2π





σ +

π
∫

σ/2

(1− cos(f(θ)))dθ





 =
1

2π





1− 1
2

[

1− cos
(

f
(

σ
2

))]

+

π
∫

σ/2

d

dσ
(1− cos(f(θ)))dθ







=
1

2π

π
∫

σ/2

sin(f(θ))g(θ)dθ

where

sin(f(θ)) =
2 tan

(

κ
2

)

sin
(

θ − σ
2

)

sin
(

σ
2

)

tan
(

κ
2

)2
sin

(

θ − σ
2

)2
+ sin

(

σ
2

)2

since

sin(2 arctan(ζ)) =
2ζ

1 + ζ2
,

and where

g(θ) =
df

dσ
=

tan
(

κ
2

)

sin(θ)

tan
(

κ
2

)2
sin

(

θ − σ
2

)2
+ sin

(

σ
2

)2 .

It follows that the unconditional density is

1

2π

π
∫

0

π
∫

σ/2

tan
(

κ
2

)2
sin

(

θ − σ
2

)

sin
(

σ
2

)

sin (θ)
[

tan
(

κ
2

)2
sin

(

θ − σ
2

)2
+ sin

(

σ
2

)2
]2 sin(κ)dθ dκ

because the density for κ is sin(κ)/2. By the half-angle formula for tangent, this is
the same as

1

2π

π
∫

0

π
∫

σ/2

(1− cos(κ)) (1 + cos(κ)) sin
(

θ − σ
2

)

sin
(

σ
2

)

sin (θ)
[

(1− cos(κ)) sin
(

θ − σ
2

)2
+ (1 + cos(κ)) sin

(

σ
2

)2
]2 sin(κ)dθ dκ.
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In the special case when σ = π, this becomes

− 1

2π

π
∫

0

π
∫

π/2

cos (θ) sin (θ) (1− cos(κ)2) sin(κ)
[

1 + cos(κ) + (1− cos(κ)) cos (θ)2
]2dθ dκ

= − 1

2π

1
∫

−1

0
∫

−1

u (1− v2)

[1 + v + (1− v)u2]2
du dv =

1

4π

consistent with Crofton & Exhumatus. No analogous simplication seems to occur,
for example, when σ = π/2 or σ = 3π/2.

2.2. Dual Perimeter. As in section [1.2], assume that the triangle ABC satisfies
α = κ, β = θ, c = ρ. These three parameters are related to perimeter τ as follows:

tan

(

θ

2

)

= cot
(

κ

2

)

sin
(

τ

2
− ρ

)

csc
(

τ

2

)

.

A proof appears in section [6.3]. For fixed τ and κ, define

f(ρ) =

{

2 arctan
[

cot
(

κ
2

)

sin
(

τ
2
− ρ

)

csc
(

τ
2

)]

if 0 ≤ ρ ≤ τ/2,

0 if τ/2 < ρ ≤ π

then the conditional probability, given α, is

P {perimeter ≤ τ |α = κ} =
1

2π

π
∫

0

f(ρ)
∫

0

sin(θ)dθ dρ

=
1

2π

τ/2
∫

0

f(ρ)
∫

0

sin(θ)dθ dρ+
1

2π

π
∫

τ/2

0
∫

0

sin(θ)dθ dρ

=
1

2π

τ/2
∫

0

(1− cos(f(ρ)))dρ.

This result can be experimentally verified by generating many dual triangles ABC
with α = κ, and then plotting all pairs (ρ, θ) corresponding to triangles with perimeter
≤ τ . The scatterplot fills the region [0, π]× [0, π] except for the portion lying above
the curve θ = f(ρ).

Since (dual perimeter) = (2π− primal area), it is not surprising that conditional
probabilities are so similar.
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For completeness’ sake, let us compute the conditional density

d

dτ

1

2π

τ/2
∫

0

(1− cos(f(ρ)))dρ =
1

2π







1
2

[

1− cos
(

f
(

τ
2

))]

+

τ/2
∫

0

d

dτ
(1− cos(f(ρ)))dρ







=
1

2π

τ/2
∫

0

sin(f(ρ))g(ρ)dρ

where

sin(f(ρ)) =
2 tan

(

κ
2

)

sin
(

τ
2
− ρ

)

sin
(

τ
2

)

tan
(

κ
2

)2
sin

(

τ
2

)2
+ sin

(

τ
2
− ρ

)2 ,

g(ρ) =
df

dτ
=

tan
(

κ
2

)

sin(ρ)

tan
(

κ
2

)2
sin

(

τ
2

)2
+ sin

(

τ
2
− ρ

)2 .

It follows that the unconditional density is

1

2π

π
∫

0

τ/2
∫

0

tan
(

κ
2

)2
sin

(

τ
2
− ρ

)

sin
(

τ
2

)

sin (ρ)
[

tan
(

κ
2

)2
sin

(

τ
2

)2
+ sin

(

τ
2
− ρ

)2
]2 sin(κ)dρ dκ

=
1

2π

π
∫

0

τ/2
∫

0

(1− cos(κ)) (1 + cos(κ)) sin
(

τ
2
− ρ

)

sin
(

τ
2

)

sin (ρ)
[

(1− cos(κ)) sin
(

τ
2

)2
+ (1 + cos(κ)) sin

(

τ
2
− ρ

)2
]2 sin(κ)dρ dκ

because the density for κ is sin(κ)/2. In the special case when τ = π, this becomes

1

2π

π
∫

0

π/2
∫

0

cos (ρ) sin (ρ) (1− cos(κ)2) sin(κ)
[

1− cos(κ) + (1 + cos(κ)) cos (ρ)2
]2dρ dκ

=
1

2π

1
∫

−1

1
∫

0

u (1− v2)

[1− v + (1 + v) u2]2
du dv =

1

4π

consistent with Crofton & Exhumatus.

