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M. ZÄHLE

Dedicated to Herbert Federer

Abstract. For a large class of self-similar random sets F in Rd geometric
parameters Ck(F ), k = 0, . . . , d, are introduced. They arise as a.s. (average or
essential) limits of the volume Cd(F (ε)), the surface area Cd−1(F (ε)) and the
integrals of general mean curvatures over the unit normal bundles Ck(F (ε))
of the parallel sets F (ε) of distance ε rescaled by εD−k as ε → 0. Here D

equals the a.s. Hausdorff dimension of F . The corresponding results for the
expectations are also proved.

0. Introduction

Self-similar sets in Euclidean space Rd in the sense of Hutchinson [11] have
intensively been studied in fractal analysis and geometry. Their probabilistic coun-
terparts, the so-called (stochastically) self-similar random sets, were introduced
independently by Falconer [2], Mauldin and Williams [17] (1986), and Graf [8]
(1987). Concerning the geometry of these random sets the literature up to now
deals mainly with exact Hausdorff dimensions, multifractal spectra and associated
measures.
In the present paper we will introduce a system of d + 1 (random) geometric pa-
rameters which allow to distinguish between self-similar random sets F with equal
Hausdorff dimension D, but different geometric and topological features. This
continues the work of Winter [25] who first investigated such parameters for deter-
ministic self-similar sets with the open set condition and polyconvex neighborhoods.
Here we use the construction model from [17] for such random F satisfying the open
set condition for a fixed deterministic open set with closure J . Our parameters are
in close relationship to Federer’s curvature measures for sets of positive reach [3].
For this we assume additionally that with probability 1 for Lebesgue almost all
r > 0 the parallel set F (r) of amount r has a Lipschitz boundary and the closure of

its complement F̃ (r) has positive reach. (We conjecture that this is already guar-
anteed by the strong open set condition on int(J). At least this can be checked for
many examples which do not possess polyconvex parallel sets. For d ≤ 3 it follows
from a general result of Fu [6]). In this case the random sets F (r) are Lipschitz
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2 M. ZÄHLE

d-manifolds of bounded curvature in the sense of [22] and their Lipschitz-Killing
curvatures are determined by those of Federer:

Ck(F (r)) = (−1)d−1−k Ck

(

F̃ (r)
)

, k = 0, . . . , d− 2 .

They are completed by the volume Cd(F (r)) and the surface area Cd−1(F (r)) with-
out the additional assumption. The equalities for the total curvatures are localized
to (signed) curvature measures. Our main result (see Theorem 2.3.8 and Corol-
lary 2.2.4) is the following: Under an additional assumption on the model (only if
k ≤ d− 2) the limit

lim
δ→0

1

| ln δ|

1
∫

δ

εD−kE
(

Ck(F (ε))
)

ε−1dε

and the almost sure limit

lim
δ→0

1

| ln δ|

1
∫

δ

εD−kCk(F (ε)) ε−1dε

exist. Moreover, the first limit has an explicit integral representation and the sec-
ond one is a random multiple of the first one. The multiplier is the inverse of a
martingale limit related to the contraction ratios of the generating system of ran-
dom similarities, i.e. it does not depend on k. If the logarithmic contraction ratios
are non-lattice in a sense, then the average limits may be replaced by the ordi-
nary limits as ε → 0. In general, the limits define random fractal Lipschitz-Killing
curvatures of F , if they do not equal zero. For vanishing limits the correctness of
the scaling exponents D − k has to be checked in order to give such a curvature
interpretation.
For the special case k = d this concerns the (average) Minkowski content, and
the results were proved by Gatzouras (see [7] and the references therein to related
work). We adopt his idea to apply the classical renewal theorem for the expecta-
tions and a renewal theorem of Nerman [18] for branching random walks in order
to derive the almost sure limits.
At the same time we get an extension of Winter’s results for the total curvatures in
the deterministic case. However, Winter also proved such limit relationships for the
corresponding curvature measures. The fractal versions in his case are all constant
multiples of D-dimensional Hausdorff measure on F . It will be shown later that
this remains valid under our conditions. In order to introduce random fractal cur-
vature measures additional work is needed, in particular, related to exact Hausdorff
measures of such random sets in the sense of Graf, Mauldin and Williams [9].
The paper is organized as follows.
In Section 1 we summarize some background from classical singular curvature the-
ory. The Appendix provides an auxiliary new result result in this direction - an
estimate for the Lipschitz-Killing curvatures of sufficiently large parallel set of an
arbitrary compact subset of Rd, which is related to well-known isodiametric in-
equalities in the convex case.
Section 2.1 provides the random iterated function scheme and the limit set F by
means of random trees and an associated branching random walk.
In Section 2.2 we follow Gatzouras [7] and present a slight extension of the corre-
sponding renewal theorem for branching random walks.
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Its application to fractal curvatures is prepared in Section 2.3, which contains the
formulation of the main results.
The key proofs are given in Section 3 using the above mentioned theorem from the
Appendix.

1. Background from classical singular curvature theory - curvature

measures of parallel sets

The geometry of classical geometric sets in Rd may be described by certain pa-
rameters forming complete systems of Euclidean invariants in the following sense:
It is well known from convex geometry (Hadwiger’s characterization theorem) that
every set-additive, continuous and motion invariant functional on the space of con-
vex bodies is a linear combination of Minkowski’s quermass integrals. The latter
are also called intrinsic volumes. For smooth boundaries they agree - except the
volume - with the integrals of the elementary symmetric functions of principal cur-
vatures, the so-called integrals of (higher order) mean curvatures of smooth man-
ifolds. Federer [3] unified and extended the intrinsic volumes and the integrals of
mean curvatures with tools of geometric measure theory: He introduced curvature
measures of sets with positive reach by means of a Steiner polynomial for the vol-
ume of parallel set. (This is related to Weyl’s tube formula in differential geometry,
where the mean curvatures arise as traces of certain powers of the Riemannian
curvature tensor.) Explicit representations of Federer’s curvature measures in form
of integrating Lipschitz-Killing curvature forms or symmetric functions of gener-
alized principal curvatures over the associated unit normal bundle were given in
[28]. Starting from the 1980s (and earlier in convex geometry) up to now additive
extensions and other versions of these curvature measures for classes of singular sets
in Rd have been studied with methods of geometric measure theory and algebraic
geometry. Nowadays the notion Lipschitz-Killing curvature measures is used.
Localizations of Hadwiger’s characterization theorem to curvature measures of con-
vex sets where given by Schneider [23]. In [29] this was used together with an
appropriate notion of continuity as approximation tool in order to generalize these
characterizations to large classes of singular sets. At the same time this served as
a motivation to study such curvature properties also for fractals.
The first results in this direction were obtained by Winter [24], [25], who worked
out essential tools for investigating self-similar fractal sets in Rd under this point of
view. Under the usual open set condition and the additional assumption of poly-
convex neighborhoods he solved the corresponding problems completely. In view of
the Gauss-Bonnet theorem the notion of fractal Euler number investigated before
in Llorente and Winter [14] under some additional assumption may be considered
as a special case.
In order to avoid the condition of polyconvex parallel sets and to extend such cur-
vatures to random fractals we suggest now another approach. For certain classes
of compact sets K ⊂ Rd (including many classical singular sets) it turns out that
for Lebesgue-almost all distances r > 0 the parallel set

