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IDENTIFYING FROBENIUS ELEMENTS IN GALOIS

GROUPS

TIM AND VLADIMIR DOKCHITSER

Abstract. We present a method to determine Frobenius elements in
arbitrary Galois extensions of global fields, which may be seen as a
generalisation of Euler’s criterion. It is a part of the general question
how to compare splitting fields and identify conjugacy classes in Galois
groups, that we will discuss as well.
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1. Introduction

A classical study in number theory concerns Frobenius elements in Galois
groups of global fields. One aspect is how to determine Frobenius at a given
prime using only the arithmetic of the ground field, answered by class field
theory when the extension is abelian. This paper studies the questions how
to compare splitting fields and identify conjugacy classes in Galois groups
in general (see §2-4). The application to Frobenius elements is the following

Theorem 1.1. Let K be a global field and f(x) ∈ K[x] a separable polyno-
mial with Galois group G. There is a polynomial h(x) ∈ K[x] and polyno-
mials ΓC ∈ K[x] indexed by the conjugacy classes C of G such that

Frobp ∈ C ⇔ ΓC

(

Tr Fq [x]

f(x)
/Fq

(h(x)xq)
)

= 0 mod p

for almost all primes p of K; here Fq is the residue field at p.

This is proved in §5. We note directly that one can usually take h(x) = x2

(see below), in particular Tr(xq+2) then determines the conjugacy class of
Frobp. We will explain how it can be seen as a generalisation of Euler’s
criterion a

p−1
2 ≡ (ap ) mod p for general polynomials, and how it recovers

classical formulae for Frobenius elements in cyclotomic and Kummer exten-
sions (§5-6). In §7 we give explicit examples for non-abelian Galois groups,
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2 TIM AND VLADIMIR DOKCHITSER

including formulae that determine the splitting behaviour of general cubics
and quartics.

The theorem is explicit for practical purposes. Indeed, our motivation
was computing L-series of Artin representations for arbitrary Galois groups,
which require the knowledge of Frobenius elements at all primes (see Re-
mark 5.8). The polynomials ΓC have degree |C| and can be explictly given by

ΓC(X) =
∏

σ∈C

(

X −
n

Σ
j=1

h(aj)σ(aj)
)

,

where a1, ..., an are the roots of f in some splitting field. The ‘almost all
primes’ in the theorem are those not dividing the denominators of the coeffi-
cients of f , its leading coefficient and the resultants Res(ΓC ,ΓC′) for C 6= C ′;
the latter simply says that the ΓC mod p are pairwise coprime. (This con-
dition always fails for ramified primes, see Remark 5.6.) Finally, the only
constraint on h is that the resulting ΓC are coprime over K. This holds for
almost all h, in the sense that the admissible ones of degree at most n − 1
form a Zariski dense open subset of Kn. Also, a fixed h with 1 < deg h < n
(e.g. h(x) = x2) will work for almost all f that define the same field (see §8).

To illustrate our approach to Frobenius elements, let us do a simple case
by hand:

Example 1.2. The polynomial f(x) = x5 +2x4 − 3x3 +1 has Galois group
G = D10 over K = Q. If we number its complex roots by

a1 ≈ −3.01, a2 ≈ −0.35−0.53i, a3 ≈ 0.85−0.31i, a4 = a3, a5 = a2,

thenG is generated by the 5-cycle (12345) and complex conjugation (25)(34).
It is easy to see that f(x) is irreducible over F2, so Frob2 ∈ G is in one of
the two conjugacy classes of 5-cycles, either [(12345)] or [(12345)2]. How
can we check which one it is?

Consider the expressions,

n1 = a1a2 + a2a3 + a3a4 + a4a5 + a5a1,
n2 = a1a3 + a2a4 + a3a5 + a4a1 + a5a2.

If we think of G as the group of symmetries of a pentagon, the sums are
taken over all edges and over all diagonals respectively. Therefore they
are clearly G-invariant, i.e. rational numbers. Moreover, as ai are algebraic
integers, n1 and n2 are in fact integers, readily recognised from their complex
approximations as being 2 and −5.

Now suppose b1 is a root of f(x) in F25 , and bi = b2i−1 for i = 2, 3, 4, 5 are
its other roots ordered by the action of the Frobenius automorphism. Then

N = b1b2 + b2b3 + b3b4 + b4b5 + b5b1

is in F2. By considering the reduction modulo a prime q above 2 in the
splitting field, we see that if Frobq is (12345) or (12345)−1, then n1 ≡ N
mod 2. Similarly, if Frobq is (12345)2 or (12345)3 , then n2 ≡ N mod 2.
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Computing in F5
2 (or noting that N = TrF2[x]/f(x)(x

3)) we find that N = 0,
so Frob2 must be in [(12345)].

In the language of Theorem 1.1, we took h(x) = x and proved that

Γ[(12345)] = (x− 2)2 and Γ[(12345)2] = (x+ 5)2

distinguish between the two conjugacy classes of 5-cycles: if f(x) is irre-
ducible mod p (and p 6= 7, so that 2 6≡ −5), then

Frobp ∈ C ⇔ ΓC(TrFp[x]/f(x)(x
p+1)) = 0 mod p.

This choice of h(x) was in some sense deceptively simple, because the roots
ni of the ΓC ’s were integers. (We used that the conjugacy classes of 5-cycles
are self-inverse in D10.) Generally, these roots would be algebraic integers
of degree |C|. For example, h(x) = x2 leads to

Γ[(12345)] = x2 + 5x+ 18 and Γ[(12345)2] = x2 − 11x+ 42,

and Tr(xp+2) is a root of one of them whenever f(x) mod p is irreducible.

We end with a few words about the history of the problem of computing
Frobenius elements. It is a classical theorem that their cycle types can be
read off from the degrees of the factors of f(x) mod p. Thus the problem has
an elementary solution if the Galois group is the full symmetric group Sn or,
generally, a permutation group whose conjugacy classes are determined by
cycle type. Another classical example is the alternating group A5, which has
two conjugacy classes of 5-cycles. A solution in this case was pointed out by
Serre (see Buhler [3] p. 53), and generalised by Roberts [5] to all alternating
groups. (This goes under the name ‘Serre’s trick’ and was used for instance
by Booker [1] in his work on L-series for icosahedral representations.)

Notation. Throughout the paper we use the following notation:

K ground field
f(x) separable polynomial in K[x] of degree n
L some extension of K where f splits completely
a = [a1, ..., an] ordered roots of f in L
K(a) field generated by the ai over K (a splitting field of f)
Ga Galois group of f , considered as a subgroup of Sn

via its permutation action on [a1, ..., an].
p prime of K, when K is a global field
Fq residue field at p
Frobp any (arithmetic) Frobenius element at p in Ga

eFa,Γ,M
F
a,Ψ see Definitions 2.2, 2.7, 3.4 and 4.3.

Recall that a global field is a finite extension of either Q or Fp(T ). The Fro-
benius element in Gal(L/K) at p is characterised by Frobp(x) ≡ xq mod q

for all x ∈ L that are integral at some fixed prime q of L above p. The
element Frobp is well-defined modulo inertia and up to conjugation. In
particular, its conjugacy class is well-defined if p is unramified in L/K.
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The symmetric group Sn acts on n-tuples by

[c1, ..., cn]
σ = [cσ−1(1), ..., cσ−1(n)].

It acts on the ring of polynomials in n variablesK[x1, ..., xn] by σ(xi) = xσ(i);
thus, for a polynomial F ∈ K[x1, ..., xn],

F σ([c1, ..., cn]) = F ([c1, ..., cn]
σ−1

),

where F ([...]) is the evaluation of F on the n-tuple.