2.3. Primal Perimeter. As in section [1.1], assume that the triangle ABC sat-
isfies α = θ, b = ρ, c = κ. These three parameters are related to perimeter τ as
follows:

cos(θ) =
sin(τ − κ)

sin(κ)
+

cos(τ − κ)− cos(κ)

sin(κ)
cot(ρ).
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A proof appears in section [6.2]. For fixed τ and κ, define

f(ρ) =















π if 0 ≤ ρ < τ/2− κ,

arccos
[

sin(τ−κ)
sin(κ)

+ cos(τ−κ)−cos(κ)
sin(κ)

cot(ρ)
]

if τ/2− κ ≤ ρ ≤ τ/2,

0 if τ/2 < ρ ≤ π

assuming κ ≤ τ/2; otherwise f(ρ) = 0. Then the conditional probability is

P {perimeter ≤ τ |c = κ} =
1

2π

π
∫

0

f(ρ)
∫

0

sin(ρ)dθ dρ

=
1

2π







τ/2−κ
∫

0

π
∫

0

sin(ρ)dθ dρ+

τ/2
∫

τ/2−κ

f(ρ)
∫

0

sin(ρ)dθ dρ+

π
∫

τ/2

0
∫

0

sin(ρ)dθ dρ







=
1

2π





π
[

1− cos
(

τ
2
− κ

)]

+

τ/2
∫

τ/2−κ

f(ρ) sin(ρ)dρ





 .

This result can be experimentally verified by generating many primal triangles ABC
with c = κ, and then plotting all pairs (ρ, θ) corresponding to triangles with perimeter
≤ τ . The scatterplot fills the region [0, π]× [0, π] except for the portion lying above
the curve θ = f(ρ).

An exact evaluation of the unconditional probability P {perimeter ≤ τ}, for arbi-
trary τ , remains open [3.2].

Here is a quick method for evaluating not probability, but instead density, at
τ = π. We start with the conditional density

d

dτ

1

2π





π
[

1− cos
(

τ
2
− κ

)]

+

τ/2
∫

τ/2−κ

f(ρ) sin(ρ)dρ







=
1

2π







π
2
sin

(

τ
2
− κ

)

+ 1
2
f
(

τ
2

)

sin
(

τ
2

)

− 1
2
f
(

τ
2
− κ

)

sin
(

τ
2
− κ

)

+

τ/2
∫

τ/2−κ

d

dτ
f(ρ) sin(ρ)dρ







=
1

2π

τ/2
∫

τ/2−κ

g(ρ) sin(ρ)dρ

where

g(ρ) =
df

dτ
=

sin(τ − κ− ρ) sin(ρ)
√

sin(κ)2 sin(ρ)2 − [cos(κ) cos(ρ)− cos(τ − κ− ρ)]2
.
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It follows that the unconditional density is

1

4π

τ/2
∫

0

τ/2
∫

τ/2−κ

sin(τ − κ− ρ) sin(ρ)
√

sin(κ)2 sin(ρ)2 − [cos(κ) cos(ρ)− cos(τ − κ− ρ)]2
sin(κ)dρ dκ

because the density for κ is sin(κ)/2. In the special case when τ = π, this becomes

1

4π

π/2
∫

0

π/2
∫

π/2−κ

sin(κ+ ρ) sin(κ) sin(ρ)
√

sin(κ)2 sin(ρ)2 − [cos(κ) cos(ρ) + cos(κ+ ρ)]2
dρ dκ

=
1

4π

π/2
∫

0

π/2
∫

π/2−κ

sin(κ+ ρ) sin(κ) sin(ρ)
√

−4 cos(κ) cos(ρ) cos(κ+ ρ)
dρ dκ

=
1

8π

π/2
∫

0

π/2
∫

π/2−κ

sin(κ+ ρ)
√

− cos(κ+ ρ)

sin(κ)
√

cos(κ)

sin(ρ)
√

cos(ρ)
dρ dκ

=
1

4π

π/2
∫

π/4

κ
∫

π/2−κ

sin(κ+ ρ)
√

− cos(κ+ ρ)

sin(κ) sin(ρ)
√

cos(κ) cos(ρ)
dρ dκ

=
1

4
√
2π

π/2
∫

π/4

κ
∫

π/2−κ

sin(κ+ ρ)
√

− cos(κ+ ρ)

cos(κ− ρ)− cos(κ+ ρ)
√

cos(κ− ρ) + cos(κ+ ρ)
dρ dκ.

Let u = κ+ ρ, v = κ− ρ. Then |∂(u, v)/∂(κ, ρ)| = 2 and the integral is transformed
to

1

8
√
2π

π/2
∫

0

π−v
∫

π/2

sin(u)
√

− cos(u)

cos(v)− cos(u)
√

cos(v) + cos(u)
du dv =

3
√
2

32

as promised.

2.4. Dual Area. As in section [1.2], assume that the triangle ABC satisfies α =
κ, β = θ, c = ρ. These three parameters are related to area σ as follows:

− cos(ρ) =
sin(σ − κ)

sin(κ)
+

cos(σ − κ)− cos(κ)

sin(κ)
cot(θ).

A proof appears in section [6.4]. For fixed σ and κ, define

f(θ) =















π if 0 ≤ θ < σ/2,

π − arccos
[

sin(σ−κ)
sin(κ)

+ cos(σ−κ)−cos(κ)
sin(κ)

cot(θ)
]

if σ/2 ≤ θ ≤ π − (κ− σ/2),

0 if π − (κ− σ/2) < θ ≤ π
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assuming κ ≥ σ/2; otherwise f(θ) = π. Then the conditional probability is

P {area ≤ σ |α = κ} =
1

2π

π
∫

0

f(θ)
∫

0

sin(θ)dρ dθ

=
1

2π







σ/2
∫

0

π
∫

0

sin(θ)dρ dθ +

π−(κ−σ/2)
∫

σ/2

f(θ)
∫

0

sin(θ)dρ dθ +

π
∫

π−(κ−σ/2)

0
∫

0

sin(θ)dρ dθ







=
1

2π





π
[

1− cos
(

σ
2

)]

+

π−(κ−σ/2)
∫

σ/2

f(θ) sin(θ)dθ





 .

This result can be experimentally verified by generating many dual triangles ABC
with α = κ, and then plotting all pairs (θ, ρ) corresponding to triangles with area
≤ σ. The scatterplot fills the region [0, π]× [0, π] except for the portion lying above
the curve ρ = f(θ).

