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SIMPLE GROUPS ADMIT BEAUVILLE STRUCTURES

ROBERT GURALNICK AND GUNTER MALLE

Dedicated to the memory of Fritz Grunewald

Abstract. We answer a conjecture of Bauer, Catanese and Grunewald showing that all
finite simple groups other than the alternating group of degree 5 admit unmixed Beauville
structures. We also consider an analog of the result for simple algebraic groups which
depends on some upper bounds for character values of regular semisimple elements in
finite groups of Lie type. Finally, we prove that any finite simple group contains two
conjugacy classes C,D such that any pair of elements in C ×D generates the group.

1. Introduction

A Beauville surface is a compact complex surface S which is rigid (i.e., it has no non-
trivial deformations) and satisfies S = (X × Y )/G where X and Y are curves of genus at
least 2 and G is a finite group acting freely on X × Y . See [3] for more background on
the history and importance of Beauville surfaces.

A finite group G is said to admit an unmixed Beauville structure if there exist two
pairs of generators (xi, yi), i = 1, 2, for G such that Σ(x1, y1)∩Σ(x2, y2) = {1}, where for
x, y ∈ G we set

Σ(x, y) =
⋃

i≥0, g∈G

{gxig−1, gyig−1, g(xy)ig−1}.

In particular, if there are two generating pairs (xi, yi) such that the orders of x1, y1 and
x1y1 are relatively coprime to those of x2, y2 and x2y2, thenG admits an unmixed Beauville
structure. By the Riemann existence theorem, each generating pair (xi, yi) of G gives rise
to a Galois action of G on a curve Xi such that Xi → Xi/G ∼= P

1 is branched at 3 points.
The condition that Σ(x1, y1) ∩ Σ(x2, y2) = {1} is precisely the condition that the action
of G on X1 ×X2 is free.

Our main result answers a conjecture of Bauer–Catanese–Grunewald [2, 3] regarding
Beauville structures.

Theorem 1.1. Let G be a finite non-abelian simple group other than A5. Then G admits
an unmixed Beauville structure.

The proof will be given in Sections 2–4.
See Garion–Larsen–Lubotzky [14] for a non-effective proof that this holds for all suf-

ficiently large simple groups of Lie type, and Fuertes–González-Diez [12, Thm. 1] for
the alternating groups. Our proof is independent of the result in [14]. The result for
alternating groups also follows easily by [4].
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In the proof, the well-known character formula for structure constants in finite groups
will be essential: Let G be a finite group, C1, C2, C3 conjugacy classes of G. Then for
fixed x ∈ C1 the number of pairs

n(C1, C2, C3) := |{(y, z) ∈ C2 × C3 | xyz = 1}|
in G is given by the character formula

n(C1, C2, C3) =
|C2| · |C3|

|G|
∑

χ∈Irr(G)

χ(C1)χ(C2)χ(C3)

χ(1)
,

where the sum ranges over the complex irreducible characters of G and χ(Ci) denotes the
value of χ on elements of Ci.

If G is simple of Lie type, the first two conjugacy classes contain regular semisimple
elements and the third class non-identity semisimple elements, then the structure constant
is always non-zero by the nice result of Gow [16, Thm. 2].

We will also use several results about maximal subgroups containing special elements
(mostly based on Guralnick–Penttila–Praeger–Saxl [20]). We also obtain some new results
that may be of independent interest about maximal subgroups of the exceptional groups.
In general, the idea of the proof is fairly simple. We find three conjugacy classes Ci of
our simple group such that there are no maximal subgroups intersecting all three classes
(or at least very few).

These ideas allow us to prove some related results. The first is:

Theorem 1.2. If G is a simply connected simple algebraic group of rank r > 1 over an
algebraically closed field , and Ci, 1 ≤ i ≤ 3, are conjugacy classes of regular semisim-
ple elements of G, then the variety {(x1, x2, x3) | xi ∈ Ci, x1x2x3 = 1} has dimension
2 dimG− 3r. Moreover, there is a unique irreducible component of that dimension.

We prove the result over the algebraic closure of a finite field by using our results on
the finite groups of Lie type. From this, the theorem follows by a simple argument (as
pointed out to us by Michael Larsen). See Theorem 6.11 and Remark 6.14.

The ideas used in the proof also allow us to show (see Section 7):

Theorem 1.3. Let G be a finite simple group. There exist conjugacy classes C and D of
G such that G = 〈c, d〉 for any c ∈ C and d ∈ D.

In [8, Thm. A], finite solvable groups were characterized by the property that for any
pair of conjugacy classes C,D, there exist (c, d) ∈ C ×D with 〈c, d〉 solvable. Using the
reduction to almost simple groups in [8] and a slight generalization the previous result
characterizes any family of finite groups closed under subgroups, quotients and extensions
in a similar fashion. See [9, Thm. C] and Corollary 7.11.

The paper is organized as follows. In the next three sections, we prove Theorem 1.1 for
exceptional groups, classical groups and sporadic groups.

In Section 5, we prove Theorem 5.4 which gives an upper bound for the absolute value
of character values on semisimple elements in groups of Lie type (including disconnected
groups — see [14, Thm. 3] for a different proof with a larger bound). We then use this
result to study the structure of the variety of triples of elements in three semisimple
regular classes with product 1.
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In the final section, we prove a slightly more general version of Theorem 1.3 that allows
one to obtain Corollary 7.11.