Acknowledgements. The first author is supported by a Royal Society Uni-
versity Research Fellowship. The second author would like to thank Gonville
& Caius College, Cambridge, where part of this research was carried out.

2. Isomorphisms of splitting fields

In this section we introduce our main tools. The reader who is only
interested in applications to Frobenius elements may skip to §5 and prove
Theorem 5.3 directly (at the expense of not seeing the origins of ΓC).

As a motivation, consider the following general question:

Problem 2.1. Suppose we are given a separable polynomial f(x) ∈ K[x]
of degree n which splits completely in L ⊃ K and L′ ⊃ K. Given the roots
a1, ..., an and b1, ..., bn of f in L and L′, find a bijection between them that
comes from an isomorphism of splitting fields of f inside L and L′.

We assume that we know the Galois group of f over K as a permutation
group on the roots in L, but we do not want to construct the splitting fields
explicitly. Instead, we will evaluate polynomials in K[x1, ..., xn] on the roots
in L and L′ taken in various orders and try to extract information out of
the values (as in Example 1.2).

Definition 2.2. For F ∈K[x1, ..., xn] define the evaluation map Sn→K(a)
by

eFa(σ) = F ([a1, ..., an]
σ).

Definition 2.3. For a subgroup T of Sn a T -invariant F is an element of
K[x1, ..., xn] whose stabiliser is precisely T .

Remark 2.4. Any F ∈ K[x1, ..., xn] is evidently T -invariant if we take for
T its stabiliser in Sn. Also, any subgroup T <Sn has a T -invariant, e.g.

F =
∑

t∈T

mt, m = xn−1
1 xn−2

2 · · · xn−1,

since clearly the stabiliser of m in Sn is {1}.
Lemma 2.5. Let F be a T -invariant and σ, τ ∈ Sn.

(1) eFaτ (σ) = eFa(στ) .
(2) g(eFa(σ)) = eFa(σg

−1) for g ∈ Ga.
(3) The map eFa : Sn → K(a) is constant on the right cosets Tσ.
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Proof. (1) eFaτ (σ) = F ((aτ )σ) = F (aστ ) = eFa(στ).
(2) For g ∈ Ga,

g(eFa(σ)) = g(F ([a1, ..., an]
σ)) = F ([g(a1), ..., g(an)]

σ)

= F (([a1, ..., an]
g−1

)σ) = F ([a1, ..., an]
σg−1

) = eFa(σg
−1).

(3) For τ ∈ T ,

eFa(τσ) = F ([a1, ..., an]
τσ) = F (([a1, ..., an]

σ)τ )

= F τ
−1
([a1, ..., an]

σ) = F ([a1, ..., an]
σ) = eFa(σ).

�

Remark 2.6. Part (3) of the lemma says that the values of F on the various
permutations a

σ of the roots are essentially the right cosets of T in Sn. It
may accidentally happen that the same value occurs on two right cosets, but
it is always possible to adjust the original polynomial f to prevent this (see
Lemma 8.1c). Part (2) of Lemma 2.5 says that the action of the Galois group
Gal(K(a)/K) on these values translates into right multiplication by Ga.
This motivates the following

Definition 2.7. For a double coset D = Tσ0Ga in Sn, define the corre-
sponding ‘minimal polynomial’

ΓF

a,σ0 = ΓF

a,D(X) =
∏

σ∈T\D

(X − eFa(σ)) ∈ K[X].

By Lemma 2.5 (3), this is well-defined.

Remark 2.8. Note that by Lemma 2.5 (2), Ga permutes the linear factors
of ΓF

a,D transitively, so it is a power of an irreducible polynomial in K[X]. If

eFa : T \Sn → K(a) is injective, then ΓF

a,D(X) is irreducible, and hence the
minimal polynomial of eFa(σ0).

Remark 2.9. The point is that the ΓF

a,D(X) are K-rational objects, and
they can be used to compare different splitting fields:

Proposition 2.10. Let a, b be orderings of roots of f in two splitting fields
of f , and let φ : K(a) → K(b) be an isomorphism. If eFa : T \Sn → K(a)
is injective, then for every double coset D ∈ T\Sn/Ga,

ΓF

a,D(F (b)) = 0 ⇔ b = [φ(a1), ..., φ(an)]
σ for some σ ∈ D.

Proof. We have that ΓF

a,D(F (b)) = 0 if and only if F (b) = φ(x) for some

root x of ΓF

a,D in K(a). Such roots are eFa(σ) for some σ ∈ D, so

ΓF

a,D(F (b)) = 0 ⇔ F (b) = φ(eFa(σ)) for some σ ∈ D
⇔ F (φ−1(b)) = eFa(σ) = F (aσ)
⇔ φ−1(b) = (aσ)τ = a

τσ for some τ ∈ T

⇔ b = φ(aσ
′
) = φ(a)σ

′
for some σ′ ∈ D.

�
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Theorem 2.11. Let F be a Ga-invariant with e
F
a: Ga\Sn→K(a) injective.

If F (b) = F (a) ∈ K, then ai 7→ bi defines an isomorphism K(a) → K(b).

Proof. Take T = Ga and D the principal double coset Ga1Ga, and apply
the proposition. Since ΓF

a,D(X) = X − F (a), we have ΓF

a,D(F (b)) = 0, so
b = φ(a)σ for some σ ∈ Ga and some isomorphism φ : K(a) → K(b). Then
φ ◦ σ is the required isomorphism. �

Remark 2.12. This gives a solution to Problem 2.1:
Pick a Ga-invariant F , e.g. using Remark 2.4. Adjusting f if necessary,

we may assume that eFa : T \Sn → K(a) is injective (Lemma 8.1c). In L′,
keep permuting the roots of f until F (b) becomes F (a) ∈ K. When this
happens, ai 7→ bi defines an isomorphism of the two splitting fields.

Note however, that in the worst case we are evaluating a polynomial
with |G| terms on |G\Sn/G| permutations. So the complexity is about n!
operations, which is impractical for large n.

Example 2.13 (D10-extensions). Suppose f(x) ∈ K[x] has degree 5, and
Ga = Gal(f/K) is the dihedral group D10, generated by (12345) and (25)(34).
Take

F (x1, ..., x5) = x1x2 + x2x3 + x3x4 + x4x5 + x5x1.

This is a T -invariant with T = Ga: it is clearly invariant under D10, and
on the other hand a permutation preserving F is determined by x1 7→ xi,
x2 7→ xi±1, so there are at most 10 choices. In particular, F (a1, ..., a5) is
invariant under the Galois group, and so lies in K. Substituting the ai into
F in all possible orders gives the values

eFa(σ
−1) = aσ(1)aσ(2) + aσ(2)aσ(3) + aσ(3)aσ(4) + aσ(4)aσ(5) + aσ(5)aσ(1).

Clearly each one occurs at least 10 times for varying σ ∈ S5, corresponding
to the fact that eFa factors through D10\S5. The assumption that the map
eFa : T \Sn → K(a) is injective simply says that there are no more repeti-
tions, and there are 120/10 = 12 distinct values.

Suppose that this is indeed the case, and let b1, ..., b5 be the roots of f
in some other splitting field. If we substitute the bi in F in all possible
orders bσ, we get again 12 values, one of which is F (a1, ..., a5) ∈ K. There
are 10 isomorphismsK(a) → K(b) obtained from one another by composing
with Galois. They are determined by a 7→ b

σ for 10 permutations σ ∈ Sn.
Clearly, for each of these σ, we have F (bσ) = F (a). But, since every value
is taken exactly 10 times, we have the converse as well: if F (bσ) = F (a)
for some σ ∈ Sn, then a 7→ b

σ must define an isomorphism of the splitting
fields. So to find an isomorphism, we only need to locate F (a) among the
12 values F (bσ).