(1) K(r) := {x ∈ Rd : d(x,K) = min
y∈K

|x− y| ≤ r}

possesses the property that the closure of its complement

(2) K̃(r) := K(r)c



4 M. ZÄHLE

is a set of positive reach with Lipschitz boundary. A sufficient condition is that
r is a regular value of the Euclidean distance function to K (see Fu [6, Theorem

4.1] together with [21, Proposition 3]). In this case both the sets K̃(r) and K(r)
are Lipschitz d-manifolds of bounded curvature in the sense of [22], i.e., their k-th
Lipschitz-Killing curvature measures, k = 0, 1, . . . , d − 1, are determined in this
general context and agree with the classical versions in the special cases. Moreover,
they satisfy

(3) Ck(K(r), ·) = (−1)d−1−kCk

(

K̃(r), ·
)

.

Therefore the Ck(K(r), ·) are signed measures with finite variation measures
Cvar

k (K(r), ·) and the explicit integral representations are reduced to [28] (cf. [22,
Theorem 3] for the general case). In the present paper the normal cycle represen-
tation is needed only in the Appendix. We will briefly mention the normal bundle
and the current construction at the end of the section. (The reader not familiar
with the corresponding geometric integration theory may skip the current theoret-
ical part.) Here we will list the main properties of the curvature measures for the
parallel sets as above which will be used repeatedly:
Cd−1(K(r), ·) agrees with (d − 1)-dimensional Hausdorff measure Hd−1 on the
boundary ∂K(r). The latter is a bounded measure for all r > 0 and all com-
pact sets K to which it is applied below. Therefore we use this notation in any
case. Furthermore, for completeness we define Cd(K(r), ·) as Lebesgue measure
restricted to K(r). The total measures (curvatures) of K(r) are denoted by

(4) Ck(K(r)) := Ck(K(r),Rd) , k = 0, . . . , d .

By an associated Gauss-Bonnet theorem (see [21, Theorems 2,3]) the Gauss curva-
ture C0(K(r)) coincides with the Euler-Poincaré characteristic χ(K(r)).
The curvature measures are motion invariant, i.e.,

(5) Ck(g(K(r)), g(·)) = Ck(K(r), ·) for any Euclidean motion g ,

they are homogeneous of degree k, i.e.,

(6) Ck(λK(r), λ(·)) = λk Ck(K(r), ·) , λ > 0 ,

and locally determined, i.e.,

(7) Ck(K(r), (·) ∩G) = Ck(K
′(r′), (·) ∩G)

for any open set G ⊂ Rd such that K(r) ∩G = K ′(r′) ∩G, where K(r) and K ′(r′)
are both parallel sets where the closures of the complements have positive reach.

We now summarize some facts about sets with positive reach needed below:
Recall that reachX of a set X ⊂ Rd is defined as the supremum over all s > 0
such that every point x in the s-parallel set of X there is a unique point ΠXx ∈ X
nearest to x. The mapping ΠX (on its domain) is called the metric projection onto
X . For a set X of positive reach the unit normal bundle is defined as

norX := {(x, n) ∈ Rd × Sd−1 : x ∈ X, n ∈ Nor(X, x)}
where Nor(X, x) is the dual cone to the (convex) tangent cone of X at x.
If additionally norX ∩ ρ(norX) = ∅ for the normal reflection ρ (x, n) 7→ (x,−n),
then X is full dimensional with Lipschitz boundary (see [21, Proposition 3]).
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For general X with reachX > 0 there is an associated rectifiable current called the
unit normal cycle of X which is given by

NX(ϕ) :=

∫

norX

〈aX(x, n), ϕ(x, n)〉Hd−1(d(x, n))

for an appropriate unit simple (d − 1)-vector field aX = a1 ∧ . . . ∧ ad−1 associated
a.e. with the tangent spaces of norX and for integrable differential (d − 1)-forms
ϕ. In these terms for k ≤ d− 1 the curvature measure may be represented by

Ck(X,B) = NXx1B×Rd(ϕk) =

∫

norX∩(B×Rd)

〈aX(x, n), ϕk(n)〉Hd−1(d(x, n))

for any bounded Borel set B ⊂ Rd, where the k-th Lipschitz-Killing curvature form
ϕk does not depend on the points x and is defined by its action on a simple (d− 1)-
vector η = η1 ∧ . . . ∧ ηd−1 as follows: Let π0(y, z) := y and π1(y, z) := z be the
coordinate projections in Rd×Rd, e′1, . . . , e

′
d be the dual basis of the standard basis

in Rd and Ok the surface area of the k-dimensional unit sphere. Then we have

〈η, ϕk(n)〉 := O−1
d−k

∑

εi∈{0,1},
∑

εi=d−1−k

〈πε1η1 ∧ . . . ∧ πεd−1
ηd−1 ∧ n, e′1 ∧ . . . ∧ e′d〉 .

2. Self-similar random fractals - the model and statement of the

main results

2.1. Random recursive constructions and associated branching random

walks. We briefly describe the random recursive construction model introduced in
Mauldin and Williams [17] (and independently in Falconer [2] and Graf [8] with
different methods). Additionally we use some ideas from Gatzouras [7] for rela-
tionships of associated random functions to branching random walks. Let Sim be
the set of contracting similarities and J a nonempty compact subset of of Rd with
J = int(J). Our basic object is a random element S := {S1, . . . , Sν} with Si ∈ Sim
if ν > 0, and S := {id} if ν = 0, where ν is a random variable with values in
N0 := {0} ∪ N. We suppose that S satisfies the open set condition (briefly (OSC))
with respect to int(J):

(8)

ν
⋃

i=1

Si(int(J)) ⊂ int(J) and Si(int(J)) ∩ Sj(int(J)) = ∅ , i 6= j ,

with probability 1. Denote the corresponding probability space by [Ω0,F0, P 0]. S
is also called random iterated function system, briefly RIFS. The corresponding
random fractal set is introduced by means of the code space Σ := NN and a random
Galton-Watson tree in the set of all finite sequences Σ∗ := {0} ∪⋃∞

n=1 N
n:

For σ = σ1 . . . σk , τ = τ1 . . . τl ∈ Σ∗ we write |σ| := k for the length of σ, σ|i :=
σ1 . . . σi, i¡k, for the restriction to the first i components, and στ := σ1 . . . σkτ1 . . . τl
for the concatenation of σ and τ . (We will use analogous notations for infinite σ ∈ Σ,
resp. τ ∈ Σ.) By convention, 0σ = σ.
For each σ ∈ Σ∗ let [Ωσ,Fσ,Pσ] be a copy of the above probability space. The basic
probability space for the random construction model is the product space

(9) [Ω,F,P] :=
⊗

σ∈Σ∗

[Ωσ,Fσ,Pσ] .
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On this space a family of independent identically distributed RIFS
{Sσ = {Sσ1, . . . , Sσνσ}}σ∈Σ∗