2. Exceptional groups

Here, we show Theorem 1.1 for the exceptional groups of Lie type; the Tits group 2F4(2)
′

will be considered in Proposition 4.1. We also exclude the solvable group 2B2(2) and the
non-simple groups with classical socle G2(2) ∼= U3(3).2 and 2G2(3) ∼= L2(8).3 throughout
this section.

First we prove a result on overgroups of certain maximal tori, which may be of inde-
pendent interest. In the case of E7(q) this is due to Weigel [37, 4(i)].

Theorem 2.1. Let G be a simple exceptional group of Lie type different from 3D4(q).
Then there exists a cyclic subgroup T ≤ G such that |T | and the maximal overgroups
M ≥ T in G are as given in Table 1.

Table 1. Maximal overgroups of cyclic subgroups in exceptional groups

G |T | M ≥ T further maximal overgroups
2B2(q

2), q2 ≥ 8 Φ′′
8 T : 4 −

2G2(q
2), q2 ≥ 27 Φ′′

12 T : 6 −
G2(q), 3|q − ǫ q2 + ǫq + 1 SLǫ

3(q).2 q = 4 : J2, G2(2),L2(13)
G2(q), 3|q q2 − q + 1 SU3(q).2 (2×) q = 3 : 2G2(3), 2

3.L3(2),L2(13)
2F4(q

2), q2 ≥ 8 Φ′′
24 T : 12 −

F4(q), 2 6 |q Φ8 Spin9(q) −
F4(q), 2|q Φ8 SO9(q) (2×) −
E6(q) Φ3Φ12/d Φ3.

3D4(q).3/d −
2E6(q) Φ6Φ12/d Φ6.

3D4(q).3/d q = 2 : F4(2), F i22 (3 each)
E7(q) Φ1Φ9/d P, P ′, L.2 −
E8(q) Φ15 T : 30 −

In the table, Φi denotes the ith cyclotomic polynomial evaluated at q, Φ′′
8 = q2−

√
2q+1,

Φ′′
12 = q2 −

√
3q + 1, Φ′′

24 = q4 −
√
2q3 + q2 −

√
2q + 1. For G2(q), ǫ ∈ {±1}. In E7(q),

P, P ′ denote two maximal E6-parabolic subgroups, and L their common Levi factor;
d = gcd(3, q − 1) for E6(q), d = gcd(3, q + 1) for 2E6(q), d = gcd(2, q − 1) for E7(q).

Proof. The existence of maximal tori of the given orders follows from general theory, see
[5, §3.3] for example. The maximal subgroups of the exceptional groups of Lie type of
small rank are known explicitly, see [7, 26, 34]. From those lists, it is straightforward to
check the first five lines of the table.

For E7(q) the claim is in [37, 4(i)]. For F4(2),
2E6(2) and E6(2) the maximal subgroups

are listed in [6]. For the remaining exceptional groups of large rank, we use the results of
Liebeck–Seitz [28]. Let M be a maximal subgroup of G containing T . By [28, Thm. 8],
using Zsigmondy prime divisors of |T |, one finds that either M is reductive of maximal
rank as given in the table, or almost simple. In the latter case, by [28, Table 2] the socle
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S of M is of Lie type in the same characteristic as G. By [28, Thm. 8(VI)] the untwisted
rank of S is at most half the rank of G, and either S is defined over a field of order at
most 9, or it is ǫL3(16) or of rank 1. It ensues that the only possibilities are S = S4(9) or
L2(81) inside F4(3).

So assume G = F4(3). The torus of order q
4+1 is contained in the subsystem subgroup

B4(q) = Spin9(q), for which the 25-dimensional G-module V has two composition factors:
once the 16-dimensional spin-module and once the natural module for SO9(q). Any regular
element x of order q4+1 is conjugate to 8 of its powers, so it fixes a 1-dimensional subspace
of V . First assume that S = S4(9) embeds into G. By the theory of irreducible F̄3Sp4-
modules, the irreducible F3S-modules have dimension 1,10,16,20,25 or bigger. Since S
can have at most one fixed point, this shows that V |S is irreducible (in fact, absolutely
irreducible). But by [29, Cor. 2 (Table 1.3)] there is no such irreducible embedding.

So now consider S = L2(81). Again, it’s easily seen that the irreducible F3S-modules
have dimension 1,8,12,16 or bigger than 25. Here, the 12-dimensional module cannot occur
in the restriction V |S since it is the sum of four Galois conjugates of the 3-dimensional
orthogonal group, and thus the elements of order 41 have a 4-dimensional fixed space.
Furthermore, by [1, Cor. 4.5] there are no non-trivial extensions between the trivial module
and the tensor product of the natural S-module with its double Frobenius twist. Since
V is self-dual, this implies that S has a 1-dimensional fixed space on V , so in fact S is
contained in the stabilizer of this one-space. But the stabilizer of the 1-space centralized
by x is a Spin8(3), whence S has to be contained in a subgroup Spin8 and cannot be
maximal. �

Theorem 2.2. Let G be a simple exceptional group of Lie type different from 3D4(q) and
C the conjugacy class of a generator of the cyclic subgroup given in Table 1. Then there
exist x1, x2, x3 ∈ C with G = 〈x1, x2〉 and x1x2x3 = 1.

Proof. The proof is very similar to that of our result in [19, Prop. 3.4 and 3.5]. We either
compute the structure constant n(C,C, C) in G from the known generic character tables
[15], or estimate it from below using [19, Prop. 3.3] to be at least 1

2
|G|/|T |2.