Since (dual area) = (2π− primal perimeter), it is not surprising that conditional
probabilities are so similar.

For completeness’ sake, let us compute the conditional density

d

dσ

1

2π





π
[

1− cos
(

σ
2

)]

+

π−(κ−σ/2)
∫

σ/2

f(θ) sin(θ)dθ







=
1

2π

(

π
2
sin

(

σ
2

)

+ 1
2
f
(

π −
(

κ− σ
2

))

sin
(

π −
(

κ− σ
2

))

− 1
2
f
(

σ
2

)

sin
(

σ
2

)

+

π−(κ−σ/2)
∫

σ/2

d

dσ
f(θ) sin(θ)dθ







=
1

2π

π−(κ−σ/2)
∫

σ/2

g(θ) sin(θ)dθ

where

g(θ) =
df

dσ
= − sin(σ − κ− θ) sin(θ)

√

sin(κ)2 sin(θ)2 − [cos(κ) cos(θ)− cos(σ − κ− θ)]2
.

It follows that the unconditional density is

− 1

4π

π
∫

σ/2

π−(κ−σ/2)
∫

σ/2

sin(σ − κ− θ) sin(θ)
√

sin(κ)2 sin(θ)2 − [cos(κ) cos(θ)− cos(σ − κ− θ)]2
sin(κ)dθ dκ
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because the density for κ is sin(κ)/2. In the special case when σ = π, this becomes

− 1

4π

π
∫

π/2

3π/2−κ
∫

π/2

sin(κ+ θ) sin(κ) sin(θ)
√

sin(κ)2 sin(θ)2 − [cos(κ) cos(θ) + cos(κ+ θ)]2
dθ dκ

= − 1

4π

π
∫

π/2

3π/2−κ
∫

π/2

sin(κ+ θ) sin(κ) sin(θ)
√

−4 cos(κ) cos(θ) cos(κ+ θ)
dθ dκ

= − 1

8π

π
∫

π/2

3π/2−κ
∫

π/2

sin(κ+ θ)
√

− cos(κ + θ)

sin(κ)
√

− cos(κ)

sin(θ)
√

− cos(θ)
dθ dκ

= − 1

4π

3π/4
∫

π/2

3π/2−κ
∫

κ

sin(κ+ θ)
√

− cos(κ+ θ)

sin(κ) sin(θ)
√

cos(κ) cos(θ)
dθ dκ

= − 1

4
√
2π

3π/4
∫

π/2

3π/2−κ
∫

κ

sin(κ+ θ)
√

− cos(κ+ θ)

cos(κ− θ)− cos(κ + θ)
√

cos(κ− θ) + cos(κ+ θ)
dθ dκ

= − 1

8
√
2π

π/2
∫

0

3π/2
∫

π+v

sin(u)
√

− cos(u)

cos(v)− cos(u)
√

cos(v) + cos(u)
du dv =

3
√
2

32

as promised.

3. Two Evaluations

3.1. Successful Evaluation for Primal Area. Starting from the half-angle
formula for tangent

tan
(

ρ

2

)2

=
1− cos(ρ)

1 + cos(ρ)

we deduce that

cot
(

ρ

2

)2

+ 1 =
1 + cos(ρ)

1− cos(ρ)
+ 1 =

2

1− cos(ρ)

hence
1− cos(ρ)

2
=

1

cot
(

ρ
2

)2
+ 1

=
1

Ω2 sin
(

θ − σ
2

)2
+ 1

by [2.1], where

Ω = tan
(

κ

2

)

csc
(

σ

2

)

.
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It follows that

π
∫

σ/2

1− cos(f(θ))

2
dθ =

π
∫

σ/2

1

Ω2 sin
(

θ − σ
2

)2
+ 1

dθ

=



























π − arctan
(√

Ω2 + 1 tan(σ/2)
)

√
Ω2 + 1

if 0 ≤ σ < π,

−
arctan

(√
Ω2 + 1 tan(σ/2)

)

√
Ω2 + 1

if π ≤ σ ≤ 2π

and thus

P {area ≤ σ} =































1

2π

π
∫

0





σ

2
+
π − arctan

(√
Ω2 + 1 tan(σ/2)

)

√
Ω2 + 1



 sin(κ)dκ if 0 ≤ σ < π,

1

2π

π
∫

0





σ

2
−

arctan
(√

Ω2 + 1 tan(σ/2)
)

√
Ω2 + 1



 sin(κ)dκ if π ≤ σ ≤ 2π.

The area density is therefore































1

2π



1 +
d

dσ

π
∫

0

π − arctan
(√

Ω2 + 1 tan(σ/2)
)

√
Ω2 + 1

sin(κ)dκ



 if 0 ≤ σ < π,

1

2π



1− d

dσ

π
∫

0

arctan
(√

Ω2 + 1 tan(σ/2)
)

√
Ω2 + 1

sin(κ)dκ



 if π ≤ σ ≤ 2π

which, as outlined in [7.1], gives rise to the Crofton/Exhumatus expression.

3.2. Unsuccessful Evaluation for Primal Perimeter. There does not seem
to be an analogous approach for computing

τ/2
∫

τ/2−κ

f(ρ) sin(ρ)dρ

from [2.3] in closed-form. We suspect that elliptic integrals will arise, but have not
yet found a method for demonstrating this. See [7.2] for more details.

4. Two More Approaches

4.1. Median Area. Assume that the triangle ABC satisfies c = κ. A median
in ABC is the great circle drawn from vertex C to the midpoint P of side c. Let ρ
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denote the spherical distance between P and C, and θ denote the angle between PB
and PC. These three parameters are related to primal area σ as follows:

tan
(

σ

2

)

=
sin(κ/2) sin(ρ) sin(θ)

cos(κ/2) + cos(ρ)
.