(where Sσ = {id} if νσ = 0) with i.i.d. random
numbers {νσ}σ∈Σ∗

is then determined. Let Fn be the σ-algebra generated by all
Sσ and νσ with |σ| ≤ n. For brevity we write

S̄σ := Sσ|1 ◦ Sσ|2 ◦ · · · ◦ Sσ||σ| ,

rσ := Lip(Sσ) ,

r̄σ := Lip(S̄σ) = rσ|1rσ|2 · · · rσ||σ| ,
Jσ := S̄σJ ,

Kσ := K ∩ Jσ ,

Kσ := S̄−1
σ (K) ∩ J ,

|K| := diam(K) ,

σ ∈ Σ∗, for any compact set K. Note that Kσ is a random compact subset of J in
the sense of stochastic geometry (measurable with respect to the Borel σ-algebra
given by the Hausdorff distance).
Set T0 := {0} and define inductively Tn+1 := ∅, if Tn = ∅, and

Tn+1 := {σi : σ ∈ Tn, νσ 6= 0, 1 ≤ i ≤ νσ} ,
if Tn 6= ∅. Then

T :=

∞
⋃

n=0

Tn

is the population tree of a random Galton-Watson process. Tn represents the family
of individuals in the n-th generation with ancestor 0. The boundary of T is defined
by

∂T := {σ ∈ Σ : σ|n ∈ T , n ∈ N} .
In the sequel we consider the supercritical case with

(10) 1 < Eν < ∞ ,

where this boundary is nonempty with positive probability (see the classical liter-
ature on branching processes). The random compact set

(11) F :=
∞
⋂

n=1

⋃

σ∈Tn

Jσ

is the associated self-similar random set. F is the image of the boundary ∂T under
the random projection

π : σ 7→ lim
n→∞

S̄σ|n(x0)

for an arbitrary starting point x0 ∈ Rd. By construction the random set F is non-
empty with positive probability. Its stochastic self-similarity property reads here as
follows:

(12) F =
⋃

Si∈S

Si(F
i)

where the random sets F i, i ∈ N0, are independent, have the same distribution as
F , and the random element S = {S1, . . . , Sν} with contracting similarities Si, if
ν > 0, and S = {id}, if ν = 0, is as above and independent of the F i.
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It is well-known that with probability 1 (briefly w.p.1) the Hausdorff dimension D
of the self-similar random set F is uniquely determined by the equation

(13) E

(

∑

i∈T1

rDi

)

= 1 .

Under the additional assumption that P(F ∩ int(J) 6= ∅) > 0, the so-called strong
open set condition for the open set int(J) from OSC (8), this has been proved in
[17], [2] and [8]. Following Patzschke [19] it remains true supposing only OSC.
We are interested in curvature properties of the random fractal set F . The main
tool will be approximation by parallel neighborhoods of small distances using the
Lipschitz-Killing curvature measures from Section 1 and suitable rescalings. (For
the case of deterministic similarities (S1, . . . , SN ) and the assumption of polyconvex
neighborhoods for the deterministic self-similar set F the corresponding notions and
results have been worked out in the Thesis of Winter, see [25].) The related problem
for the Minkowski content solved in [7] may be considered as a marginal case. An
important tool will be again the branching random walk {Wσ}σ∈Σ∗

defined by the
recursive formula

(14) Wσ = Wσ|(|σ|−1) + ln r−1
σ ,

if σ ∈ T , and Wσ := ∞, if σ ∈ Σ∗ \T . (Recall that rσ denotes the contraction ratio
of the similarity Sσ for σ ∈ T , and by convention r0 = 1.) In particular, W0 = 0.
As in [7] the classical renewal theorem essentially used for the above problems in
the deterministic case will be replaced by an associated stochastic version.

2.2. Renewal theorem for branching random walks. We refer to Gatzouras
[7, Section 3.2]. First consider the associated nonnegative martingale

(15) Mn :=
∑

σ∈Tn

e−DWσ =
∑

σ∈Tn

r̄Dσ , n ≥ 0 ,

with respect to the filtration {Fn}n≥0. (Note that by (13) EM1 = 1.) According
to the martingale convergence theorem the limit

(16) M∞ := lim
n→∞

Mn

exists w.p.1. The next theorem is due to Biggins [1]; see Lyons [15] for a conceptual
proof using Lyons, Pemantle and Peres [16].

Theorem 2.2.1 (Biggins). The following are equivalent:

(i) E(M1 ln
+ M1) < ∞

(ii) P(M∞ = 0) < 1
(iii) P(M∞ > 0 | non-extinction) = 1
(vi) EM∞ = 1
(v) Mn → M∞ in L1 .

Recall that the underlying probability space [Ω,F,P] =
⊗

σ∈Σ∗

[Ωσ,Fσ,Pσ] is a
product space. For each τ ∈ Σ∗ define the shift operator θτ : Ω → Ω by

(17) (θτω)σ := ωτσ .

Besides the branching random walk {Wσ}σ∈T from (14) we now consider a basic
stochastic process Y satisfying the following.
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Condition 2.2.2. Y = {Yt : t ∈ R} is a real-valued measurable stochastic process
on [Ω,F,P] vanishing for t < 0, which is continuous a.e. with probability 1, i.e.,
there exists a set C ∈ B(R)

⊗

F such that
∫

Ω

∫

R
1Cc(t, ω) dtP(dω) = 0 and for any

(t, ω) ∈ C the function Y(·)(ω) is continuous at point t.

The process Y induces a family of i.i.d. copies defined by

Y σ
t (ω) := Yt(θσω) , σ ∈ Σ∗ .

Then we can introduce the branching process associated with W and Y in the sense
of Jagers [12]:

(18) Zt :=
∑

σ∈T

Y σ
t−Wσ

.

We are interested in the limit behavior of the process e−DtZt as t → ∞. Here the
measure

(19) µ := E

(

∑

i∈T1

1(·)(Wi)

)

= E

(

∑

i∈T1

1(·)(| ln ri|)
)

on R plays a crucial role. Note that µ(R) = Eν and recall the assumption 1 < Eν <
∞. Denote

(20) λ(D) := E

(

∑

i∈T1

Wie
−DWi

)

= E

(

∑

i∈T1

| ln ri| rDi

)

.

The following renewal theorem for the branching process Z is essential for our pur-
poses. (Recall the random martingale limit M∞ from (16).) Note that the essential
limit as t → 0 is meant w.r.t. Lebesgue measure and is defined as the common value
of lim ess sup and lim ess inf, if the latter coincide.

Theorem 2.2.3. Suppose that the process Y satisfies Condition 2.2.2 and there
exists a non-increasing integrable function h : [0,∞) → (0,∞), such that

(21) E

(

ess sup
t≥0

e−Dt|Yt|
h(t)

)

< ∞ .

(i) [Nerman] If the measure µ is non-lattice then

ess lim
t→∞

e−DtE(Zt) =
1

λ(D)

∞
∫

0

e−DsE(Ys) ds

and

ess lim
t→∞

e−DtZt =
M∞

λ(D)

∞
∫

0

e−DsE(Ys) ds w.p.1 .