Note that the other values F (bσ) are not in general K-rational, so we
cannot compare them with the values on a. Their minimal polynomials are
the ΓF

a,D(X) for the 4 double cosets D10\S5/D10.
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3. Recognising conjugacy in Galois groups

In questions such as computing Frobenius elements in Galois groups it
is not necessary to compare the roots in two splitting fields. It suffices to
identify the conjugacy class of a specific Galois automorphism:

Problem 3.1. Let f(x) ∈ K[x] be a separable polynomial which splits com-
pletely in L ⊃ K, and suppose we know G = Gal(f/K) as a permutation
group on the roots in L. If L′ is another field where f splits completely and
we are given a permutation of the roots of f in L′ which comes from some
Galois automorphism, find the conjugacy class of this automorphism in G.

Remark 3.2. An isomorphism φ of the two splitting fields of f induces an
isomorphism of Galois groupsG andG′. We would like to identify an element
B ∈ G′ as an element A ∈ G. Note that A depends on the choice of φ. As
any two isomorphisms differ by a Galois automorphism, the conjugacy class
[A] is well-defined and this is what we are after.

It is easy to see that a solution to Problem 2.1 answers Problem 3.1 as
well, so this is a weaker question. However, we aim for a more practical
solution (see Remark 2.12). We may clearly restrict our attention to one
cycle type in Sn. For convenience, throughout the section we we also fix a
representative:

Notation 3.3. Fix an element ξ ∈ Sn and write Zξ <Sn for its centraliser.

Definition 3.4. Suppose Ψ ∈ Sn is conjugate to ξ, in other words they have
the same cycle type, say ξ = σ0Ψσ

−1
0 . For a T -invariant F and an ordering

a of the roots of f , define the polynomial

MF
a,Ψ(X) =

∏

σ∈(Zξ∩T )\Zξσ0

ΓF

a,σ(X).

It is well-defined by Lemma 2.5(3). Note that Zξσ0 is the set of all permu-
tations that conjugate Ψ to ξ, in particular it is independent of the choice
of σ0.

Remark 3.5. The situation we have in mind is that we have two sets of
roots a and b of f in different splitting fields. So there is an isomorphism
φ :K(a)→K(b), but we do not have it explicitly. However, suppose we know
that an automorphism A ∈ Gal(K(a)/K) corresponds to B ∈ Gal(K(b)/K)
under φ, and that they permute the roots by

A(a) = a
Ψ, B(b) = b

ξ, Ψ, ξ ∈ Sn.

Then {aσ}σ∈Zξσ0 is the set of all reorderings of a on which A acts as ξ, and

MF
a,Ψ(X) is the smallest K-rational polynomial that has F (aσ) as roots for

all such σ. But φ−1(b) must be one of these reorderings because B acts on b

as ξ. The upshot is that MF
a,Ψ(X) has F (b) as a root, and its construction

does not require the knowledge of φ. In other words, if MF
a,Ψ(F (b)) 6= 0,
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then we know that A does not correspond to B under any isomorphism.
(In §4 we will take T = Zξ and turn this into an if and only if statement.)

Lemma 3.6. Let φ : K(a) → K(b) be an isomorphism of two splitting fields
of f , and define ρ ∈ Sn by b = φ(aρ). Then

MF
a,ρ−1Φρ =MF

b,Φ.

Proof. Write Ψ = ρ−1Φρ. Pick σΦ with ξ = σΦΦσ
−1
Φ , and let σΨ = σΦρ, so

that

σΨΨσ
−1
Ψ = σΦρΨρ

−1σ−1
Φ = σΦΦσ

−1
Φ = ξ.

By definition,

MF
b,Φ =

∏

σ∈(Zξ∩T )\ZξσΦ

ΓF

b,σ, MF
a,Ψ =

∏

σ∈(Zξ∩T )\ZξσΨ

ΓF

a,σ.

We claim that

ΓF

a,sσΨ
= ΓF

b,sσΦ
for s ∈ Zξ.

First we show that they have the same degree. Because Gb = ρGaρ
−1 by

the definition of ρ,

deg ΓF

a,sσΨ
= |T\TsσΨGa| = |T\TsσΨGaρ

−1|
= |T\TsσΦρGaρ

−1| = |T\TsσΦGb| = deg ΓF

b,sσΦ
.

Since both polynomials are powers of irreducible ones, it now suffices to
identify one of the roots:

eFa(sσΨ) = eFa(sσΦρ) = F (asσΦρ)) = F (φ−1(b)sσΦ))
= F (φ−1(bsσΦ)) = φ−1(F (bsσΦ)) = φ−1(eF

b
(sσΦ)).

�

Corollary 3.7. The map Ψ 7→ MF
a,Ψ is constant on every conjugacy class

of Ga with cycle type ξ.

Proof. By the lemma above, MF
a,Ψ =MF

a,gΨg−1 for g ∈ Ga. �

We now have an approach to Problem 3.1:

Proposition 3.8. Let a, b be orderings of the roots of f in two different
splitting fields, and suppose Ψ ∈ Ga and Φ ∈ Gb have cycle type ξ. If the
polynomials MF

a,ψ are distinct for ψ in different conjugacy classes of Ga of
cycle type ξ, then

there is an isomorphism K(a) → K(b)
under which Ψ corresponds to Φ

⇐⇒ MF
a,Ψ =MF

b,Φ.

If, moreover, the MF
a,ψ are pairwise coprime, then this occurs precisely when

MF
a,Ψ(F (b

σ)) = 0 for some (any) σ ∈ Sn with ξ = σΦσ−1.
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Proof. ‘⇒’ is Lemma 3.6. For ‘⇐’, pick any isomorphism φ : K(a) → K(b).
The polynomialMF

b,Φ agrees with someMF
a,ψ by the lemma, and Ψ lies in the

conjugacy class of ψ by assumption. Composing φ with an automorphism
of K(a)/K (which corresponds to conjugating ψ) we obtain the required
isomorphism. �

Example 3.9 (Serre’s trick [3, 5]). Suppose charK 6= 2, f ∈ K[x] has
degree n, and Ga = Gal(f/K) is the alternating group An. There is a
particularly nice T -invariant with T = An, a ‘square root of the discriminant’

F (x1, ..., xn) =
∏

i<j

(xi − xj).

The only double cosets TxGa in Sn areD = An and its complement D′ in Sn.
Clearly ΓF

a,D(X) = X−F (a) and ΓF

a,D′(X) = X+F (a), and F (a)2 = Disc f
is the discriminant of f . So if b is the list of roots of f in some other splitting
field, we find that

ai 7→ bi defines an

isomorphism K(a) → K(b)
⇔

∏

i<j

(ai − aj) =
∏

i<j

(bi − bj).

This illustrates Theorem 2.11 in the case of An. To explain Proposition 3.8
in this setting, suppose ξ ∈ Sn is a product of cycles of distinct odd degrees,
so that there are two conjugacy classes [Ψ1], [Ψ2] in Ga = An of cycle type ξ
(e.g. 5-cycles in A5). Say σ1Ψ1σ

−1
1 =ξ=σ2Ψ2σ

−1
2 with σ1∈An and σ2 /∈An.