A proof appears in section [6.5]. For fixed σ and κ, define

f(θ) = arccos









cos
(

κ
2

)

tan
(

σ
2

)2
csc(θ)2 ∓ sin

(

κ
2

)2
√

1 + tan
(

σ
2

)2
csc(θ)2

cos
(

κ
2

)2 − tan
(

σ
2

)2
csc(θ)2 − 1









where − is chosen if σ ≤ π and + is chosen if σ > π; then the conditional probability
is

P {area ≤ σ |c = κ} =
1

2π

π
∫

0

f(θ)
∫

0

sin(ρ)dρ dθ

=
1

2π

π
∫

0

(1− cos(f(θ)))dθ

=
1

2π

π
∫

0









1−
cos

(

κ
2

)

tan
(

σ
2

)2
csc(θ)2 ∓ sin

(

κ
2

)2
√

1 + tan
(

σ
2

)2
csc(θ)2

cos
(

κ
2

)2 − tan
(

σ
2

)2
csc(θ)2 − 1









dθ.

This result can be experimentally verified by generating many primal triangles ABC
with c = κ, and then plotting all pairs (θ, ρ) corresponding to triangles with area ≤ σ.
The scatterplot fills the region [0, π] × [0, π] except for the portion lying above the
curve ρ = f(θ). This approach is believed to be the same as Crofton & Exhumatus
(details in [2] are rather thin). Not seeing any advantage over our approach in [2.1],
we stop here.

4.2. Bisector Perimeter. Assume that the triangle ABC satisfies α = κ. An
angle bisector in ABC is the great circle drawn from vertex A that splits angle α
in half. Define Q to be the intersection point between this circle and side BC. Let ρ
denote the spherical distance between Q and A, and θ denote the angle between QC
and QA. These three parameters are related to dual perimeter τ as follows:

tan
(

τ

2

)

= − cos(κ/2) sin(ρ) sin(θ)

sin(κ/2) + cos(ρ) sin(θ)
.

A proof appears in section [6.6]. For fixed τ and κ, define

flower(ρ) = arcsin

[

− tan(τ/2) sin(κ/2)

tan(τ/2) cos(ρ) + cos(κ/2) sin(ρ)

]

,



Random Spherical Triangles 14

fupper(ρ) = π − arcsin

[

− tan(τ/2) sin(κ/2)

tan(τ/2) cos(ρ) + cos(κ/2) sin(ρ)

]

assuming

arccos

(

− cos(τ/2) + sin(κ/2)

1 + cos(τ/2) sin(κ/2)

)

= ρthres ≤ ρ ≤ π.

The region of all pairs (ρ, θ) corresponding to triangles with perimeter ≤ τ is more
complicated than earlier examples. The scatterplot fills the region [ρthres, π] × [0, π]
except for portions lying either above the curve θ = fupper(ρ) or below the curve
θ = flower(ρ). The conditional probability is

P {perimeter ≤ τ |α = κ} =
1

2π

π
∫

ρthres

fupper(ρ)
∫

flower(ρ)

sin(θ)dθ dρ

=
1

2π

π
∫

ρthres

(cos(flower(ρ))− cos(fupper(ρ)))dρ

=
1

π

π
∫

ρthres

√

√

√

√1−
(

tan(τ/2) sin(κ/2)

tan(τ/2) cos(ρ) + cos(κ/2) sin(ρ)

)2

dρ.

Due to the unanticipated complexity, we stop here.

5. Two More Coordinate Systems

The primal coordinate system [1.1] allows us to specify a triangle, given a fixed side κ,
with an additional side ρ and an angle θ. Can we do as well with two angles instead?
The dual coordinate system [1.2] allows us to likewise specify a triangle, given a fixed
angle κ. Can we do as well with two sides instead?

5.1. Angle Coordinates. Without loss of generality, let A = (1, 0, 0) and B =
(cos(κ), sin(κ), 0) in xyz coordinates. We wish to locate the unique point C in the
hemisphere so that the triangle ABC satisfies α = ϕ, β = ψ, c = κ. See Figure 3.
The parameters ϕ, ψ are regarded as varying while the parameter κ is fixed.

Let us examine the great circle containing A, C. It must also contain the point
(0, cos(ϕ), sin(ϕ)), since this is the image of (0, 1, 0) after rotation through angle ϕ.
Hence a normal vector is V = (1, 0, 0)× (0, cos(ϕ), sin(ϕ)) = (0,− sin(ϕ), cos(ϕ)).

Let us examine the great circle containing B, C. Think of rotating the equato-
rial disk in space so that the vector (cos(κ), sin(κ), 0) remains fixed and the vector
(sin(κ),− cos(κ), 0) moves toward (0, 0, 1) through the angle ψ. The rotation matrix
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performing this motion is [6]

S =







cos(κ)2 + (1− cos(κ)2) cos(ψ) cos(κ) sin(κ)(1− cos(ψ)) − sin(κ) sin(ψ)
cos(κ) sin(κ)(1− cos(ψ)) sin(κ)2 + (1− sin(κ)2) cos(ψ) cos(κ) sin(ψ)

sin(κ) sin(ψ) − cos(κ) sin(ψ) cos(ψ)







and

S







sin(κ)
− cos(κ)

0





 =







sin(κ) cos(ψ)
− cos(κ) cos(ψ)

sin(ψ)





 .

Hence the great circle must contain the point (sin(κ) cos(ψ),− cos(κ) cos(ψ), sin(ψ))
and a normal vector is

W =







cos(κ)
sin(κ)

0





×







sin(κ) cos(ψ)
− cos(κ) cos(ψ)

sin(ψ)





 =







sin(κ) sin(ψ)
− cos(κ) sin(ψ)

− cos(ψ)





 .

The point C is orthogonal to the two normal vectors and at unit distance from the
origin, equivalently, C = (V ×W )/ ‖V ×W‖. We have

V ×W =







sin(ϕ) cos(ψ) + cos(κ) cos(ϕ) sin(ψ)
sin(κ) cos(ϕ) sin(ψ)
sin(κ) sin(ϕ) sin(ψ)





 ,

‖V ×W‖ =
√

1− (cos(ϕ) cos(ψ)− cos(κ) sin(ϕ) sin(ψ))2

and thus the Jacobian determinant of (r, ϕ, ψ) 7→ (x, y, z) = −rC simplifies to

sin(κ)2 sin(ϕ) sin(ψ)
[

(sin(ϕ) cos(ψ) + cos(κ) cos(ϕ) sin(ψ))2 + sin(κ)2 sin(ψ)2
]

[

1− (cos(ϕ) cos(ψ)− cos(κ) sin(ϕ) sin(ψ))2
]5/2

.