(ii) [Gatzouras] If the measure µ is lattice with lattice constant c, then for
Lebesgue-a.e. s ∈ [0, c) we have

lim
n→∞

e−D(s+nc)E(Zs+nc) =
1

λ(D)

∞
∑

n=0

e−D(s+nc)E(Ys+nc) .
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and

lim
n→∞

e−D(s+nc)Zs+nc =
M∞

λ(D)

∞
∑

n=0

e−D(s+nc)E(Ys+nc) w.p.1 .

Assertion (i) is shown in Nerman [18] for the case of Skorohod-regular processes
(which are a.e. continuous w.p.1). The lattice case (ii) is derived in [7] from Ner-
man’s proof of (i). Note that these proofs remain valid under our Condition 2.2.2
and (21) when considering essential limits. The convergence of the expectations
may be considered as a special case of the classical renewal theorem for deter-
ministic functions. (Feller’s proof in [5] works also for the essential limits.) A
straightforward consequence of (ii) is the following.

Corollary 2.2.4. Suppose that the conditions of Theorem 2.2.3 (ii) are satisfied
and

(22)

c
∫

0

sup
n

(

e−D(s+nc)E |Zs+nc|
)

ds < ∞ .

Then we have

lim
T→∞

1

T

T
∫

0

e−DtE(Zt) dt =
1

λ(D)

∞
∫

0

e−DsE(Ys) ds

and

lim
T→∞

1

T

T
∫

0

e−DtZt dt =
M∞

λ(D)

∞
∫

0

e−DsE(Ys) ds w.p.1 .

Proof. We show the almost sure convergence. The arguments for the expectations
are similar.
The branching process Z is measurable with respect to B(R)⊗ F and therefore

E :=
{

(s, ω) ∈ [0,∞)× Ω : lim
n→∞

e−D(s+nc)Zs+nc(ω) = Ls

}

∈ B(R)⊗ F ,

where Ls denotes the right hand side of (ii). Theorem 2.2.3 (ii) and Fubini yield

0 =

c
∫

0

∫

Ω

1Ec(s, ω)P(dω) ds =

∫

Ω

c
∫

0

1Ec(s, ω) dsP(dω) ,

i.e., w.p.1 we get limn→∞ e−D(s+nc)Zs+nc = Ls for a.e. s ∈ [0, c). Taking into
regard (22) (where we could omit the expectation for convergence w.p.1) and dom-
inated convergence we infer

lim
n→∞

c
∫

0

e−D(s+nc)Zs+nc ds =

c
∫

0

Ls ds

w.p.1. Instead of the sequence on the left hand side we may also take its arithmetic
means which converge to the same limit. The latter is equal to the right hand side
of the assertion as an easy calculation shows. Similarly, the limit of the arithmetic
means is the same as the limit of the Cesáro means on the left hand side of the
assertion. �
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2.3. Application to fractal curvatures. We now turn back to the self-similar
random set F from (11). Let K be the space of non-empty compact subsets of
our primary compact set J . B(K) denotes the Borel σ-algebra with respect to the
Hausdorff distance dH onK. We further consider the space F of closed subsets of Rd

provided with the hit-and-miss topology (generated by the sets {A ∈ F : A∩O 6= ∅}
and {A ∈ F : A∩C = ∅} for open O and closed C) and the Borel-σ-algebra B(F).
The topology restricted to K is generated by the metric dH .
(Recall the notations (1) and (2) for parallel sets and the closures of their comple-
ments. It is easy to see, that the mapping

(r,K) 7→ K̃(r) from [0,∞)×K to F
is (B([0,∞)) ⊗B(K) , B(F))-measurable.
Let PR be the space of subsets of Rd with positive reach (cf. the end of Section 1).
According to [27, Proposition 1.1.1] we get PR ∈ B(F). Moreover, the mapping
X 7→ norX from PR into the space of closed subsets of Rd × Rd is measurable.
(Recall the definition of the unit normal bundle norX from Section 1.) This implies
the following measurability property (for the normal reflection ρ : (x, n) 7→ (x,−n)):

Lemma 2.3.1.

Reg : =

{

(r,K) ∈ [0,∞)×K : K̃(r) ∈ PR, nor K̃(r) ∩ ρ(nor K̃(r)) = ∅
}

∈ B([0,∞))⊗B(K) .

The elements of Reg will be called regular pairs.
In Fu [6, Theorem 4.1] it is shown that in space dimensions d ≤ 3 for any compact
set K there exists a bounded exceptional set N of Lebesgue measure 0 such that for

any r /∈ N the set K̃(r) has positive reach and nor K̃(r) ∩ ρ(nor K̃(r)) = ∅. More-

over, if r >
√

d/(2d+ 2)|K| both these assertions hold for any space dimension d.
This basic result, the preceding lemma and Fubini imply the following property of
the self-similar random set F :

Corollary 2.3.2. In space dimensions d ≤ 3 w.p.1 for Lebesgue-a.e. r > 0 the
pair (r, F ) is regular in the above sense.

In higher dimensions we shall formulate this as a main geometric condition on
the self-similar random set F :

Definition 2.3.3. The self-similar random set F is called regular if w.p.1 for
Lebesgue-a.e. r > 0 the pair (r, F ) is regular.

For regular pairs (r, F ) the Lipschitz-Killing curvature measures of F (r) are

determined by means of those for F̃ (r) (cf. Section 1):

(23) Ck(F (r), ·) = (−1)d−1−kCk(F̃ (r), ·) , k = 0, . . . , d− 1 .

According to Fu’s result mentioned above this holds, in particular, for any realiza-
tion of F and r > rd where

rd :=
√

d/(2d+ 2) |J | .
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For the exceptional pairs we set

Ck(F (r), ·) := 0 .

Then the Ck(F (r), ·) are random signed measures. The corresponding measurabil-
ity properties follow from [27, Theorem 2.1.2] and Lemma 2.3.1: If the self-similar
random set F is regular, the mapping (r, F ) 7→ C(F (r), B) for any Borel set B ∈ Rd

is product measurable. Moreover, one obtains the following continuity property:

Lemma 2.3.4. For any (r0,K) ∈ Reg and r → r0 > 0 we have (r,K) ∈ Reg and
the measures Ck(K(r), ·) weakly converge to Ck(K(r0), ·).

The proof follows from [21, Propositions 1 and 3] and [22, Proposition 6]. (Re-

call that if (r,K) ∈ Reg both the sets K(r) and K̃(r) are Lipschitz d-manifolds of
bounded curvature in the sense of [22].)
This implies the following auxiliary result.

Corollary 2.3.5. If the self-similar random set F is regular, then the random
function Φ(r) := Ck(F (r)) is a.e. continuous w.p.1.

Remark 2.3.6. If k = d this property remains valid for general compact sets and
all r > 0, i.e. we need not restrict to the class PR. For k = d− 1 the set PR can
be replaced by the set of (Hd−1, d− 1)-rectifiable closed subsets of Rd in the sense
of Federer [4]. The above measurability and continuity properties for this case are
treated, e.g., in [26]. (Here the weak convergence of Cd−1(K(r), ·) to Cd−1(K(r0), ·)
as r → r0 is a well-known result from geometric measure theory.)