In this case Zξ ⊂ An = T , so

MF
a,Ψ1

(X) = ΓF

a,σ1(X) = ΓF

a,D (X) = X − F (a),

MF
a,Ψ2

(X) = ΓF

a,σ2(X) = ΓF

a,D′(X) = X + F (a).

Suppose again that b is the list of roots of f in some other splitting field,
and B ∈ Gal(K(b)/K) is an automorphism of cycle type ξ. Rearranging

the bi if necessary, assume that B acts on the bi as ξ, i.e. B(b) = b
ξ. The

statement of the proposition is that

B comes from [Ψ1] under an

isomorphism K(a) → K(b)
⇔

∏

i<j

(ai − aj) =
∏

i<j

(bi − bj),

which is precisely Serre’s trick. The same invariant F may sometimes be
used in other subgroups of Sn to distinguish between the conjugacy classes
of such cycle types. (It determines whether the two classes are conjugate in
An or not.)

4. The directed edges invariant

As before, suppose f(x) ∈ K[x] is separable and a = [a1, ..., an] are
its (ordered) roots in a splitting field. We apply the results of §3 when
T = Zξ, the centraliser of ξ. This is particularly nice for two reasons: first,

the polynomials MF
a,ψ of Proposition 3.8 are irreducible and distinct, and
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second, it is easy to write down a T -invariant with just n terms and of
degree 3 (compare the polynomials in Remark 2.4 and Example 4.2).

Proposition 4.1. Let ξ ∈ Sn with centraliser Zξ. Suppose that F is a
Zξ-invariant such that eFa : Zξ \Sn → K(a) is injective. Let Ψ,Ψ′ ∈ Ga be
two elements of cycle type ξ. Then

(1) MF
a,Ψ is irreducible, and equals ΓF

a,σ for any σ ∈ Sn with ξ = σΨσ−1.

(2) MF
a,Ψ has degree |[Ψ]|.

(3) MF
a,Ψ =MF

a,Ψ′ if and only if Ψ and Ψ′ are conjugate in Ga.

Proof. For brevity, write Z=Zξ. Pick σ, σ
′∈Sn with σΨσ−1=ξ=σ′Ψ(σ′)−1.

(1) By definition,

MF
a,Ψ =

∏

τ∈(Z∩Z)\Zσ

ΓF

a,τ = ΓF

a,σ.

It is irreducible by the assumed injectivity of eFa (see Remark 2.8).
(2) By definition,

deg ΓF

a,σ = |Z\ZσGa| =
|ZσGa|
|Z| =

|σ−1ZσGa|
|Z|

=
|Ga|

|Ga ∩ σ−1Zσ| =
|Ga|

|CentGa
(Ψ)| = |[Ψ]|.

(3) If Ψ and Ψ′ are conjugate, then MF
a,Ψ = MF

a,Ψ′ by Corollary 3.7. Con-

versely, suppose that MF
a,Ψ =MF

a,Ψ′ . Since eFa is injective, ZσGa = Zσ′Ga,

so σ′ = sσg for some s ∈ Z and g ∈ Ga. Then

Ψ′ = (σ′)−1ξσ′ = g−1σ−1s−1ξsσg = g−1σ−1ξσg = g−1Ψg,

so [Ψ′] = [Ψ]. �

Example 4.2 (The directed edges invariant). Let ξ ∈ Sn and fix a polyno-
mial h ∈ K[x] of degree at least 2. Define

F (x1, ..., xn) =

n
∑

j=1

h(xj)xξ(j).

It can be visualised as the directed edges in a graph that define the action
by ξ. For instance, for ξ = (1234)(56) ∈ S6 and h(x) = x2,

1 4

2 3

5 6
6

-

?�

-�

F = x21x2+x
2
2x3+x

2
3x4+x

2
4x1 + x25x6+x

2
6x5

It is clearly a Zξ-invariant.
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Definition 4.3. Fix h(x) ∈ K[x]. For each conjugacy class C in Ga define

ΓC(X) =
∏

σ∈C

(X −
n
∑

j=1

h(aj)σ(aj)).

Lemma 4.4. Let F be as in Example 4.2. Then for every Ψ ∈ Ga,

MF
a,Ψ(X) = Γ[Ψ](X).

Proof. Pick σ ∈ Sn with σΨσ−1 = ξ. First, suppose τ ∈ [Ψ] and uτ ∈ Sn
satisfies u−1

τ ξuτ = τ . Then

eFa(uτ ) = F (auτ ) =
∑

i

h(au−1
τ (i))au−1

τ (ξ(i))

=
∑

j

h(aj)au−1
τ ξuτ (j)

=
∑

j

h(aj)τ(aj).

On the other hand, note that for t ∈ Zξ and g ∈ Ga,

(tσg)−1ξ(tσg) = g−1σ−1t−1ξtσg = g−1σ−1ξσg = g−1Ψg.

So for τ = g−1Ψg ∈ [Ψ],

{uτ ∈ Sn | u−1
τ ξuτ = τ} = Zξσg,

because the left-hand side is clearly some right coset of Zξ. This equality
gives a correspondence between [Ψ] and Zξ\ZξσGa. So

MF
a,Ψ(X) = ΓF

a,σ(X) =
∏

u∈(Zξ\ZξσGa)

(X − eFa(u))

=
∏

τ∈[Ψ]

(X −
n
∑

j=1

h(a)τ(aj)) = Γ[Ψ](X),

as claimed. �

Corollary 4.5. Let a, b be orderings of the roots of f in two different split-
ting fields, and let Ψ ∈ Ga and Φ ∈ Gb. If the ΓC(X) are pairwise coprime
for different conjugacy classes of Ga, then

there is an isomorphism K(a) → K(b)

under which Ψ corresponds to Φ,
⇐⇒ Γ[Ψ]

(

∑

j h(bj)Φ(bj)
)

= 0.

The condition that the ΓC are coprime is satisfied for h(x) in a Zariski dense
open set in the space of all polynomials of degree at most n− 1.

Proof. The equivalence follows from Proposition 3.8 and the lemma above.
For the last assertion apply Lemma 8.2. �
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5. Frobenius elements

Now supposeK is a global field. We turn to our initial problem of comput-
ing Frobenius elements in Galois groups. We use the following remarkable
property of the directed edges invariant:

Proposition 5.1. Let f(x) ∈ Fq[x] be a polynomial with roots a1, ..., an ∈ F̄q
counted with multiplicity, and let φ = Frobq ∈ Gal(F̄q/Fq). For every poly-
nomial h(x) ∈ Fq[x],

n
∑

j=1

h(aj)φ(aj) = TrA/Fq
(h(X)Xq),

where X is the class of x in the algebra A = Fq[x]/f .

This is an immediate consequence of the lemma below (withH(x) = h(x)xq).

Lemma 5.2. Let k be a field and f(x) ∈ k[x] a polynomial with roots
a1, ..., an ∈ k̄ counted with multiplicity. Then for every H(x) ∈ k[x],

n
∑

j=1

H(aj) = TrA/k(H(X)),

where X is the class of x in A = k[x]/f .

Proof. Consider X as a linear map A → A, Y 7→ XY . Its minimal poly-
nomial is f , since f(X) = 0 but no linear combination of 1,X, ...,Xn−1 is
zero. So the generalised eigenvalues of X are exactly the ai, and those of
H(X) are therefore H(ai) (look at the Jordan normal form of X over k̄).
The result follows. �

Theorem 5.3 (Generalised Euler’s criterion). Let K be a global field and
f(x) ∈ K[x] a separable polynomial with roots a1, ..., an in K̄ and Galois
group G. Fix h(x) ∈ K[x] and for each conjugacy class C of G set

ΓC(X) =
∏

σ∈C

(X −
n
∑

j=1

h(aj)σ(aj)).