We illustrate this on one of the more difficult cases, viz. E6(q). All elements of T
whose order does not divide Φ3 are regular. The other non-central ones have centralizer
Φ3.

3D4(q)/d. Thus, by [19, Lemma 3.2] the irreducible characters of H = E6(q)ad not
vanishing on C lie in Lusztig series E(H, s) where s ∈ H∗ = E6(q)sc either is regular of
order dividing Φ3Φ12, or s has centralizer Φ3.

3D4(q), or s ∈ Z(H∗). The characters in the
latter series are the extensions to H of the unipotent characters of G. From the degree
formulas in [5, 13.9] it follows that just 11 non-trivial unipotent characters do not vanish
on C, and their values on xi are ±1. The characters corresponding to s with centralizer
Z = Φ3.

3D4(q) have degree at least |H|p′/|Z|p′ ≥ q20 where p is the defining prime of G.
By [19, Prop. 3.3] values on C are bounded above by 12, and there are at most q2+q such
characters. This gives an upper bound for their contribution to n(C,C, C). Finally, the
characters in E(H, s) with s regular semisimple are irreducible Deligne-Lusztig characters,
of degree |H|p′/|T |p′, which is roughly q32, and there are less than Φ3Φ12/12 of them. In
conclusion, the contribution from the non-linear characters to the structure constant is
(much) less than 1/2|G|/|T |2.



SIMPLE GROUPS ADMIT BEAUVILLE STRUCTURES 5

On the other hand, the maximal overgroups of T are known by Theorem 2.1. Clearly,
any subgroup H contains at most |H| triples from C with fixed first component. So
it suffices to check that the sum of orders of relevant maximal subgroups is less than
1
2
|G|/|T |2. For example in E7(q), the E6-parabolic subgroups have order roughly q107,

while |G|/|T |2 is roughly q119. In all other cases, the maximal subgroups are even smaller.
�

Proposition 2.3. The simple exceptional groups of Lie type admit an unmixed Beauville
structure.

Proof. This is now immediate for all types but 3D4(q). Indeed, for all exceptional simple
groups G we proved in [19, Thm. 1.1] the existence of a conjugacy class C such that G is
generated by x1, y1 ∈ C with (x1y1)

−1 ∈ C. Theorem 2.2 shows that there exists a second
such class C ′, and it is immediate to verify that the element in C ′ have order coprime to
those in C.

Thus, to prove the claim it will suffice to exhibit for G = 3D4(q) a second generating
system (x2, y2) such that the orders of x2, y2, x2y2 are prime to the common order m(G) =
q4 − q2 + 1 of the elements in C.

For 3D4(2) the (7d, 7d, 9a)-structure constant is non-zero, and by [6] no maximal sub-
group contains elements from both classes. So now assume q > 2. We let C1 be a
conjugacy class of regular semisimple elements of order Φ3 inside a maximal torus of or-
der Φ2

3 (such elements exist for all q, see [15]) and C2 a class of regular semisimple elements
of order Φ6Φ2Φ1 (such elements exist when q 6= 2).

By [25] the only maximal subgroups containing an element of order Φ3 with centralizer
of order dividing Φ2

3 are G2(q), PGL3(q), (Φ3 ◦ SL3(q)).2d (where d = gcd(3, q2 + q + 1))
and the torus normalizer Φ2

3.SL2(3). Now note that since q > 2 none of these contains
elements of order Φ6Φ2Φ1 (by Zsigmondy’s theorem for the latter three groups, and since
elements of order Φ6 in the first subgroup are self-centralizing). Thus any pair of elements
(x1, x2) ∈ C1×C2 generates. Using the result of Gow [16, Thm. 2] or the generic character
table one sees that there exist such pairs with product in any given semisimple conjugacy
class. �

Alternatively, it would have been possible to choose two classes of regular semisimple
elements whose order is divisible by large Zsigmondy primes, and a further class containing
the product of a long root element with a semisimple element of order divisible by a third
Zsigmondy prime, in such a way that only the trivial character has non-zero value on all
three classes. Then the character formula shows that the structure constant n(C1, C2, C3)
equals |C2||C3|/|G| and in particular does not vanish.

From the enumeration of subgroups containing long root elements by Cooperstein it
would then be easy to see that no triple in (C1, C2, C3) lies in a proper subgroup of G.
This approach has been used in [19, Thm. 8.6] to show that E8(q) satisfies Theorem 1.1.

3. Classical groups

The groups L2(q), q ≥ 7 were shown to admit a Beauville structure in [2].
Before treating the generic case it will be convenient to consider some linear, unitary

and symplectic groups of small rank.
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Proposition 3.1. Theorem 1.1 holds for the simple groups L3(q), U3(q) and S4(q), where
q ≥ 3.

Proof. Let first G = L3(q). Since L3(2) ∼= L2(7) we may assume that q ≥ 3. In [19,
Prop. 3.13] we showed that G can be generated by a pair of elements of order Φ3/d, with
product of the same order, where d = gcd(3, q − 1). Let C1 be the conjugacy class of a
regular element x of order (q2 − 1)/d. Then the only maximal subgroups containing x
are maximal parabolic, or three classes of subgroups A6 when q = 4. Let C2 consist of
regular unipotent elements. Then the (C1, C2, C2)-structure constant is non-zero in G by
[15]. Let P be a maximal parabolic subgroup. Then its derived subgroup contains all
unipotent elements, but no element of order (q2 − 1)/d. Thus, P cannot contain triples
from C1×C2×C2 with product 1. For L3(4) it is easy to check that the structure constant
in G is larger than those in the A6-subgroups.