In the Appendix it will be shown that parallel sets of distances greater than√
2|J | are nice sets concerning their regularity properties. Therefore in the sequel

we fix an arbitrary

R >
√
2 .

It turns out that the relevant formulas below do not depend on the choice of R.
In order to formulate the remaining conditions on F and to apply the renewal
theorem we now turn back to the tree construction from Section 2.1:
For fixed k ∈ {0, 1, . . . d} we consider the basic stochastic processes

(24) Zt := (R|J |)−kekt Ck(F (R|J |e−t))1[0,∞)(t)

and

(25) Yt := Zt −
∑

i∈T1

Zi
t−Wi

.

Iterating the last equation we get for Zt the branching process representation (18):

Zt =
∑

σ∈T

Y σ
t−Wσ

.

(Recall the notation Xσ
t (ω) = Xt(θσ(ω)), σ ∈ Σ∗, for a process X and the shift

operator (17) on the probability space (9).) Here we have in mind the scaling
property and the additivity of the Lipschitz-Killing curvature measure Ck in order
to obtain the conditions on the process Y for the renewal theorem. The continuity
condition 2.2.2 will follow from the regularity of the self-similar random set F if
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k ≤ d− 2 or from the rectifiability of the boundaries of its parallel sets if k = d− 1.
For the boundedness condition (21) we will use an additional assumption if k ≤ d−2,
which is formulated in the language of random stoppings in the tree construction:
For any r > 0 we define the random subtree

(26) T (r) := {σ ∈ T : R|J | r̄σ ≤ r < R|J | r̄σ||σ|−1} .
This is a so-called Markov stopping on our probability space.
Recall the above notations F σ = S̄−1

σ (F )∩ J = F ◦ θσ for the shift operator θ from
(17). Then we obtain from the representation F =

⋃

σ∈T (r) Fσ with Fσ = F ∩ S̄σJ

the stochastic self-similarity

(27) F =
⋃

σ∈T (r)

S̄σ(F
σ) ,

where F σ, σ ∈ Σ∗, are i.i.d. copies of F and the random similarities S̄σ, σ ∈ Σ∗,
and the random subtree T (r) are as before and independent of the F σ. At the
same time we get for any r > 0 the representation

F (r) =
⋃

σ∈T (r)

S̄σ

(

F σ
( r

r̄σ

)

)

.

For any σ ∈ T (r) we have r
r̄σ

≥ R|J | and F σ ⊂ J . Then Theorem 4.1 in the

Appendix implies that ∂
(

F σ
(

r
r̄σ

))

is a Lipschitz (d − 1)-submanifold. Since the

number of σ ∈ T (r) is finite, we have shown the following:

Lemma 2.3.7. With probability 1 for any r > 0 the boundary of the random set
F (r) is (Hd−1, d− 1)-rectifiable.

(For the deterministic case see Rataj and Winter [20].)
Furthermore, we introduce the subset of those words σ in T (r) for which the set
Fσ(r) = (F ∩ Jσ)(r) has distance less than r to the boundary of the first iterate
SJ :=

⋃

i∈T1
Ji of the basic set J under the random similarities:

(28) Tb(r) := {σ ∈ T (r) : Fσ(r) ∩ (SJ)c(r) 6= ∅} .

We now can formulate the main theorem of the paper.
Recall the martingale limit M∞ = limn→∞

∑

σ∈Tn
r̄Dσ from (16), the measure

µ := E
(
∑

i∈T1
1(·)(| ln ri|)

)

from (19), and the constant λ(D) = E
(
∑

i∈T1
| ln ri| rDi

)

from (20).

Theorem 2.3.8. Let k ∈ {0, 1, . . . , d} and F be a self-similar random set with
basic space J satisfying the following conditions:

(i) 1 < Eν < ∞,
(ii) the strong open set condition, i.e., the open set condition (8) and

P(F ∩ int(J) 6= ∅) > 0 ,

(iii) F is regular in the sense of Definition 2.3.3, if k ≤ d− 2,
(iv) for k ≤ d− 2,

E



 ess sup
0<r<R|J|

sup
σ∈Tb(r)

r−k Cvar
k

(

F (r), ∂(Fσ(r)) ∩ ∂
(

⋃

σ′∈T (r), σ′ 6=σ

Fσ′(r)
)

)



 < ∞ .
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Set
Rk(r) := Ck(F (r)) −

∑

i∈T1

1(0,R|J|ri](r)Ck

(

Fi(r)
)

, r > 0 .

Then we have the following.

(I)

ess lim
ε→0

εD−kE
(

Ck(F (ε))
)

=
1

λ(D)

R|J|
∫

0

rD−k−1E
(

Rk(r)
)

dr

and

Ck(F ) := ess lim
ε→0

εD−kCk(F (ε)) =
M∞

λ(D)

R|J|
∫

0

rD−k−1E
(

Rk(r)
)

dr w.p.1 ,

provided the measure µ is non-lattice.
(II)

lim
n→∞

e(k−D)(s+nc)E

(

Ck

(

F (e−(s+nc))
)

)

=
1

λ(D)

∞
∑

m=0

e(k−D)(s+mc)E

(

Rk

(

e−(s+mc)
)

)

for a.e. s ∈ [0, c) and

lim
n→∞

e(k−D)(s+nc)Ck

(

F (e−(s+nc))
)

=
M∞

λ(D)

∞
∑

m=0

e(k−D)(s+mc)E

(

Rk

(

e−(s+mc)
)

)

for a.e. s ∈ [0, c) w.p.1,
provided the measure µ has lattice constant c.

Remarks. For k = d, i.e. for the (average) Minkowski content in (I), this theorem
is due to Gatzouras [7].
Recall that for d ≤ 3 the regularity (iii) holds always true. For polyconvex neigh-
borhoods this remains valid for general d.
We conjecture that in the deterministic case the strong open set condition implies
(iii). Under the additional assumption of polyconvex neighborhoods (iv) is proved
implicitly in the Thesis of Winter [24], [25]. For many deterministic examples with
non-polyconvex neighborhoods, e.g. the Koch curve, the above conditions can be
checked using their local structure.
For the general deterministic case and k = d−1 the limits are derived in Rataj and
Winter [20]. Moreover, these authors show for the case of non-arithmetic logarith-
mic contraction ratios the equality

Cd−1(F ) = (d−D)Cd(F ) .

This supports our conjecture that like in the classical smooth case the parameters
Ck(F ) with k larger than the integer [D] + 1 do not provide additional geometric
information. (In the classical case they are all multiples of the Minkowski content.)

Corollary 2.3.9. Under the conditions of Theorem 2.3.8 we get the average limits

lim
δ→0

1

| ln δ|

1
∫

δ

εD−kE
(

Ck(F (ε))
)

ε−1dε =
1

λ(D)

R|J|
∫

0

rD−k−1E
(

Rk(r)
)

dr
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and

lim
δ→0

1

| ln δ|

1
∫

δ

εD−kCk(F (ε)) ε−1dε =
M∞

λ(D)

R|J|
∫

0

rD−k−1E
(

Rk(r)
)

dr w.p.1 .