5.2. Side Coordinates. Without loss of generality, let A = (1, 0, 0) and B =
(cos(ξ), sin(ξ), 0) in xyz coordinates. It seems (at first glance) that we should locate
the unique point C in the upper hemisphere so that the triangle ABC satisfies α = κ,
c = ξ, b = η. See Figure 4. The parameters ξ, η are regarded as varying while the
parameter κ is fixed. Think of rotating the equatorial disk in space so that the vector
(1, 0, 0) remains fixed and the vector (0, 1, 0) moves toward (0, 0, 1) through the angle
κ. The rotation matrix performing this motion is [6]

R =







1 0 0
0 cos(κ) − sin(κ)
0 sin(κ) cos(κ)
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and

R







cos(η)
sin(η)
0





 =







cos(η)
cos(κ) sin(η)
sin(κ) sin(η)





 ,

which gives the point C.
Now, in fact, this is less than what is required. We must (on second glance)

specify the great circle containing B, C. This is done via a normal vector U =
(B × C)/ ‖B × C‖, where

B × C =







cos(ξ)
sin(ξ)
0





×







cos(η)
cos(κ) sin(η)
sin(κ) sin(η)







=







sin(κ) sin(ξ) sin(η)
− sin(κ) cos(ξ) sin(η)

− sin(ξ) cos(η) + cos(κ) cos(ξ) sin(η)





 ,

‖B × C‖ =
√

1− (cos(ξ) cos(η) + cos(κ) sin(ξ) sin(η))2.

Thus the Jacobian determinant of (r, ξ, η) 7→ (x, y, z) = rU simplifies to

sin(κ)2 sin(ξ) sin(η)
[

(sin(ξ) cos(η)− cos(κ) cos(ξ) sin(η))2 + sin(κ)2 sin(η)2
]

[

1− (cos(ξ) cos(η) + cos(κ) sin(ξ) sin(η))2
]5/2

.

5.3. Possible Applications. Combining an identity in [7] with the Law of Cosines
for Angles, we obtain

tan
(

τ

2

)

=
sin(ϕ) sin(ψ) sin(κ)

cos(ϕ) + cos(ψ)− cos(ϕ) cos(ψ) + cos(κ) sin(ϕ) sin(ψ)− 1
.

Let us solve for ψ as follows:

[cos(ϕ) + cos(ψ)− cos(ϕ) cos(ψ)− 1] tan
(

τ

2

)

= sin(ϕ) sin(ψ)
[

sin(κ)− cos(κ) tan
(

τ

2

)]

hence

− [1− cos(ϕ)] [1− cos(ψ)] tan
(

τ

2

)

= sin(ϕ) sin(ψ)
[

sin(κ)− cos(κ) tan
(

τ

2

)]

hence

−1 − cos(ϕ)

sin(ϕ)
tan

(

τ

2

)

=
sin(ψ)

1− cos(ψ)

[

sin(κ)− cos(κ) tan
(

τ

2

)]
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hence

tan
(

ϕ

2

)

csc
(

τ

2
− κ

)

sin
(

τ

2

)

=
sin(ψ)

1− cos(ψ)

hence

cos(ψ) =
tan

(

ϕ
2

)2
csc

(

τ
2
− κ

)2
sin

(

τ
2

)2 − 1

tan
(

ϕ
2

)2
csc

(

τ
2
− κ

)2
sin

(

τ
2

)2
+ 1

because y =
√
1− x2/(1 − x) has inverse x = (y2 − 1) / (y2 + 1). For fixed τ and κ,

define

f(ϕ) =











arccos

[

tan(ϕ
2 )

2
csc( τ

2
−κ)

2
sin( τ

2 )
2
−1

tan(ϕ
2 )

2
csc( τ

2
−κ)

2
sin( τ

2 )
2
+1

]

if 0 ≤ κ < τ/2,

0 if τ/2 ≤ κ ≤ π

then the conditional probability, given c, is

P {perimeter ≤ τ |c = κ} =
1

2π

π
∫

0

f(θ)
∫

0

sin(κ)2 sin(ϕ) sin(ψ)[(sin(ϕ) cos(ψ)+cos(κ) cos(ϕ) sin(ψ))2+sin(κ)2 sin(ψ)2]

[1−(cos(ϕ) cos(ψ)−cos(κ) sin(ϕ) sin(ψ))2]
5/2 dψ dϕ.

Similarly, combining an identity in [7] with the Law of Cosines for Sides, we obtain

tan
(

σ

2

)

=
sin(ξ) sin(η) sin(κ)

1 + cos(ξ) + cos(η) + cos(ξ) cos(η) + cos(κ) sin(ξ) sin(η)
.

Let us solve for η as follows:

[1 + cos(ξ) + cos(η) + cos(ξ) cos(η)] tan
(

σ

2

)

= sin(ξ) sin(η)
[

sin(κ)− cos(κ) tan
(

σ

2

)]

hence
1 + cos(ξ)

sin(ξ)
tan

(

σ

2

)

=
sin(η)

1 + cos(η)

[

sin(κ)− cos(κ) tan
(

σ

2

)]

hence

cos(η) =
1− cot

(

ξ
2

)2
csc

(

κ− σ
2

)2
sin

(

σ
2

)2

1 + cot
(

ξ
2

)2
csc

(

κ− σ
2

)2
sin

(

σ
2

)2

because y =
√
1− x2/(1 + x) has inverse x = (1− y2) / (1 + y2). For fixed σ and κ,

define

f(ξ) =











π if 0 ≤ κ < σ/2,

arccos

[

1−cot( ξ
2)

2
csc(κ−σ

2 )
2
sin(σ

2 )
2

1+cot( ξ
2)

2
csc(κ−σ

2 )
2
sin(σ

2 )
2

]

if σ/2 ≤ κ ≤ π
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then the conditional probability, given α, is

P {area ≤ σ |α = κ} =
1

2π

π
∫

0

f(ξ)
∫

0

sin(κ)2 sin(ξ) sin(η)[(sin(ξ) cos(η)−cos(κ) cos(ξ) sin(η))2+sin(κ)2 sin(η)2]

[1−(cos(ξ) cos(η)+cos(κ) sin(ξ) sin(η))2]
5/2 dη dξ.