Similarly, we showed in [19, Prop. 3.11] that G = U3(q) with q ≥ 3 can be generated
by elements of order Φ6/d, where d = gcd(3, q + 1). Again, let C1 be a class of elements
of order (q2 − 1)/d. The only maximal subgroups containing such elements are the Borel
subgroups and the image in G of a subgroup GU2(q) in SU3(q). Moreover, for q = 3, 4, 5
there is an additional class of subgroups 42.S3, 5

2.S3 respectively three classes of M10.
Choosing C2 to consist of regular unipotent elements, one checks that the (C1, C2, C2)-

structure constant is non-zero [15]. By quotienting out the normal closure of a Sylow
p-subgroup we see that such triples cannot lie in either of the two generic maximal sub-
groups. For q = 3, 4, 5 direct computation in G shows that there exist generating triples.

For G = S4(q), q ≥ 3 we produced in [19, Prop. 3.8] a generating triple with elements of
order (q2+1)/d, where d = gcd(2, q−1). A direct computation shows that S4(3) contains
generating triples with orders (9, 9, 8), and these are prime to (32 + 1)/2 = 5. For q ≥ 4
let C1 denote a class of regular elements of order (q + 1)/d inside a maximal torus of
order (q+ 1)2/d, and C2 a class of regular unipotent elements. It follows from the known
character table [36] that n(C1, C2, C2) >

1
4
q6. On the other hand, by [23, Thm. 5.6] for

example, the only maximal subgroups of G containing elements from class C1 are the
normalizers of subgroups SO+

4 (q) and O3(q)×O−
2 (q). In the latter, any unipotent element

is centralized by a 1-dimensional torus, so it does not contain regular unipotent elements.
The structure constant in H = SO+

4 (q) can be estimated from above by the number of
regular unipotent elements of G contained in H , which is less than 2q4. So there exist
generating triples. �

Table 2. Maximal tori in some linear and unitary groups

G [19] T1 T2 T3

SL4(q) q3 − 1 (q2 + 1)(q + 1) (q2 − 1)(q + 1) (q2 − 1)(q − 1)
SU4(q) q3 + 1 (q2 + 1)(q − 1) (q2 − 1)(q − 1) (q2 − 1)(q + 1)
SU5(q) q5 + 1 q4 − 1 (q3 + 1)(q − 1) (q3 + 1)(q + 1)
SU6(q) q5 + 1 Φ1Φ3Φ6 Φ2

1Φ2Φ4 Φ2Φ
2
6

Proposition 3.2. Theorem 1.1 holds for the simple groups L4(q), U4(q), U5(q) and U6(q).
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Proof. For G = SL4(q) we may assume that q > 2 since SL4(2) ∼= A8 is an alternating
group. Let Ci be the class of a regular semisimple element xi in a maximal torus Ti as
in Table 2, i = 1, 2, 3. Such classes exist whenever q ≥ 4. Then x1 acts irreducibly, and
there exists a Zsigmondy prime for o(x1), so the maximal subgroups containing a triple
(x1, x2, x3) ∈ C1 × C2 × C3 are described in [19, Thm. 2.2]. The only ones containing
Singer cycles are the normalizers of GL2(q

2) ∩ SL4(q) and GU2(q
2) ∩ SL4(q). But in the

first group, any semisimple element has centralizer order divisible by either (q4−1)/(q−1)
or by (q+1)(q2− 1), while x3 has only centralizer order (q− 1)(q2 − 1). Similarly we can
exclude the second case using the order of x2. Thus any triple (x1, x2, x3) generates G.
By [16, Thm. 2] there exist such triples with product 1.

The element orders have greatest common divisor dividing q−1 with the element order
chosen in [19, Prop. 3.13]. But elements of order q−1 in the torus of order q3−1 of SL4(q)
have centralizer GL3(q) and hence three equal eigenvalues, while the classes C2 and C3

can be chosen such that their powers of order q− 1 have two eigenvalues of multiplicity 2
each. So the Beauville property is satisfied, and we conclude by passing to the central
quotient G/Z(G) = L4(q). When q = 3 then explicit computation shows that L4(3) has
generating triples of order 5.

For G = SU4(q) regular elements as indicated in Table 2 exist whenever q ≥ 4. The
argument is then completely analogous; again the only subgroup possibly containing ele-
ments from C1 is the normalizer of GL2(q

2)∩SU4(q), which can be excluded as before. The
group SU4(2) ∼= S4(3) was treated in Proposition 3.1, the group SU4(3) has generating
triples of order 20.

For G = SU5(q) choose Ci to contain regular elements from the tori Ti in Table 2,
which exist whenever q ≥ 3. Here the only maximal subgroups of order divisible by o(xi),
i = 1, 2, 3, are GU4(q). But there the centralizer order of a semisimple element of order
q3 + 1 is divisible by (q3 + 1)(q + 1), while the element x3 has smaller centralizer order
(q3 + 1)(q − 1). We now conclude as before. The group SU5(2) has generating triples of
order 15.