The notion of fractal curvatures. In the non-lattice case these average limits
agree with the ordinary limits from Theorem 2.3.8 (I). Due to the stochastic self-
similarity the randomness of the second limit appears only in form of the random
variable M∞ which does not depend on k. In view of Biggin’s theorem 2.2.1, M∞

does not vanish with positive probability if and only if

E

[(

∑

i∈T1

rDi

)

ln+
(

∑

i∈T1

rDi

)]

< ∞

and in this case EM∞ = 1. Then the expectation of the second limit agrees with the
first limit, i.e. with the limit of the expectations. The integral expression provides
a formula for numerical calculations in some special situations. Examples for the
deterministic case may be found in Winter [25].
In view of the classical notions the second limit in Corollary 2.3.9 will be called
random fractal Lipschitz-Killing curvature of order k of the self-similar random set
F , if it is not zero.
If the first limit vanishes, one has to check the correctness of the choice of the
rescaling exponent D − k in order to keep the curvature interpretation. In ’non-
fractal’ situations the exponent has to be replaced by 0. For a detailed discussion
of this problem see [25]. (Perhaps the rescaling exponents can be used in order to
distinguish between ’fractal’ and ’non-fractal’ self-similar sets.)

3. Proofs of the main results

3.1. Proof of Theorem 2.3.8. Recall that we wish to reduce the convergence
assertions in (I) and (II) to the above renewal theorem. Substituting ε := R|J |e−t

and r := R|J |e−s under the integral we obtain the equivalent limit relationships in
Theorem 2.2.3 for the above introduced processes

Zt = (R|J |)−kekt Ck(F (R|J |e−t))1[0,∞)(t)

Yt = Zt −
∑

i∈T1

Zt−Wi

with Wi = | ln ri|. (The use of the constant R|J | will be clear later.) Therefore it
suffices to check the conditions on the process Y .
The measurability and continuity properties in Condition 2.2.2 for the process Y
follow from its definition together with Lemmas 2.3.1 and 2.3.4, and Corollary 2.3.5.
For (21) it is sufficient to find some δ > 0 such that

E

[

ess sup
t≥0

(

e−Dt|Yt|
e−δt

)]

< ∞ .

According to the above substitution this may be reformulated as

(29) E

[

ess sup
0<r≤R|J|

( |Q(r)|
rk−D+δ

)

]

< ∞ ,
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where

Q(r) := Ck(F (r)) −
∑

i∈T1

rki 1(0,R|J|]

( r

ri

)

Ck

(

F i
( r

ri

)

)

= Ck(F (r)) −
∑

i∈T1

1(0,R|J|ri](r)Ck

(

Fi(r)
)

=: Rk(r)

The equality between Q(r) (where the order k of the curvature is suppressed in the
notation) and Rk(r) (which stands in the assertion of the theorem) follows from
the scaling property of Ck. (Recall that Fi = F ∩ Ji, Ji = SiJ , F

i = S−1
i (F ) ∩ J ,

and F (r) ⊂ ⋃i∈T1
Ji(r).)

We decompose Q(r) into

Q(r) =

(

Ck(F (r)) −
∑

i∈T1

rki Ck

(

F i
( r

ri

)

)

)

+
∑

i∈T1

rki 1(R|J|,∞)

( r

ri

)

Ck

(

F i
( r

ri

)

)

=: Q2(r) +Q1(r) .

Using that the F i, i ∈ T1, are independent of T1 and have the same distribution as
F we obtain for Q1 the estimate

E

[

ess sup
0<r≤R|J|

( |Q1(r)|
rk

)

]

≤ Eν E

[

ess sup
r>R|J|

( |Ck(F (r))|
rk

)

]

.

According to Theorem 4.1 in the Appendix the last expression is finite. Therefore
it remains to prove that

(30) E

[

ess sup
0<r≤R|J|

( |Q2(r)|
rk−D+δ

)

]

< ∞

for some δ > 0. By the scaling property of Ck we get

(31) Q2(r) = Ck(F (r)) −
∑

i∈T1

Ck

(

Fi(r)
)

.

Next we decompose the total kth curvatures by means of the corresponding
curvature measures:

Ck(F (r)) = Ck

(

F (r),
⋃

i∈T1

Fi(r)

)

= Ck

(

F (r), Ar ∪ (Ar)
c
)

= Ck(F (r), Ar) + Ck

(

F (r), (Ar)
c
)

,

where

(32) Ar :=
⋃

j 6=k

Jj(r) ∩ Jk(r) .

Similarly,

Ck(Fi(r)) = Ck(Fi(r), Ar) + Ck

(

Fi(r), (Ar)
c
)

, i ∈ T1 .
The locality of the curvature measure Ck implies

Ck(Fi(r), (Ar)
c) = Ck(Fi(r), B

i) = Ck(F (r), Bi)
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and F (r) ∩ (Ar)
c is the disjoint union of the sets Bi := Fi(r) \Ar, i ∈ T1. Hence,

Ck(F (r), (Ar)
c))−

∑

i∈T1

Ck(Fi(r), (Ar)
c) = 0 .

Substituting this in (31) we infer

Q2(r) = Ck(F (r), Ar)−
∑

i∈T1

Ck(Fi(r), Ar)

and by the scaling property of Ck from this

Q2(r) = Ck(F (r), Ar)−
∑

i∈T1

rki Ck

(

F i
( r

ri

)

, S−1
i (Ar)

)

= Q3(r) −Q4(r) −Q5(r)

for

Q3(r) := Ck(F (r), Ar)

Q4(r) :=
∑

i∈T1

rki 1(0,R|J|]

( r

ri

)

Ck

(

F i
( r

ri

)

, S−1
i (Ar)

)

Q5(r) :=
∑

i∈T1

rki 1(R|J|,∞)

( r

ri

)

Ck

(

F i
( r

ri

)

, S−1
i (Ar)

)

.

Therefore it suffices to prove the estimate (30) for Q3, Q4, and Q5 instead of Q2

separately.
First we obtain

E

[

ess sup
0<r≤R|J|

( |Q5(r)|
rk

)

]

< ∞ .