We have not further pursued this direction of inquiry.

6. Trigonometric Identities

The following formulas are required in the main text.

6.1. Primal Case i. To prove

tan

(

b

2

)

= cot
(

c

2

)

csc
(

α− σ

2

)

sin
(

σ

2

)

we expand cos(σ/2) and make use of Delambre’s analogies [8]:

cos
(

σ

2

)

= cos

(

β + γ

2
− π − α

2

)

= cos

(

β + γ

2

)

sin
(

α

2

)

+ sin

(

β + γ

2

)

cos
(

α

2

)

=

[

cos

(

b+ c

2

)

sin
(

α

2

)2

+ cos

(

b− c

2

)

cos
(

α

2

)2
]

sec
(

a

2

)

=

[(

cos
b

2
cos

c

2
− sin

b

2
sin

c

2

)

1− cosα

2
+

(

cos
b

2
cos

c

2
+ sin

b

2
sin

c

2

)

1 + cosα

2

]

sec
a

2

=

(

cos
b

2
cos

c

2
+ sin

b

2
sin

c

2
cosα

)

sec
a

2
.

Also

sin
(

σ

2

)

= sin

(

β + γ

2
− π − α

2

)

= − cos

(

β + γ

2

)

cos
(

α

2

)

+ sin

(

β + γ

2

)

sin
(

α

2

)

=

[

− cos

(

b+ c

2

)

sin
(

α

2

)

cos
(

α

2

)

+ cos

(

b− c

2

)

cos
(

α

2

)

sin
(

α

2

)

]

sec
(

a

2

)

=

[

−
(

cos
b

2
cos

c

2
− sin

b

2
sin

c

2

)

+

(

cos
b

2
cos

c

2
+ sin

b

2
sin

c

2

)]

cos
α

2
sin

α

2
sec

a

2

= 2 sin
b

2
sin

c

2
cos

α

2
sin

α

2
sec

a

2
= sin

b

2
sin

c

2
sinα sec

a

2
.
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Dividing, we obtain

cot
σ

2
=

cos b
2
cos c

2
+ sin b

2
sin c

2
cosα

sin b
2
sin c

2
sinα

hence

cos
σ

2
sinα =

(

cot
b

2
cot

c

2
+ cosα

)

sin
σ

2

and therefore

sin
(

α− σ

2

)

= sinα cos
σ

2
− cosα sin

σ

2
= cot

b

2
cot

c

2
sin

σ

2

as was to be shown.

6.2. Primal Case ii. To prove

cos(α) =
sin(τ − c)

sin(c)
+

cos(τ − c)− cos(c)

sin(c)
cot(b)

we expand cos(a):

cos(a) = cos(τ − b− c)

= cos (−b+ (τ − c))

= cos(b) cos(τ − c) + sin(b) sin(τ − c)

and make use of the Law of Cosines for Sides:

cos(a) = cos(b) cos(c) + sin(b) sin(c) cos(α)

thus
sin(b) sin(c) cos(α) = sin(τ − c) sin(b) + [cos(τ − c)− cos(c)] cos(b).

Alternatively, we have

sin(c) cos(α) = sin(τ − c) + (cos(τ − c)− cos(c)) cot(b)

hence

− tan(b) =
cos(τ − c)− cos(c)

sin(τ − c)− sin(c) cos(α)

but solving for b turns out to be more complicated than our strategy of solving for α.
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6.3. Dual Case i. To prove

tan

(

β

2

)

= cot
(

α

2

)

sin
(

τ

2
− c

)

csc
(

τ

2

)

we expand cos(τ/2) and make use of Delambre’s analogies [8]:

cos
(

τ

2

)

= cos

(

a+ b

2
+
c

2

)

= cos

(

a+ b

2

)

cos
(

c

2

)

− sin

(

a + b

2

)

sin
(

c

2

)

=

[

cos

(

α+ β

2

)

cos
(

c

2

)2

− cos

(

α− β

2

)

sin
(

c

2

)2
]

csc
(

γ

2

)

=

[(

cos
α

2
cos

β

2
− sin

α

2
sin

β

2

)

1 + cos c

2
−
(

cos
α

2
cos

β

2
+ sin

α

2
sin

β

2

)

1− cos c

2

]

csc
γ

2

=

(

− sin
α

2
sin

β

2
+ cos

α

2
cos

β

2
cos c

)

csc
γ

2
.

Also

sin
(

τ

2

)

= sin

(

a + b

2
+
c

2

)

= cos

(

a + b

2

)

sin
(

c

2

)

+ sin

(

a+ b

2

)

cos
(

c

2

)

=

[

cos

(

α + β

2

)

cos
(

c

2

)

sin
(

c

2

)

+ cos

(

α− β

2

)

sin
(

c

2

)

cos
(

c

2

)

]

csc
(

γ

2

)

=

[(

cos
α

2
cos

β

2
− sin

α

2
sin

β

2

)

+

(

cos
α

2
cos

β

2
+ sin

α

2
sin

β

2

)]

cos
c

2
sin

c

2
csc

γ

2

= 2 cos
α

2
cos

β

2
cos

c

2
sin

c

2
csc

γ

2
= cos

α

2
cos

β

2
sin c csc

γ

2
.

Dividing, we obtain

cot
τ

2
=

− sin α
2
sin β

2
+ cos α

2
cos β

2
cos c

cos α
2
cos β

2
sin c

hence

cos
τ

2
sin c =

(

− tan
α

2
tan

β

2
+ cos c

)

sin
τ

2
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and therefore

sin
(

τ

2
− c

)

= sin
τ

2
cos c− cos

τ

2
sin c = tan

α

2
tan

β

2
sin

τ

2

as was to be shown.