For G = SU6(q) we again choose Ci to contain regular elements from the tori Ti in
Table 2, which exist whenever q ≥ 3. Here the only maximal subgroups of order divisible
by o(xi), i = 1, 2, 3, are the normalizers of GL3(q

2) ∩ SU6(q). But there the centralizer
order of a semisimple element of order q3 + 1 is divisible by (q6 − 1)/(q + 1), while the
element x3 has centralizer order (q

3+1)2/(q+1). We now conclude as before. The group
SU6(2) has generating triples of order 10. Now elements of order q + 1 in the torus of
order q5 + 1 of SU6(q) have five equal eigenvalues, while we can arrange so that elements
of order q + 1 in the cyclic subgroup generated by x ∈ Ci, i = 2, 3, do not have this
property, so again the Beauville property is satisfied. �

For the remaining classical groups, we choose conjugacy classes C1, C2 of regular
semisimple elements of orders as given in Table 3. Here kǫ is shorthand for qk − ǫ1,
and kǫ ⊕ (n− k)δ denotes an element which acts as kǫ on a subspace of dimension k and
as (n − k)δ on a complementary subspace of dimension n − k in the linear and unitary
case, respectively twice the dimensions in the symplectic and orthogonal cases. We have
also indicated the orders of elements in the generating triple constructed in [19]. It is
straightforward to check that the cyclic subgroups chosen here do not intersect those
from [19].
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Table 3. Elements in classical groups

G [19] x1 x2

SLn(q) n ≥ 5 odd n+ (n− 1)+ (n− 2)+ ⊕ 2+

n ≥ 6 even (n− 1)+ (n− 2)+ (n− 3)+ ⊕ 3+

SUn(q) n ≥ 7 odd n− (n− 1)+ (n− 4)− ⊕ 4+

n ≥ 8 even (n− 1)− (n− 3)− ⊕ 3− (n− 5)− ⊕ 5−

Spin7(q) 3− 3+ 2− ⊕ 1+

Spin2n+1(q) n ≥ 4 n− (n− 2)− ⊕ 2− (n− 3)− ⊕ 3+

Sp2n(q) n ≥ 3 n− n+ (n− 1)− ⊕ 1−

Spin+
8 (q) 3− 4+ 4+

Spin+
10(q) 4− 3− ⊕ 2− 5+

Spin+
2n(q) n ≥ 6 (n− 1)− (n− 2)− ⊕ 2− (n− 3)− ⊕ 3−

Spin−
2n(q), n ≥ 4 n− (n− 1)− (n− 3)− ⊕ 3+

In order to verify generation in classical groups, the following result will be useful and
may be of independent interest. It follows by the main result of [20] and inspection of the
tables in that paper.

Theorem 3.3. Let G = GL(V ) = GLn(q) where q = pa with p prime. Assume that
n > 4. Suppose that H is an irreducible subgroup of G containing elements of orders ri,
i = 1, 2 where ri is a Zsigmondy prime divisor of qei − 1 where e1 > e2 > n/2. Then one
of the following holds:

(1) H contains SL(V ), SU(V ), Ω(±)(V ) or Sp(V );
(2) H preserves an extension field structure on V (of degree f dividing gcd(n, e1, e2));
(3) H normalizes GLn(p

b) for some b properly dividing a;
(4) H ≤ GL1(q) ≀Sn is imprimitive;
(5) H normalizes An+1+δ where δ = 1 if gcd(p, n) 6= 1 and 0 otherwise;
(6) n = 5, H =M11, (e1, e2) = (5, 4) and q = 3;
(7) n = 6, H = 2.M12, (e1, e2) = (5, 4) and q = 3;
(8) n = 6 or 7, (e1, e2) = (6, 4) and q is prime; or
(9) n = 11, H =M23 or M24, (e1, e2) = (11, 10) and q = 2;

We can get rid of some of these examples with a stronger hypothesis. This follows by
the previous result and the computation of Φ∗

ei
(q), using [19, Lemma 2.1], for example:

Corollary 3.4. Let G = GL(V ) = GLn(q) where q = pa with p prime. Assume that
n > 4. Suppose that H is an irreducible subgroup of G containing elements of orders
Φ∗

ei
(q) > 1, i = 1, 2 where e1 > e2 > n/2. Then one of the following holds:

(1) H contains SL(V ), SU(V ), Ω(±)(V ) or Sp(V );
(2) H preserves an extension field structure on V (of degree f dividing gcd(n, e1, e2));
(3) H normalizes GLn(p

b) for some b properly dividing a;
(4) n = 6, H = 2.L3(4), (e1, e2) = (6, 4) and q = 3;
(5) n = 7, H = Sp6(2), (e1, e2) = (6, 4) and q = 3; or



SIMPLE GROUPS ADMIT BEAUVILLE STRUCTURES 9

(6) H normalizes An+1+δ where δ = 1 if gcd(p, n) 6= 1 and 0 otherwise, or H ≤
GL1(q) ≀Sn is imprimitive, and either
(a) q = 2, (e1, e2) ∈ {(12, 10), (18, 10), (18, 12)} and e1 ≤ n < 2e2; or
(b) q = 3, (e1, e2) = (6, 4) and n = 6, 7.

Proposition 3.5. Theorem 1.1 holds for the linear groups Ln(q), n ≥ 5.