Here the arguments are the same as for Q1 above taking into regard that for any
Borel set B, |Ck(F,B)| ≤ Cvar

k (F,Rd) and applying Theorem 4.1 in the Appendix.
For estimating Q3 and Q4 we we will use the set inclusions

Ar ⊂ (SJ)c(r) , S−1
i (Ar) ∩ F i

( r

ri

)

⊂ Jc
( r

ri
) , and Jc(r) ⊂ (SJ)c(r) ,

(Recall that SJ =
⋃

i∈T1
SiJ and J is from OSC.) Then for Q3 the estimate follows

from (33) in Lemma 3.1.1 below.
Finally, using once more that the sets F i, i ∈ T1, are independent of T1 and have
the same distribution as F , we infer for the same δ as above

E

[

ess sup
0<r≤R|J|

( |Q4(r)|
rk−D+δ

)

]

≤ E

[

∑

i∈T1

rD−δ
i ess sup

0< r

ri
≤R|J|

(

rk−D+δ
i

rk−D+δ
Cvar

k

(

F i
( r

ri

)

, Jc
( r

ri

)

)

)]

≤ Eν E

[

ess sup
0<r≤R|J|

(

Cvar
k

(

F (r), Jc(r)
)

rk−D+δ

)]

≤ Eν E

[

ess sup
0<r≤R|J|

(

Cvar
k

(

F (r), (SJ)c(r)
)

rk−D+δ

)]

< ∞

according to (33). �
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Lemma 3.1.1. Under the conditions of Theorem 2.3.8 we have

(33) E

[

ess sup
0<r≤R|J|

(

Cvar
k

(

F (r), (SJ)c(r)
)

rk−D+δ

)]

< ∞

for some 0 < δ < D.

Proof. We first proceed similarly as in the above proof choosing the subtree T (r)
from (26) instead of T1 in the decomposition of the curvature measures. Recall
that F (r) =

⋃

σ∈T (r) Fσ(r) for any r > 0. Therefore the locality of the curvature

measures implies
(34)

Cvar
k

(

F (r), (SJ)c(r)
)

= Cvar
k

(

F (r),
(

⋃

σ∈T (r)

Fσ(r)
)

∩(SJ)c(r)
)

≤
∑

σ∈Tb(r)

Cvar
k (F (r), Fσ(r)) ,

where the subtree Tb(r) is defined in (28). For k ∈ {d − 1, d} we can use the
(in)equality

(35) Cvar
k

(

F (r), Fσ(r)
)

≤ Ck

(

Fσ(r)
)

, σ ∈ Tb(r) .
Furthermore, using that the curvature measures are concentrated on the boundary
of F (r) we obtain for any σ ∈ Tb(r) and k ≤ d− 2,

Cvar
k (F (r), Fσ(r))

= Cvar
k

(

F (r), Fσ(r) \
⋃

σ′∈T (r), σ′ 6=σ

Fσ′ (r)

)

+ Cvar
k

(

F (r), Fσ(r) ∩
⋃

σ′∈T (r), σ′ 6=σ

Fσ′(r)

)

= Cvar
k

(

F (r), Fσ(r) \
⋃

σ′∈T (r), σ′ 6=σ

Fσ′ (r)

)

+ Cvar
k

(

F (r), ∂Fσ(r) ∩ ∂
(

⋃

σ′∈T (r), σ′ 6=σ

Fσ′ (r)
)

)

≤ Cvar
k (Fσ(r)) + Cvar

k

(

F (r), ∂Fσ(r) ∩ ∂
(

⋃

σ′∈T (r), σ′ 6=σ

Fσ′ (r)
)

)

= r̄kσ C
var
k

(

F σ
( r

r̄σ

)

)

+ Cvar
k

(

F (r), ∂Fσ(r) ∩ ∂
(

⋃

σ′∈T (r), σ′ 6=σ

Fσ′ (r)
)

)

.

Recall that the sets F σ = S−1
σ (F ) ∩ J , σ ∈ Tb(r), are independent of the subtree

Tb(r) and have the same distribution as F . Moreover, for σ ∈ Tb(r) we have
r
r̄σ

≥ R|J |. Therefore the above estimates yield

E

[

ess sup
0<r≤R|J|

sup
σ∈Tb(r)

(

r−k Cvar
k

(

F (r), Fσ(r)
))

]

≤ E

[

ess sup
r≥R|J|

(

r−k Cvar
k

(

F (r)
))

]

+E



 ess sup
0<r≤R|J|

sup
σ∈Tb(r)



r−k Cvar
k

(

F (r), ∂Fσ(r) ∩ ∂
(

⋃

σ′∈T (r), σ′ 6=σ

Fσ′(r)
)

)







 .

The first summand on the right side is bounded by Theorem 4.1 in the Appendix,
since |J | ≥ |F |. (This holds also for k ∈ {d−1, d}.) The boundedness of the second
summand is assumption (iv) in Theorem 2.3.8. In view of this, (34) and (35) it
suffices now to show that

(36) E

[

sup
0<r≤R|J|

rD−δ ♯(Tb(r))
]

< ∞
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for some 0 < δ < D, where ♯ denotes the number of elements of a finite set.
For we use some ideas from the deterministic case (cf. [25]) and show a probabilistic
version for our random subtrees Tb(r):
By the strong open set condition P(F ∩ int(J) 6= ∅) > 0 there exist some α > 0 and
0 < ρ < R|J | such that for the subtree

(37) T (ρ, α) := {σ ∈ T (ρ) : d(x, ∂J) > α , x ∈ Fσ}
we have

(38) P(T (ρ, α) 6= ∅) > 0 .

The Markov stopping property of the subtree T (ρ) of T implies

E

[

∑

σ∈T (ρ)

r̄Dσ

]

= 1

for the Hausdorff dimension D. Hence, there is a unique 0 < δ < D such that

(39) E

[

∑

σ∈T (ρ)\T (ρ,α)

r̄D−δ
σ

]

= 1 .

For r > 0 denote

Ξ(r) := {σ = σ1 . . . σn ∈ T (r) : σk+1σk+2 . . . σl /∈ T σ1...σk(ρ, α) for any 1 ≤ k < l ≤ n} .

(Recall the notation Xσ(ω) = X(θσω) for a random element X .)
As in the deterministic case (see [25], proof of Lemma 5.4.1, Part I, where the
polyconvex setting is not needed) one shows that

♯(Tb(r)) ≤
ν
∑

i=1

♯
(

Ξi(r∗)
)

where r∗ := 2(αrminR|J |)−1r. Consequently,

E

[

sup
0<r<R|J|

(

rd−δ ♯(Tb(r))
)]

≤ Eν E

[

sup
r>0

(

rd−δ ♯(Ξ(r∗))

)]

since the Ξi have the same distribution as Ξ and are independent of ν.
Thus it is sufficient to prove that

(40) E

[

sup
r>0

(

rD−δ ♯(Ξ(r))

)]

< ∞ .

Because of the open set condition on the (deterministic) basic set J for r ≥ ρ′ > 0
the number of its smaller copies under the random similarities of size of order r
and hence, the number of elements of T (r), is uniformly bounded. (Use a volume
comparing argument for disjoint open balls, one in each copy, of the same radius.)
Since ♯(Ξ(r)) ≤ ♯(T (r)) we obtain for any 0 < ρ′ < ρ a constant C > 0 such that

sup
r≥ρ′

(

rD−δ♯(Ξ(r))

)

≤ C w.p.1

and from this

(41) sup
r>0

(

rD−δ♯(Ξ(r))

)

≤ max

(

sup
0<r<ρ′

(

rD−δ♯(Ξ(r))

)

, C

)

w.p.1 .
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On the other hand, for 0 < r < ρ the definition of the random set Ξ(r) implies

♯(Ξ(r)) ≤
∑

σ∈T (ρ)\T (ρ,α)

♯

(

Ξσ
( r

r̄σ

)

)

.