(a) The polynomials ΓC(X) have coefficients in K.
(b) Let p be a prime of K with residue field Fq, and C a conjugacy class

of G. If p does not divide the denominators of the coefficients of f
and h, the leading coefficient of f and the resultants Res(ΓC ,ΓC′)
for C ′ 6= C, then the coefficients of ΓC(X) are integral at p and

Frobp ∈ C ⇔ ΓC

(

Tr Fq [x]

f(x)
/Fq

(h(x)xq)
)

= 0 mod p.

(c) For all h(x) in some Zariski dense open set in the space of polyno-
mials of degree at most n − 1, we have Res(ΓC ,ΓC′) 6= 0 for every
pair of conjugacy classes C 6= C ′.
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Proof. (a) This follows from Lemma 4.4, Definition 3.4 and Remark 2.8.
(b) ΓC(X) is clearly integral at the required primes.
‘⇒’: if Frobp ∈ C then

∑n
j=1 h(aj) Frobp(aj) is a root of ΓC(X) by the def-

inition of ΓC , and it reduces mod p to Tr Fq [x]

f(x)
/Fq

(h(x)xq) by Proposition 5.1.
‘⇐’: the polynomial ΓC(X) is distinguished from the others by any one

of its root mod p by the assumption that p ∤ Res(ΓC ,ΓC′) for C 6= C ′.
(c) Apply Lemma 8.2. �

Remark 5.4 (Choice of h). If the resultants Res(ΓC ,ΓC′) are non-zero, The-
orem 5.3b describes the Frobenius element for all but finitely many primes p.
If one of the resultants vanishes, equivalently ΓC has a common factor with
some ΓC′ , the statement does not apply to C for any p. However, this is
rare and easily avoided by choosing a different h; most choices will work by
Theorem 5.3c.

Alternatively, for any fixed h with 1 < degh < n it is possible to replace
f by another polynomial f̃ of degree n with the same splitting field so that
the resulting ΓC are coprime. To see this, consider

γC(X) =
∏

σ∈C

(X −
n
∑

j=1

h(xj)xσ(j)),

and note that they are coprime as polynomials in X over K(x1, ..., xn). Now
apply Lemma 8.1b to F1 =

∏

C 6=C′ Res(γC , γC′) and F2 = 0. We obtain a

Zariski dense open set of polynomials B(t) of degree at most n−1 for which

f̃ =
∏

j(x−B(aj)) works.

Remark 5.5 (Euler’s criterion). The classical criterion a
p−1
2 ≡ (ap ) mod p

says that a
p−1
2 = ±1 determines whether x2 − a has a root modulo p. Sim-

ilarly, to see whether x3 − a has a root modulo p ≡ 1 mod 3 one checks
whether a

p−1
3 is 1 or another third root of unity in F×

p , etc.
One can reformulate this as a matrix statement: take a 2 × 2 matrix M

with minimal polynomial x2−a (respectively 3×3 and x3−a). ThenMp−1

is the scalar matrix with a
p−1
2 (respectively a

p−1
3 ) on the diagonal, so its

trace determines whether the polynomial has a root in Fp; e.g. for x3 − a
the distinction is whether 1

3 TrM
p−1 is 1 or a root of x2 + x+ 1.

Theorem 5.3 generalises this to arbitrary polynomials over global fields.
Observe that for a polynomial

f(x) = xn + cn−1x
n−1 + . . . + c0

the trace in the theorem can be interpreted as a trace of a matrix, e.g.

Tr Fq [x]

f(x)
/Fq

(xd) = Tr









−c0
1 −c1

. . .
...

1 −cn−1









d

mod q.

Therefore (a minor modification of) the trace TrM q−1 for a matrix M with
minimal polynomial f determines the splitting behaviour of f mod p and the
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conjugacy class of Frobenius, in the same way as above. See also examples
in §7.

Remark 5.6 (Ramified primes). The condition that p does not divide any
resultant Res(ΓC ,ΓC′) excludes all primes that ramify in the splitting field
of f over K. Indeed, if σ 6= 1 is an element of inertia at q for some q|p, it is
easy to see that Γ[1] and Γ[σ] have a common root mod p.

Remark 5.7 (Extending to all p). In order to deal with the primes dividing
the resultants, we may work over the completion Kp instead of the residue
field Fq. Compute the splitting field L/Kp of f and the roots b1, .., bn.
Choose a lift Ψ of the Frobenius element in Gal(L/Kp) and evaluate

n
∑

j=1

h(bj)Ψ(bj).

This number is now a root of precisely one of the ΓC , and this C is the
conjugacy class of the chosen Frobenius lift Ψ. (See Corollary 4.5.)

Remark 5.8 (Artin L-functions). Suppose L/K is a Galois extension of
number fields with Galois group G, represented as a splitting field of some
polynomial f(x) ∈ K[x]. Recall that a complex representation ρ of G is
called an Artin representation. It has an L-series defined by the Euler
product over all primes of K,

L(ρ, s) =
∏

p

1

Pp(q−s)
.

Here q is the size of the residue field at p and

Pp(T ) = det(1− Frobp T | ρIp)
is the inverse characteristic polynomial of Frobenius on the subspace of ρ
fixed by the inertia group Ip at p.

Theorem 5.3 and Remark 5.7 allow us to explicitly compute the coeffi-
cients of such L-series. For the unramified primes, they recover the conju-
gacy class of Frobp in G, which determines the local polynomial Pp(T ). For
the ramified primes, it suffices to find the restriction of ρ to the local Galois
group Gp at p with respect to an embedding Gp →֒ G as a decomposition
group. Assuming we can find Gp, Remark 5.7 enables us to identify the
conjugacy class in G of any element of Gp, under this embedding. This is
sufficient to compute the character of ρ on Gp, and thus also ρIp and Pp(T ).
Note that we have not actually found the decomposition group at p as a
subgroup of G, which appears to be a harder problem.

This algorithm to compute Frobenius elements and L-series of Artin rep-
resentations has now been implemented in Magma [2].

Remark 5.9 (Complexity). From the complexity point of view, the com-
putation of Frobenius elements for ‘good’ primes has two steps:



IDENTIFYING FROBENIUS ELEMENTS IN GALOIS GROUPS 15

One is the initial precomputation of the polynomials ΓC , each of which
takes O(n|C|) operations in some field containing the aj (e.g. C or Q̄p).
This needs to be done for all conjugacy classes that are not determined by
their cycle type.

The second step deals with a specific prime p of K with residue field Fq.

We determine the cycle type of Frobp by computing gcd(f, xq
j − x) for

j ≤ n/2, which takes O(n log q) multiplications of n × n matrices over Fq.
Then we evaluate the trace Tr(h(x)xq) with another O(n+log q) matrix mul-
tiplications. Finally, we substitute the trace into all ΓC corresponding to the
cycle type of Frobp, which is O(d) coefficient reductions and multiplications
in Fq, where d is the number of elements in G of this cycle type.

Here is as an illustration for polynomials of degree at most 11. There are
474 transitive groups G on at most 11 points, for each of which we took a
polynomial f ∈ Q[x] with Gal f = G as a permutation group on the roots.
(We used the database in Magma [2] V2.16.) For each G we computed
Frobp for all p < 100000 with p ∤ Disc(f), using Serre’s trick (Example
3.9) and the above algorithm. Together with the Galois group computation
and the precomputation of the ΓC this took under 15 seconds on a 2GHz
Pentium notebook for each G, with only four exceptions that took longer:
G = A2

5 ⋊ C2, A
2
5 ⋊ C2

2, A
2
5 ⋊ C4 and M11.