Proof. We argue in G = SLn(q). We choose conjugacy classes C1, C2 in G of regular
semisimple elements xi of orders as given in Table 3, and we let C3 be any class of
semisimple elements of order prime to qn − 1 when n is odd, respectively to qn−1 − 1
when n is even. First assume that Zsigmondy primes ri exist for the factors Φei(q) of
o(xi) with ei > n/2, i = 1, 2. Then under each xi ∈ Ci, i = 1, 2, the natural module
of G splits into two irreducible submodules of incompatible dimensions, so the subgroup
H := 〈x1, x2〉 generated by any pair of elements xi ∈ Ci is irreducible. We claim that
H = G. Otherwise, when n 6= 6 we are in one of the cases of Corollary 3.4. Now note
that H cannot be an extension field subgroup since gcd(e1, e2) = 1, and it can’t be a
subfield subgroup by looking at a suitable Zsigmondy prime divisor of o(xi). Also, no
proper classical subgroup has order divisible by both o(x1) and o(x2). Since e2 = e1 − 1,
we’re not in cases (4)–(6).

When n = 6 then e2 = n/2, so Corollary 3.4 is not applicable. Still, by [19, Lemma 2.1
and Thm. 2.2] we get the same conclusion as before unless (n, q) = (6, 2). In the latter
case replace the second class by an irreducible element of order 63 and let C3 consist
of elements of order 7 with a 3-dimensional fixed space. By inspection of the possible
overgroups in [20] the xi generate. In the Zsigmondy exception (n, q) = (7, 2), replace C1

by the class of a regular element of type 4+ ⊕ 3+; when (n, q) = (8, 2), replace it by the
class of a Singer cycle, of order (q8 − 1)/(q − 1). Then the previous arguments apply.

By [16, Thm. 2] there exists x3 ∈ C3 with x1x2x3 = 1. Now consider the image of this
triple in the simple group Ln(q). When n is odd, the element orders are coprime to that
for the generating triple exhibited in [19, Prop. 3.13]; when n is even, the gcd divides q−1.
But elements of that order in the torus of order qn−1−1 have centralizer GLn−1(q), hence
n − 1 equal eigenvalues, while C1, C2 can be chosen such that their non-trivial powers
avoid this property. This proves the existence of a Beauville structure. �

Proposition 3.6. Theorem 1.1 holds for the unitary groups Un(q), n ≥ 7.

Proof. As before, we work in G = SUn(q) and let C1, C2 contain regular semisimple
elements x1, x2 of the orders indicated in Table 3. For n = 8 replace C2 by a class
of regular semisimple elements of order (q8 − 1)/(q + 1). For n = 7 let C3 be a class of
regular semisimple elements of type 5−⊕2+, and otherwise let it be any class of semisimple
elements of order prime to qn + 1 when n is odd, respectively to qn−1 + 1 when n is even.
Then H = 〈x1, x2, x3〉, with xi ∈ Ci, acts irreducibly on the natural module for G. Let
ei be maximal with the property that o(xi) has a corresponding Zsigmondy prime. Then
ei > n for at least one i. Thus, if H is proper then by [19, Thm. 2.2] either the Zsigmondy
primes for both factors are small or the possible overgroups are classical, extension or
subfield groups. The latter three classes can be excluded by using the fact that we have
two distinct Zsigmondy primes. The first situation only arises when (n, q) ∈ {(7, 2), (8, 2)}
by [19, Lemma 2.1], but the conclusion still holds by [20].
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So H = G in all cases. Now the existence of triples (x1, x2, x3) ∈ C1 × C2 × C3 with
product 1 follows from [16]. Passing to the quotient Un(q) we obtain the desired result,
noting again that, for n even, the elements x1, x2 can be chosen such that their powers
of order q + 1 are not centralized by a torus of order qn−1 + 1 and hence generate cyclic
subgroups disjoint from those in [19, Prop. 3.12]. �

Proposition 3.7. Theorem 1.1 holds for the symplectic groups S2n(q), n ≥ 3, q odd.

Proof. Let G = Sp2n(q), C1 and C2 conjugacy classes of regular semisimple elements as
indicated in Table 3 and C3 any class of semisimple elements of order prime to (qn+1)/2.
Then for any pair (x1, x2) ∈ C1 × C2 of elements, the subgroup H := 〈x1, x2〉 acts
irreducibly on the natural module. If H is proper, then by [19, Lemma 2.1 and Thm. 2.2],
either (n, q) = (4, 3) or H is contained in an extension or subfield subgroup. The latter
cases do not occur by consideration of suitable Zsigmondy prime divisors. When (n, q) =
(4, 3), we choose C3 to be a class of elements of order divisible by q3 − 1; its Zsigmondy
prime 13 gives no exception to [19, Thm. 2.2]. So we have H = G in all cases. By [16]
there exist triples from the chosen conjugacy classes with product 1.

In [19, Prop. 3.8] we produced a generating triple for S2n(q) consisting of elements of
order (qn + 1)/2. This is coprime to the orders of x1, x2 when n is even. For n odd, the
powers of x2 of order q + 1 have a fixed space of codimension 2, while this is not true for
the elements in loc. cit., so the proof is complete. �

Proposition 3.8. Theorem 1.1 holds for the orthogonal groups O2n+1(q), n ≥ 3.