6.4. Dual Case ii. To prove

− cos(c) =
sin(σ − α)

sin(α)
+

cos(σ − α)− cos(α)

sin(α)
cot(β)

we expand − cos(γ):

− cos(γ) = − cos(σ − α− β + π)

= cos (−β + (σ − α))

= cos(β) cos(σ − α) + sin(β) sin(σ − α)

and make use of the Law of Cosines for Angles:

− cos(γ) = cos(α) cos(β)− sin(α) sin(β) cos(c)

thus

− sin(α) sin(β) cos(c) = sin(σ − α) sin(β) + [cos(σ − α)− cos(α)] cos(β).

Alternatively, we have

− sin(α) cos(c) = sin(σ − α) + (cos(σ − α)− cos(α)) cot(β)

hence

− tan(β) =
cos(σ − α)− cos(α)

sin(σ − α) + sin(α) cos(c)

but solving for β turns out to be more complicated than our strategy of solving for c.

6.5. Median Case. Let ρ, θ be defined within triangle ABC as in [4.1]. Applying
the Law of Cosines for Sides to both triangles CPB and CPA, we have

cos(a) = cos(ρ) cos(c/2) + sin(ρ) sin(c/2) cos(θ), (1)

cos(b) = cos(ρ) cos(c/2)− sin(ρ) sin(c/2) cos(θ) (2)

because cos(π − θ) = − cos(θ); hence

1 + cos(a) + cos(b) + cos(c) = 1 + 2 cos(ρ) cos(c/2) + cos(c)

= 2 cos(ρ) cos(c/2) + 2 cos(c/2)2

= 2 cos(c/2) (cos(ρ) + cos(c/2)) .
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Applying the Law of Sines to both triangles CPB and ABC, we have

sin(a)

sin(θ)
=

sin(ρ)

sin(β)
,

sin(b)

sin(β)
=

sin(c)

sin(γ)

hence

sin(a) sin(b) sin(γ) =
sin(ρ) sin(θ)

sin(β)

sin(β) sin(c)

sin(γ)
sin(γ)

= sin(ρ) sin(θ) sin(c)

= 2 sin(ρ) sin(θ) sin(c/2) cos(c/2).

Eriksson [7] proved that

tan
(

σ

2

)

=
sin(a) sin(b) sin(γ)

1 + cos(a) + cos(b) + cos(c)

from which

tan
(

σ

2

)

=
sin(c/2) sin(ρ) sin(θ)

cos(c/2) + cos(ρ)
(3)

follows immediately.
Adding equation (2) to (1), we obtain [9]

cos(ρ) =
cos(a) + cos(b)

2 cos
(

c
2

) =
cos

(

a+b
2

)

cos
(

a−b
2

)

cos
(

c
2

) ;

subtracting equation (2) from (1), we obtain

cos(θ) =
cos(a)− cos(b)

2 sin
(

c
2

)

sin(ρ)
= −

sin
(

a+b
2

)

sin
(

a−b
2

)

sin
(

c
2

)

sin(ρ)
.

Thus, given a, b, c, it is easy to compute ρ and then θ (in that order).
Rearranging equation (3) to

tan (σ/2)

sin(θ)
=

sin(c/2) sin(ρ)

cos(c/2) + cos(ρ)
=

√

1− cos(c/2)2
√

1− cos(ρ)2

cos(c/2) + cos(ρ)
,

that is,

z =

√
1− y2

√
1− x2

y + x

we solve for x = cos(ρ):

(y + x)2z2 =
(

1− y2
) (

1− x2
)

,

that is
(

1− y2 + z2
)

x2 +
(

2yz2
)

x−
(

1− y2 − y2z2
)

= 0

and obtain the expression for ρ = f(θ).
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6.6. Angle Bisector Case. Let ρ, θ be defined within triangle ABC as in [4.2].
Applying the Law of Cosines for Angles to both triangles AQC and AQB, we have

− cos(γ) = cos(θ) cos(α/2) + sin(θ) sin(α/2) cos(ρ), (4)

− cos(β) = − cos(θ) cos(α/2) + sin(θ) sin(α/2) cos(ρ) (5)

because cos(π − θ) = − cos(θ) and sin(π − θ) = sin(θ); hence

cos(α) + cos(β) + cos(γ)− 1 = cos(α)− 2 sin(θ) sin(α/2) cos(ρ)− 1

= −2 sin(θ) sin(α/2) cos(ρ)− 2 sin(α/2)2

= −2 sin(α/2) (sin(θ) cos(ρ) + sin(α/2)) .

Applying the Law of Sines to triangle AQB, we have

sin(c)

sin(θ)
=

sin(ρ)

sin(β)

hence

sin(α) sin(β) sin(c) = sin(α)
sin(ρ) sin(θ)

sin(c)
sin(c)

= sin(α) sin(ρ) sin(θ)

= 2 sin(α/2) cos(α/2) sin(ρ) sin(θ).

The dual of Eriksson’s result is [7]

tan
(

τ

2

)

=
sin(α) sin(β) sin(c)

cos(α) + cos(β) + cos(γ)− 1

from which

tan
(

τ

2

)

= − cos(α/2) sin(ρ) sin(θ)

sin(α/2) + cos(ρ) sin(θ)
(6)

follows immediately.
Adding equation (5) to (4), we obtain [9]

cos(ρ) = −cos(β) + cos(γ)

2 sin
(

α
2

)

sin(θ)
= −

cos
(

β+γ
2

)

cos
(

β−γ
2

)

sin
(

α
2

)

sin(θ)
;

subtracting equation (5) from (4), we obtain

cos(θ) =
cos(β)− cos(γ)

2 cos
(

α
2

) = −
sin

(

β+γ
2

)

sin
(

β−γ
2

)

cos
(

α
2

) .
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Thus, given α, β, γ, it is easy to compute θ and then ρ (in that order).
Rearranging equation (6) to

tan(τ/2) sin(α/2) + (tan(τ/2) cos(ρ) + cos(α/2) sin(ρ)) sin(θ) = 0,

that is,

sin(θ) = − tan(τ/2) sin(α/2)

tan(τ/2) cos(ρ) + cos(α/2) sin(ρ)

we obtain the expression for θ = f(ρ). The smallest admissible value ρ = ρthres occurs
when sin(θ) = 1, that is,

tan(τ/2) cos(ρ) + cos(α/2) sin(ρ) + tan(τ/2) sin(α/2) = 0.