Remark 5.10 (Additional symmetries). Suppose all conjugacy classes of
elements of some order o and a fixed cycle type are closed under the power
maps g 7→ gk for k in some non-trivial subgroup H ⊂ (Z/oZ)× (for instance
they are self-inverse, like in dihedral groups). Then one may replace ΓC(X)
in Theorem 5.3 by

∏

σ

(

X −
n
∑

j=1

h(aj)( Σ
k∈H

σk(aj))
)

,

taking the product over some representatives for C modulo the action of H,
and modifying the trace accordingly. In practice, this speeds up the com-
putation of the ΓC , as their degree drops by a factor of |H|.

6. Examples: abelian groups

If the Galois group is abelian, its conjugacy classes are of size 1, and all
the ΓC of Theorem 5.3 are linear, ΓC(X) = X−rC with rC ∈ K. For a good
choice of h(x) and all but finitely many primes p, the trace Tr(h(x)xq) agrees
with exactly one of the rC modulo p, which then determines the conjugacy
class of Frobp.

In the examples below, ζn denotes a primitive nth root of unity.

Example 6.1. Let K = Q(i) and

f(x) = x4 + 2x3 + (3 + 3i)x2 + 4ix− 1 + i.
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Its complex roots are a1 = −0.31795− 0.57510i, a2 = 0.50870− 1.1289i,
a3=−1.4682+1.8471i and a4 = −0.72255− 0.14308i to 5 decimal places.
The splitting field L is a C4-extension of Q(i), non-Galois over Q, and the
Galois group of L/K is 〈(1234)〉< S4. Take h(x) = x2. An elementary
computation gives

Γ[id] = X − (10 + 6i), Γ[(1234)] = X − (4 + 4i),
Γ[(13)(24)] = X − (−2 + 2i), Γ[(1432)] = X + 8.

For a prime p 6= (1+ i), (2− i), (3) (the primes dividing rC− rC′ for C 6= C ′)
with residue field Fq, we deduce that the Frobenius at p is determined by

Tr Fq [x]

f(x)
/Fq

(xq+2) ≡ 10+6i 4+4i −2+2i −8

Frobp = id (1234) (13)(24) (1432)

Example 6.2 (Kummer extensions). Suppose ζ = ζn ∈ K and L = K( n
√
s)

is a Kummer extension of degree n. It is abelian with Galois group Cn whose
elements are determined by

σi :
n
√
s 7−→ ζ i n

√
s, i = 1, . . . , n.

Take f(x) = xn − s and h(x) = xn−1. Then

Γ[σi](X) = X −
n
∑

j=1

h(ζj n
√
s)σi(ζ

j n
√
s) = X − ns · ζ i.

For a prime p of K with residue field Fq, because n | q−1, we have

Tr Fq [x]

f(x)
/Fq

(h(x)xq) = Tr Fq [x]

xn−s
/Fq

(xq+n−1) = Tr Fq [x]

xn−s
/Fq

(s
q−1
n

+1) = ns · s
q−1
n .

So Theorem 5.3 says that for p ∤ ns,

Frobp = σi ⇔ s
q−1
n ≡ ζ i mod p,

which is the classical criterion for Kummer extensions.

Example 6.3 (Q(ζp)/Q). Let ζ = ζp for some prime p > 2, and take

K = Q, L = Q(ζ), f(x) = xp−1 + . . .+ x+ 1.

Thus Gal(L/K) ∼= (Z/pZ)×, with elements σi : ζ 7→ ζ i for i = 1, . . . , p − 1.
For h(x) = x2 we have Γ[σi](X) = X − ri with ri ∈ Q given by

ri =

p−1
∑

j=1

(ζj)2σi(ζ
j) =

p−1
∑

j=1

ζj(2+i) =

{

−1, i 6= p− 2,
p− 1, i = p− 2.

For a prime q of Q,

Tr Fq [x]

f(x)
/Fq

(h(x)xq) = Tr Fq [x]

f(x)
/Fq

(xq+2) ≡ Tr Z[x]
f(x)

/Z
(xq+2) mod q

≡ TrF/Q(ζ
q+2) ≡

{

−1, p∤q+2
p−1, p|q+2 mod q.
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Hence Theorem 5.3b shows that for all q 6= p,

Frobq = σp−2 ⇐⇒ q ≡ −2 mod p.

The same computation with h(x) = xp−k for varying k yields the classical
criterion

Frobq = σk ⇐⇒ q ≡ k mod p.

Note that none of these h(x) work for all conjugacy classes simultaneously,
because the Γ[σj ] are not coprime. This tends to happen when the roots of

f are ‘too nice’ and h(x) is ‘too simple’. By Lemma 8.2, most h do work.
In our example, a general polynomial

h(x) = λ1x
p−1 + . . .+ λp−1x+ λp

has

Γ[σi](X) = X + h(1) − pλi,

and these are distinct if and only if λ1, . . . , λp−1 are. The primes to which
the theorem then applies are those not dividing p

∏

(λi − λj) in this case.

Example 6.4 (Cyclotomic extensions). In general, suppose L = K(ζn) is
some cyclotomic extension, and f(x) is the minimal polynomial of ζn over K.
As in the previous example, G = Gal(L/K) →֒ (Z/nZ)×, and we write σi
for the automorphism with σi(ζn) = ζ in. We do the same computation as
above: for h(x) = xk and p a prime of K with residue field Fq,

Γ[σi](X) = X−
∑

g∈G

g(ζn)
kσi(g(ζn)) = X−

∑

g∈G

g(ζn)
k+i = X−TrL/K(ζ

k+i
n )

and

Tr Fq [x]

f(x)
/Fq

(xk+q) ≡ TrL/K(ζ
k+q
n ) mod p.

Because TrL/K(ζjn) is |G| precisely when n|j, the polynomial Γ[σn−k ] differs
from all the other Γ[σj ]’s, and we find that

Frobp = σn−k ⇐⇒ q ≡ n− k mod n

for almost all p. (One may improve ‘almost all’ to ‘all p ∤ n’ by taking
several h.)

Remark 6.5. The fact that we obtained a simple formula for Frobenius
elements for cyclotomic and Kummer extensions relied on the existence of a
universal expression for the trace Tr(h(x)xq) mod p. It follows from class
field theory that there are such formulae in all abelian extensions.

For instance, consider Example 6.1 of a C4-extension of K = Q(i) from
the point of view of class field theory. There the conductor of L/K is
N = (1 + i)4(2 − i) = 8 − 4i, and the group (OK/N)× is C4 × C4 × C2,
with generators i, 7 and 3− 2i respectively. For a prime p = (α) ⊂ Z[i] not
dividing N , if α ≡ ia7b(3− 2i)c mod N , then Frobp = (1234)b.
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Now compare this with the description of Frobenius in Example 6.1. Writ-
ing Fq = Z[i]/p and Tr for Tr Fq [x]

f(x)
/Fq

, we get 4 congruences for the traces,

p = (α), α ≡ ia70(3− 2i)c mod N ⇔ Tr(xq+2) ≡ 10 + 6i mod p

p = (α), α ≡ ia71(3− 2i)c mod N ⇔ Tr(xq+2) ≡ 4 + 4i mod p

p = (α), α ≡ ia72(3− 2i)c mod N ⇔ Tr(xq+2) ≡ −2 + 2i mod p

p = (α), α ≡ ia73(3− 2i)c mod N ⇔ Tr(xq+2) ≡ −8 mod p

for p 6= (1 + i), (2 − i), (3).
Note that if one had a way to prove these congruences directly, one would

have a proof of Artin reciprocity in the extension L/K.