Proof. Let G = Spin2n+1(q), C1, C2 conjugacy classes in G of regular semisimple elements
of orders as given in Table 3 and C3 any class of semisimple elements of order prime to
qn + 1, respectively a class of elements of order qn−1 + 1 when 4 ≤ n ≤ 6. For any pair
(x1, x2) ∈ C1 × C2 of elements, the subgroup H := 〈x1, x2〉 either acts irreducibly on the
natural module, or it has a composition factor of dimension 2n. In the latter case, H is
contained in the stabilizer of an anisotropic line, so in a 2n-dimensional orthogonal group.
But the first element does not lie in an orthogonal group of minus type, the second not
in one of plus type, unless n = 3 and q ≤ 4. We return to these cases later. So otherwise
H is irreducible. Now note that for (n, q) 6= (4, 2), one of the two (respectively three
when n = 4, 5, 6) element orders is divisible by a Zsigmondy prime divisor of qe − 1 with
2e > 2n+1. Moreover, for n ≥ 5 there are even two different such e. If H is proper, then
by [19, Lemma 2.1 and Thm. 2.2] respectively Corollary 3.4 either H is contained in an
extension or subfield subgroup or we have (n, q) ∈ {(3, 2), (4, 2), (4, 3), (8, 2)}. Since none
of the groups in Corollary 3.4(6)(a) contains elements of order 212 − 1, (n, q) = (8, 2) is
no exception. The other three groups will be considered later.

In [19, Prop. 3.8] we produced a generating triple for G = O2n+1(q) consisting of
elements of order (qn + 1)/d, d = gcd(2, q − 1). It is not difficult to arrange our choice
of the xi’s so that no power of elements from Ci is conjugate to a power of an element of
order (qn + 1)/d.

Finally, consider O7(q) with q ≤ 4 and O9(q) with q ≤ 3. Explicit computation shows
that O7(2) = S6(2) contains generating triples of order 7, O7(3) contains generating
triples of order 13, and O7(4) = S6(4) contains generating triples of order 17. The group
O9(2) = S8(2) contains generating triples of order 7, O9(3) contains generating triples of
order 13. �



SIMPLE GROUPS ADMIT BEAUVILLE STRUCTURES 11

Proposition 3.9. Theorems 1.1 holds for the orthogonal groups O−
2n(q), n ≥ 4.

Proof. Let G = Ω−
2n(q). Let C1, C2 consist of regular semisimple elements of types as in

Table 3 and C3 any class of semisimple elements of order prime to qn + 1. Then any pair
of elements xi ∈ Ci, i = 1, 2, necessarily generates an irreducible subgroup H := 〈x1, x2〉
of G, unless possibly when n = 4. But in the latter case it is easy to see that no reducible
subgroup has order divisible by Zsigmondy primes for q3 + 1 and for q3 − 1, which both
exist when q 6= 2. We exclude (n, q) = (4, 2) for the moment. Otherwise, at least one of
the two element orders o(xi) is divisible by a Zsigmondy prime divisor of qe−1 with e > n.
Moreover, for n ≥ 7 there are even two different such e. Thus by [19, Lemma 2.1 and
Thm. 2.2] and Corollary 3.4 we have H = G unless (n, q) ∈ {(5, 2), (6, 2), (4, 4)}. In the
latter cases, let C3 contain elements of order divisible by 25 − 1 when n = 5, 6, by 42 + 1
when (n, q) = (4, 4), then we still have generation for any triple (x1, x2, x3) ∈ C1×C2×C3.
By [16], we can find xi ∈ Ci with product 1.

The previously excluded group O−
8 (2) is generated by a triple from (21a, 21a, 30a).

Combining this with [19, Prop. 3.6] the claim follows as in the previous cases. �

Proposition 3.10. Theorem 1.1 holds for the orthogonal groups O+
2n(q), n ≥ 4.

Proof. We argue in G = Ω+
2n(q). First assume that n > 6. Let C1 consist of elements with

precisely two invariant subspaces of dimensions 4 and 2n− 4 and C2 consist of elements
with precisely two invariant subspaces of dimensions 6 and 2n−6. Moreover, assume that
the orders of the elements in Ci are divisible by all Zsigmondy prime divisors of q2n−4− 1
and q2n−6 − 1, respectively. Let C3 be any class of semisimple elements of order prime
to qn−1 + 1. By Corollary 3.4, there are no maximal subgroups containing elements from
both C1 and C2. By [16], we can choose xi ∈ Ci with product 1. Argue as usual to
complete the proof.

If n = 6, let C1 and C2 be as above (but ignore the condition on the Zsigmondy prime
divisors on C2). Note that the two invariant subspaces may either both be of − type
or both be totally singular. Let C2 consist of elements of the first type and C3 of the
second. Now we apply [19, Thm. 2.2] instead and argue the same way as long as there is
a Zsigmondy prime divisor r of q8 − 1 with r > 17. This only fails for q = 2. By [20],
it is still the case that there are no maximal subgroups intersecting all the Ci. Argue as
above to complete the proof.

If n = 5, let C1 be as above. Let C2 consist of elements of order (q5 − 1)/(2, q − 1)
and C3 any class of semisimple elements of order prime to q4 + 1. Apply [19, Thm. 2.2]
to conclude that there are no maximal subgroups intersecting both C1 and C2 unless
possibly q ≤ 5. If q = 5, inspection of the maximal subgroups shows the result is still
true. By explicit computation the group O+

10(2) contains generating triples of elements
of order 31, the group O+

10(3) has generating triples of order 121, the group O+
10(4) has

generating triples of order 341. Argue as above to complete the proof.
If n = 4 and q > 2, let C1 be a conjugacy class of regular semisimple elements of order

(q4 − 1)/(2, q − 1). Let C2 and C3 be the twists of C1 by the triality automorphism and
its square. By [24], one sees that no maximal subgroup of O+

8 (q) intersects each of the Ci.
By [16], there exist xi ∈ Ci with product 1 and they generate by the previous remarks.