Solving
y x+ z

√
1− x2 + y

√
1− z2 = 0

is made possible via

y2
(

x+
√
1− z2

)2
= z2

(

1− x2
)

,

hence
(

y2 + z2
)

x2 + 2y2
√
1− z2x+

(

y2 − z2 − y2z2
)

= 0

hence

x =
−y2

√
1− z2 − z2

√
1 + y2

y2 + z2
= −

1√
1+y2

+
√
1− z2

1 + 1√
1+y2

√
1− z2

hence

cos(ρ) = − cos(τ/2) + sin(α/2)

1 + cos(τ/2) sin(α/2)

gives the desired threshold.

7. Definite Integrals

7.1. Crofton/Exhumatus. We wish to evaluate


































π
∫

0

π − arctan
(√

tan2 x
2
csc2 y

2
+ 1 tan y

2

)

√

tan2 x
2
csc2 y

2
+ 1

sin x dx if 0 ≤ y < π,

−
π
∫

0

arctan
(√

tan2 x
2
csc2 y

2
+ 1 tan y

2

)

√

tan2 x
2
csc2 y

2
+ 1

sin x dx if π ≤ y ≤ 2π.

A miraculous substitution

cos z = cos x
2
cos y

2
, 0 ≤ z ≤ π
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is due to Crofton & Exhumatus [2]; from

sin z dz = 1
2
sin x

2
cos y

2
dx

we deduce that

sin x dx = 2 sin x
2
cos x

2

sin z dz
1
2
sin x

2
cos y

2

= 4
cos z

cos y
2

sin z dz

cos y
2

=
4 cos z sin z

cos2 y
2

dz

and

tan2 x
2
csc2 y

2
+ 1 =

tan2 z

tan2 y
2

because

tan2 z + 1 = sec2 z = sec2 x
2
sec2 y

2
=
(

tan2 x
2
+ 1

)

sec2 y
2

= tan2 x
2
sec2 y

2
+
(

tan2 y
2
+ 1

)

=
(

tan2 x
2
sec2 y

2
+ tan2 y

2

)

+ 1

=
(

tan2 x
2
csc2 y

2
+ 1

)

tan2 y
2
+ 1.

Since cos(z), cos(y/2) obviously have the same sign, it follows that tan(z), tan(y/2)
likewise have the same sign and

tan z =
√

tan2 x
2
csc2 y

2
+ 1 tan y

2
.

If 0 ≤ y < π, clearly cos(y/2) > 0 and the range 0 ≤ x ≤ π maps to y/2 ≤ z ≤
π/2. Also, tan(y/2) > 0, hence

z = arctan
(

√

tan2 x
2
csc2 y

2
+ 1 tan y

2

)

hence

π − arctan
(√

tan2 x
2
csc2 y

2
+ 1 tan y

2

)

√

tan2 x
2
csc2 y

2
+ 1

sin x dx =
tan y

2

tan z
(π − z)

4 cos z sin z

cos2 y
2

dz

=
4 tan y

2

cos2 y
2

(π − z) cos2 z dz.

The required definite integral is thus

4 tan y
2

cos2 y
2

π/2
∫

y/2

(π − z) cos2 z dz
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which is elementary.
If π < y ≤ 2π, clearly cos(y/2) < 0 and the range 0 ≤ x ≤ π maps to y/2 ≥ z ≥

π/2. Also, tan(y/2) < 0, hence

z = π + arctan
(

√

tan2 x
2
csc2 y

2
+ 1 tan y

2

)

hence

−
arctan

(√

tan2 x
2
csc2 y

2
+ 1 tan y

2

)

√

tan2 x
2
csc2 y

2
+ 1

sin x dx = −tan y
2

tan z
(z − π)

4 cos z sin z

cos2 y
2

dz

=
4 tan y

2

cos2 y
2

(π − z) cos2 z dz.

The required definite integral is thus identical to before (although here the lower limit
y/2 is greater than the upper limit π/2).

Computer algebra swiftly gives

1 +
d

dy







4 tan y
2

cos2 y
2

π/2
∫

y/2

(π − z) cos2 z dz







= −(y2 − 4πy + 3π2 − 6) cos(y)− 6(y − 2π) sin(y)− 2(y2 − 4πy + 3π2 + 3)

8 cos(y/2)4

and this is useful at the conclusion of [3.1].

7.2. Jones/Benyon-Tinker. Combining our results with those in [4, 5], we have

τ/2
∫

τ/2−κ

sin(τ − κ− ρ) sin(κ) sin(ρ)
√

sin(κ)2 sin(ρ)2 − [cos(κ) cos(ρ)− cos(τ − κ− ρ)]2
dρ (7)

=
E
(

sin
(

κ
2

))

− cos
(

τ−κ
2

)2
K
(

sin
(

κ
2

))

√

cos
(

κ
2

)2 − cos
(

τ−κ
2

)2
sin(κ)

in connection with primal perimeter [2.3] and

−
π−(κ−σ/2)
∫

σ/2

sin(σ − κ− θ) sin(κ) sin(θ)
√

sin(κ)2 sin(θ)2 − [cos(κ) cos(θ)− cos(σ − κ− θ)]2
dθ (8)

=
E
(

cos
(

κ
2

))

− sin
(

σ−κ
2

)2
K
(

cos
(

κ
2

))

√

sin
(

κ
2

)2 − sin
(

σ−κ
2

)2
sin(κ)
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in connection with dual area [2.4]. A direct symbolic proof of these formulas is not
known [3.2].

Consider the problem of integrating equation (7) with respect to κ, 0 ≤ κ ≤ τ/2
and of integrating equation (8) with respect to κ, σ/2 ≤ κ ≤ π. In (7), ρ is integrated
out first, κ second. In (8), θ is integrated out first, κ second. By symmetry, we gain
nothing by integrating out κ first, thus a closed-form expression for unconditional
density would seem unlikely. Another miraculous change of variables might, however,
be brought into play. Other approaches based on other coordinate systems exist [5.1,
5.2]. It is still too early to rule out the possibility of a breakthrough here.
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