7. Examples: non-abelian groups

We continue with examples to Theorem 5.3. When G is non-abelian, the
only difference is that the ΓC are no longer linear.

Example 7.1. Let K = Q and f(x) = x3 − 2. It has Galois group S3 and

roots a1 = 3
√
2, a2 = ζ 3

√
2 and a3 = ζ2 3

√
2, where ζ is a primitive cube root

of unity. Take h(x) = x2/6 (the factor 1/6 is only chosen for convenience)
and compute the polynomials ΓC for the three conjugacy classes:

Γ[id] = X −

1
6
(a2

1a1 + a2
2a2 + a2

3a3)

= X − 1

Γ[(12)] = (X−

1
6
(a2

1a2+a2
2a1+a3

3))(X−

1
6
(a2

1a3+a3
2+a2

3a1))(X−

1
6
(a3

1+a2
2a3+a2

3a2))

= (X −

1
3
(ζ + ζ2 + 1))(X −

1
3
(ζ2 + 1 + ζ))(X −

1
3
(1 + ζ + ζ2))

= X3

Γ[(123)] = (X −

1
6
(a2

1a2 + a2
2a3 + a2

3a1))(X −

1
6
(a2

1a3 + a2
2a1 + a2

3a2))

= (X −

1
3
(ζ + ζ + ζ))(X −

1
3
(ζ2 + ζ2 + ζ2)) = (X − ζ)(X − ζ2)

= X2 +X + 1.

On the other hand, for a rational prime q = 3m+ k with k = 1 or 2,

Tr Fq [x]

x3−2
/Fq

(16x
q+2) = Tr(162

m+1xk−1) =
{

2m, k=1
0, k=2 =

{

2
q−1
3 , q≡1 mod 3

0, q≡2 mod 3
.

The conclusion of Theorem 5.3 is that, as expected, for q 6= 2, 3,

q ≡ 1 mod 3, 2 ∈ (Fq)
×3 =⇒ Frobq = id,

q ≡ 1 mod 3, 2 /∈ (Fq)
×3 =⇒ Frobq ∈ [(123)],

q ≡ 2 mod 3 =⇒ Frobq ∈ [(12)].

Clearly, an identical computation goes through for f(x) = x3 − c (with
h(x) = x2/3c) over any global field K with ζ 6⊂ K.

We can also take a general cubic polynomial and obtain an analogue of
Euler’s criterion for its factorisation modulo primes:
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Theorem 7.2. Let f(x) = x3 + bx+ c be a separable cubic polynomial over
a global field K, and p a prime of K with residue field Fq. Write

T = Tr Fq [x]

f(x)
/Fq

(xq+1) = Tr





0 0 −c
1 0 −b
0 1 0





q+1

mod p.

If p does not divide 3b(4b2 + 27b2) and the denominators of b and c, then

T ≡ −2b mod p ⇔ f(x) has 3 roots mod p,
T ≡ b mod p ⇔ f(x) is irreducible mod p,
T is a root of x3−3b2x−2b3−27c2 ⇔ f(x) has 1 root mod p.

Proof. We compute the polynomials ΓC for G = S3, h(x) = x by expressing
their coefficients in terms the elementary symmetric functions a1+a2+a3=0,
a1a2+a2a3+a3a1 = b and a1a2a3 = −c:
Γ[id] = X − (a21+a

2
2+a

2
3) = X − (a1+a2+a3)

2+2(a1a2+a1a3+a2a3)
= X + 2b

Γ[(12)] = (X−(a1a2+a2a1+a
2
3))(X−(a1a2+a2a1+a

2
3))(X−(a1a2+a2a1+a

2
3))

= X3 − 3b2X − 2b3−27c2

Γ[(123)] = (X − (a1a2+a2a3+a3a1))(X − (a1a3+a2a1+a3a2))
= (X − b)2.

The least common multiple of their pairwise resultants is 3b(4b3 + 27c2),
which completes the proof by Theorem 5.3. �

An identical computation can be done for polynomials of higher degree,
as long as one has the patience to work out the coefficients of the ΓC ’s. Here
is the corresponding result for quartics:

Theorem 7.3. Let f(x) = x4 + bx2 + cx + d be a separable quartic poly-
nomial over K, and p a prime of K with residue field Fq. Then the value
Tr Fq [x]

f(x)
/Fq

(xq+1) is a root of one of the polynomials

Γ[id] = X + 2b
Γ[(12)(34)] = X3

− 2bX2
− 16dX + 32bd− 8c2

Γ[(12)] = X6 + 4bX5 + (2b2 + 8d)X4 + (−12b3 + 48bd− 26c2)X3

−(23b4 − 120b2d+ 108bc2 + 112d2)X2

−(16b5 − 128b3d+ 138b2c2 + 256bd2 + 216c2d)X
−4b6 + 48b4d− 56b3c2 − 192b2d2 − 288bc2d− 27c4 + 256d3

Γ[(123)] = X4 + (−2b2 + 8d)X2
− 8c2X + b4 − 8b2d+ 8bc2 + 16d2

Γ[(1234)] = X3
− 2bX2 + (b2 − 4d)X + c2.

If p does not divide the denominators of b, c and d and the pairwise resultants
of the Γc, then this determines the degrees in the factorisation of f mod p:
they are the cycle lengths of the permutation in the index of Γ.

A theorem of Brumer (see [4] Thm. 2.3.5) states that any Galois extension
L/K with Galois group G = D10 is a splitting field of

fa,b(x) = x5 + (a−3)x4 + (b−a+3)x3 + (a2−a−1−2b)x2 + bx+ a

for some a, b ∈ K. Using a similar argument to G = S3 and S4, we find
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Theorem 7.4. Suppose L/K is the splitting field of fa,b(x) as above, with
G = Gal(L/K) ∼= D10. If p a prime of K with residue field Fq, not dividing
3a − b + 1 and the denominators of a and b and such that f mod p is
irreducible, then Tr Fq [x]

f(x)
/Fq

(xq+1) is either −2a+b+1 or a+2 modulo p. This

determines which of the two conjugacy classes of 5-cycles contains Frobp.

Remark 7.5. In this setting, if Frobp is not a 5-cycle, it is either the identity
or an element of order 2. In the former case, Tr Fq [x]

f(x)
/Fq

(xq+1) is a2−4a−2b+3
mod p; in the latter it is a root of

Γ[(23)(45)] = x5−(a−3)2x4+(31−2a3+4b−3b2+a2(11+2b)−2a(21+2b))x3

+(12a3(3+2b)−a2(137+44b)+a(114+6b−28b2 )−51+7a4−4a5−20b+14b2−2b3)x2

+(40+16a5−8a6+32b−17b2−4b3+a4(58+42b)+a2(182+18b−52b2)
+4a3(−49−21b+b2)−2a(65+13b−17b2+6b3))x
+8a6−4a7+4a5(7+5b)−4a4(32+17b)+2a3(123+85b+4b2)
−a2(245+218b+24b2)−2a(−30−6b+51b2+22b3)+2(−6−8b+3b2+b3−4b4).

Example 7.6. Here is another example, to illustrate what the ΓC look like
in general. Take K = Q and L = Q(E[3]), the 3-torsion field of the elliptic
curve E : y2 + y = x3 − x2. Then Gal(L/K) ∼= GL2(F3), and L is the
splitting field of

f(x) = x8 − 9x7 + 18x6 + 33x5 − 93x4 − 15x3 − 23x2 − 36x− 27.