Combining this with (41) for ρ′ := ρ we infer for any 0 < r′ ≤ ρ,

Ψ(r′) := E

[

max

(

sup
r′<r

(

rD−δ ♯(Ξ(r))

)

, C

)]

= E

[

max

(

sup
r′<r<ρ

(

rD−δ ♯(Ξ(r))

)

, C

)]

≤ E



max



 sup
r′<r<ρ





∑

σ∈T (ρ)\T (ρ,α)

r̄D−δ
σ

rD−δ

r̄D−δ
σ

♯

(

Ξσ
( r

r̄σ

)

)



 , C









≤ E





∑

σ∈T (ρ)\T (ρ,α)

r̄D−δ
σ max

(

sup
r′<r<ρ

(

rD−δ

r̄D−δ
σ

♯

(

Ξσ
( r

r̄σ

)

))

, C

)





≤ E





∑

σ∈T (ρ)\T (ρ,α)

r̄D−δ
σ max

(

sup
r′<r

(

rD−δ

r̄D−δ
σ

♯

(

Ξσ
( r

r̄σ

)

))

, C

)





≤ E





∑

σ∈T (ρ)\T (ρ,α)

r̄D−δ
σ max

(

sup
r′θ<r

(

rD−δ♯(Ξσ(r))

)

, C

)





= E

[

max

(

sup
r′θ<r

(

rD−δ♯(Ξ(r))

)

, C

)]

= Ψ(r′θ)

with θ := ρ−1R|J | > 1, since for σ ∈ T (ρ) we have R|J |r̄σ ≤ ρ, the random
numbers ♯(Ξσ(r)) , 0 < r < ρ, are independently of T (ρ) \ T (ρ, α) distributed as
♯(Ξ(r)), and

E





∑

σ∈T (ρ)\T (ρ,α)

r̄D−δ
σ



 = 1

according to (39). By monotonicity of the function Ψ(r′) we infer for any 0 < r′ < ρ,
Ψ(r′) = Ψ(θr′) and hence, limr→0 Ψ(r) = Ψ(r′), which leads together with (41) to
assertion (40). �

4. Appendix - An estimate for Lipschitz-Killing curvature measures

of large parallel sets

Here we will show that the variation of the k th Lipschitz-Killing curvature of
the parallel set of amount r of an arbitrary compact set K for sufficiently large r is
bounded from above by a constant multiple of rk:

Theorem 4.1. For any R >
√
2 and k = 0, 1, . . . , d there exists a constant ck(R)

such that for any compact set K ⊂ Rd we have for any r ≥ R|K|,

reach(K̃(r)) ≥ |K|
√

R2 − 1 ,
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∂K(r) is a (d− 1)-dimensional Lipschitz submanifold, and

sup
r≥R|K|

Cvar
k (K(r),Rd)

rk
≤ ck(R) .

(It is well-known that for compact convex sets K these properties hold for all
R > 0, the last one in the sharper version of an isodiametric inequality with an
optimal constant.)

Proof. According to an argument of Rataj (cf. Lemma 2.2 in Hug, Last and Weil
[10]) we have for r > |K|,

reach
(

K̃(r)
)

≥
√

r2 − |K|2 ,
which implies the first assertion.
By the scaling property of the curvature measures we get for any r > 0,

Cvar
k (K(r),Rd) = rk Cvar

k ((r−1K)(1),Rd) .

Hence, it suffices to show for R >
√
2 the inequality

(42) sup
|K|≤R−1

Cvar
k (K(1),Rd) ≤ ck(R)

and that for such K the parallel set K(1) has a Lipschitz boundary. For, we fix an

arbitrary 0 < s <
√
1−R−2 − R−1. Since the curvature measures are translation

invariant, we may assume that 0 ∈ K. Then we obtain for closed balls B(0, r) with
center 0 and radius r the set inclusions

B(0, 1− s) ⊂ K(1) ⊂ B(0, 1 + |K|) ⊂ B(0, 1 +R−1)

and from this the following estimates for the Euclidean distance function d(·, ·).

s ≤ inf
x∈∂B(0,1−s)

d
(

x, K̃(1)
)

.

(If d
(

x, K̃(1)
)

< s for some x ∈ ∂B(0, 1 − s), we get d
(

0, K̃(1)
)

≤ d(0, x) +

d
(

x, K̃(1)
)

< 1 − s + s = 1 which is a contradiction, since 0 ∈ K.) Furthermore,

d
(

x, K̃(1)
)

≤ d(x, ∂B(0, 1 + R−1)) ≤ 1 + R−1 − (1 − s) = R−1 + s, for any x ∈
∂B(0, 1− s), which implies

sup
x∈∂B(0,1−s)

d
(

x, K̃(1)
)

≤ R−1 + s <
√

1−R−2 ≤ reach
(

K̃(1)
)

.

Therefore we can define a biunique mapping from the unit normal bundle of the ball

B(0, 1− s) onto that of the complementary set K̃(1) as follows: fK : norB(0, 1 −
s) → nor K̃(1) with

fK

(

x,
x

|x|

)

:=

(

Π
K̃(1)

x,
x−Π

K̃(1)
x

|x−Π
K̃(1)

x|

)

.

fK is a Lipschitz mapping whose Lipschitz constant is uniformly bounded in K
as above by some constant c(R, s) depending only on R and s. This follows from

Theorem 4.8 in [3]. (Federer’s value r is our R−1 + s, his q is our
√
1−R−2, and s

has the same meaning as there.) In particular, K(1) has a Lipschitz boundary.
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The transformation formula for rectifiable currents with compact support under
Lipschitz mappings (cf. Federer [4, 4.1.30]) implies for the unit normal cycles

N
K̃(1)

(ϕ) =

∫

nor K̃(1)

ϕ =

∫

norB(0,1−s)

(fK)♯ϕ = NB(0,1−s)

(

(fK)♯ϕ
)

for any smooth differential (d − 1)-form ϕ on Rd × Rd, where (fK)♯ϕ denotes its
pullback form under the mapping fK (in the sense of a.e. differentiation).
Recall that for any set X of positive reach and any bounded Borel set B ⊂ Rd we
have

Ck(X,B) = NXx1B×Rd(ϕk)

for the kth Lipschitz-Killing curvature form ϕk, k = 0, . . . , d− 1. This leads to the
estimates

Cvar
k (K(1),Rd) = Cvar

k

(

K̃(1),Rd
)

≤ (Lip(fK))d−1||NnorB(0,1−s)|| ||ϕkx(B(0, 1 +R−1)× Rd)||
≤ c(R, s)d−1||NnorB(0,1−s)|| ||ϕkx(B(0, 1 +R−1)× Rd)||

for the mass norm of rectifiable currents and the comass norm of differential forms
restricted to B(0, 1 + R−1)× Rd. (For notations and details on current theory see
Federer [4, Chapter 4].) The minimum over s as above on the right hand side (but
also the expression for fixed s) provides a desired upper bound ck(R) if k ≤ d− 1.
The case k = d is trivial. �
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