The ΓC for h(x) = x2 are

Γ[id] = x−144

Γ[(13)(24)(56)(78)] = x−3

Γ[(24)(57)(68)] = x12−699x11+204666x10−32922129x9+3212225793x8−196600821903x7+

= 7340079612456x6−145234777501584x5+566948224573848x4+
= 26747700562448082x3−187604198442957555x2−2946247136394353892x−

= 24290099658154516203
Γ[(148)(273)] = x8−546x7+120102x6−14088342x5+989228043x4−43566817716x3+

= 1248800990265x2−21583664066961x+167939769912993
Γ[(1432)(5768)] = x6−258x5+26448x4−1344378x3+34859664x2−445164021x+2926293624

Γ[(174382)(56)] = x8−264x7+29292x6−1698042x5+51288993x4−654852960x3+

= 3360584547x2−277935306777x+7299371089503
Γ[(15473628)] = x6−258x5+26250x4−1336755x3+35700471x2−477465444x+2707751520

Γ[(16483527)] = x6−258x5+28230x4−1674048x3+57362760x2−1097286921x+9616023198

Example 7.7. As an indication to the kind of Artin L-series that may be
numerically computed, we give an example with a big Galois group over Q.
We take G = PGSp(4,F3) of order 51840, realised through the Galois action
on the 3-torsion of the Jacobian of a genus 2 curve, and evaluate the Artin
L-series of an irreducible 6-dimensional representation of G.

Specifically, G is the unique double cover of the simple group Sp(4,F3)/F
×
3

in PGL(4,F3) = GL(4,F3)/F
×
3 . To obtain it as a Galois group, take the

hyperelliptic curve

C/Q : y2 − (x2 + 1)y = x5 − x4 + x3 − x2.

Consider the field Q(J [3]) obtained by adjoining to Q the coordinates of the
3-torsion points of its Jacobian J/Q. Then Gal(Q(J [3])/Q) is GSp(4,F3).
The group we want is G = GSp(4,F3)/{±1}, and it can be obtained from
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the Galois action on the 40 lines through the origin in J [3]. Specifically, if
(P )+(Q)−2(O) ∈ J [3] is a non-zero point with P = (xP , yP ), Q = (xQ, yQ),
the minimal polynomial f of xPxQ over Q has Galois group G;

f = x40+27x39+39x38−61x37+. . .+ 2259x3+3471x2+1057x+69.

In its action on the roots of f , the group has several conjugacy classes of
the same cycle type, and the largest ΓC that we need has degree 2160 (using
Remark 5.10).

The group has two irreducible 6-dimensional representations, ρ and ρ′

(whose trace on elements of order 10 in G is +1 and −1 respectively). The
curve C has good reduction outside 2 and 3, so L/Q is unramified at all
primes p 6= 2, 3. The conductor of ρ is 210317 and we used our machinery to
compute the local polynomials for the Artin L-series L(ρ, s) for primes up
to 410203. Using Magma [2], we then evaluate

L(ρ, 1) ≈ 1.852529796, L(ρ, 2) ≈ 1.119877506

to 10 digits precision; this computation relies implicitly on the validity of
Artin’s conjecture for ρ. The total time to compute f , Gal(f/Q), the ΓC ,
the L-series and the L-values was 7 hours on a Sun Ultra 24 workstation.

8. Appendix: Two lemmas on Zariski density

Lemma 8.1. Suppose K is an infinite field, f ∈ K[t] is a separable polyno-
mial of degree n and a1, ..., an are its roots in some splitting field L.

(a) If F,G ∈ K[x1, ..., xn] take the same values on

x1 = β0 + β1a1 + . . .+ βn−1a
n−1
1

· · ·
xn = β0 + β1an + . . .+ βn−1a

n−1
n

for all [β1, ..., βn] ∈ Kn, then F = G.
(b) Suppose F1, ..., Fd ∈ K[x1, ..., xn] are distinct. There exists a poly-

nomial B(t) = β0 + . . .+ βn−1t
n−1 ∈ K[t] such that B(a1), ..., B(an)

generate L and the Fi take distinct values on [B(a1), ..., B(an)]. The
set of such B is Zariski dense in K ⊕Kt⊕ · · · ⊕Ktn−1.

(c) Let F be a T -invariant for some T <Sn. There is a Zariski dense
open set of polynomials B(t) ∈ K ⊕ Kt ⊕ · · · ⊕ Ktn−1 for which
a
′ = [B(a1), ..., B(an)] generate L and eF

a′ : T \Sn → L is injective.

Proof. (a) Let U = K(t1, ..., tn). As a first step, we observe that Kn is
Zariski dense in AnU = Un: this is clear for n = 1 as K is infinite; generally,
if Kn were not Zariski dense, it would be contained in a (not necessarily
irreducible) hypersurface of some degree d, so it would contain at most d
hyperplanes. But, by induction, it contains all {r} × Un−1 for all r ∈ K,
which gives a contradiction.

Therefore, as F and G are continuous in the Zariski topology, they agree
on all of Un, i.e. on all the above combinations with [β1, ..., βn] ∈ Un.



22 TIM AND VLADIMIR DOKCHITSER

Now solve the system of equation
∑n−1

j=0 a
j
iβj = tj for β1, ..., βn. (This is

possible because ai 6= ak for i 6= k, so the Vandermonde matrix is invertible.)
Using this solution we find that F (t1, ..., tn) = G(t1, ..., tn), so F = G as
polynomials.

(b) Put F (x1, ..., xn) =
∏

i<j(xi − xj)(Fi − Fj) and G = 0 and apply (a).

This gives a polynomial B(t) = β0 + . . . + βn−1t
n−1 ∈ K[t] which clearly

satisfies the ‘distinct values’ condition. Furthermore, B(ai) 6= B(aj) guar-
antees the ‘generate L’ condition as well: the Galois action permutes the
B(ai) in the same way as the ai, so the Galois group has the same order.
Finally, consider F (B(a1), ..., B(an)) as a polynomial in β0, ..., βn−1. Its zero
set is Zariski closed in An and we proved that its complement is non-empty.
This proves the last claim.

(c) Apply (b) to the set of polynomials {F σ}σ∈T\Sn , using that, by defi-

nition, eF
a′(σ−1) = F ((a′)σ

−1
) = F σ(a′). �

Lemma 8.2. Suppose K is an infinite field, f ∈ K[t] is a separable polyno-
mial of degree n and a1, ..., an are its roots in some splitting field L. Then on
a Zariski dense open set of polynomials h(x) in K⊕Kx⊕. . .⊕Kxn−1 ∼= AnK ,
the values

vh(σ) =
n
∑

j=1

h(aj)σ(aj), σ ∈ G = Gal(L/K)

are distinct.

Proof. For any σ ∈ G, the map Eσ : h 7→ vh(σ) is K-linear Kn → L. So Eσ
agrees with Eτ on a K-linear subspace for every σ, τ ∈ G. If none of these
subspaces is all of Kn, then the complement of their union is the desired set
(non-empty since K is infinite). It remains to prove that Eσ 6= Eτ for σ 6= τ .

Suppose Eσ = Eτ : Kn → L. Then their extensions by linearity to
maps Ln → L agree as well. In other words, vh(σ) = vh(τ) for all h in
L⊕ Lx⊕ . . .⊕ Lxn−1. In particular, taking

h(x) =
∏

j 6=i

(x− aj)

we get that σ(ai) = τ(ai). As this holds for all i, it follows that σ = τ . �
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