By explicit computation the group O+
8 (2) contains generating triples of elements of

order 7.
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In [19], we showed that there are generating triples of elements of O+
2n(q) in a class C of

regular elements of order (qn−1 + 1)/d, d = gcd(4, qn−1 + 1), in a maximal torus of order
(qn−1 + 1)(q + 1)/d. Comparing the fixed spaces of elements in that torus with those in
classes C1, C2 we conclude that the required intersection property holds. �

4. Alternating and sporadic groups

The existence of unmixed Beauville structures for all alternating groups An with n ≥ 6
was proved by Fuertes–González-Diez [12, Thm. 1] after asymptotic results had been
obtained by Bauer–Catanese–Grunewald [2]. So the proof of Theorem 1.1 is complete
once we’ve shown the following:

Proposition 4.1. The sporadic simple groups and the Tits group admit an unmixed
Beauville structure.

Table 4. Conjugacy classes for sporadic groups

G C1 C2 G C1 C2 G C1 C2

M11 5a 8a M24 11a 21a HN 22a 35a
M12 3b 10a McL 9a 14a Ly 31a 37a
J1 7a 11a He 14c 15a Th 13a 31a
M22 7a 8a Ru 16a 26a F i23 13a 23a
J2 8a 15a Suz 11a 21a Co1 23a 33a
M23 11a 14a ON 19a 16a J4 31a 37a
2F4(2)

′ 10a 16a Co3 21a 22a F i′24 23a 33a
HS 7a 20a Co2 11a 28a B 23a 31a
J3 12a 17a F i22 21a 22a M 47a 59a

Proof. In Table 4 we give for each sporadic group G two conjugacy classes C1, C2 such
that the structure constant n(C1, C1, C2) is non-zero and moreover no maximal subgroup
of G has non-trivial intersection with both classes. This is easily checked from the known
lists of maximal subgroups, see [6] respectively the Atlas homepage. For the group J2 we
used explicit computation in the 6-dimensional representation over F4 and for 2F4(2)

′ in
the permutation representation on 1600 points to check for generating triples. Since the
element orders in the triples in Table 4 are prime to those in [19, Prop. 4.5], there do exist
corresponding unmixed Beauville structures. �

5. Bounds on character values

We will prove the following result which may be of independent interest.
LetW be an irreducible Weyl group and ρ a graph automorphism of its Dynkin diagram.

Then there exists a constant C = C(W, ρ) with the following property: whenever G is
a connected reductive algebraic group with Weyl group W = W (G) and F : G → G

a Steinberg map inducing the graph automorphism ρ on W , with group of fixed points
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G := GF , then for every regular semisimple element s ∈ G and any irreducible character
χ ∈ Irr(G) we have |χ(s)| < C.

In fact we’ll show a version which allows for G to be disconnected. Since we’ll need
some ingredients which are not yet available in the literature, we start by setting up some
notation first.

Let G be an algebraic group with connected component of the identity G◦. We assume
throughout that G/G◦ is cyclic and that all elements of G/G◦ are semisimple. Let
F : G → G be a Steinberg map on G with trivial action on G/G◦ and G := GF ,
G◦ := (G◦)F . For T◦ an F -stable maximal torus of G◦ contained in a not necessarily
F -stable Borel subgroup B◦ of G◦ we set B := NG(B

◦) and T := NB(T
◦). Following [11]

we say that T is a maximal “torus” of G (note that this is not in general a torus!). Since
all Borel subgroups of G◦ and all maximal tori of B◦ are conjugate in G◦ respectively
B◦ we have T/T◦ ∼= B/B◦ ∼= G/G◦. Let g ∈ T generate G/G◦. Since by assumption
g−1F (g) ∈ T◦ and T◦ is connected, there exists by the theorem of Lang–Steinberg an
element h ∈ T◦ such that g−1F (g) = h−1F (h), so that σ := gh−1 ∈ T is F -stable and
generates G/G◦, hence G/G◦.

For U ≤ B the unipotent radical of B, define Y := Y (UF ) := {x ∈ G | x−1F (x) ∈ U}.
This variety has commuting actions of G from the left and T := TF from the right by
multiplication, so its ℓ-adic cohomology groups with compact support H i

c(Y ) are G× T -
bimodules. For θ ∈ Irr(T ) we let H i

c(Y )θ denote the θ-isotypic component for the right
T -action. Then the generalized character

RT,θ(g) := tr (g|H∗
c (Y )θ) (g ∈ G)

of G constitutes an analogue of Deligne–Lusztig induction for the disconnected group G

which has been studied by Digne–Michel [11]. We’ll need the following property:

Proposition 5.1 (Disjointness). Let T ≤ G be a maximal “torus” of G, T := TF and
θi ∈ Irr(T ), i = 1, 2. If the GF -modules RT,θ1, RT,θ2 have an irreducible constituent in
common, then there exists g ∈ NG(T

◦)F such that θg1 = θ2.

Proof. When G is connected, this is well-known [10, Prop. 13.3]. We reduce to that case.
By construction of σ, the set of powers S := {σj | 0 ≤ j ≤ [G : G◦] − 1} ⊂ TF forms a
system of coset representatives of G/G◦.

The Deligne–Lusztig variety Y then decomposes into a disjoint union of open and closed
subsets

Y =
∐

g∈S

Yg, where Yg := {gx ∈ gG◦ | x−1F (x) ∈ U},

so
H i

c(Y ) =
⊕

g∈S

H i
c(Yg)

by [10, Prop. 10.7(ii)]. Note that Yg is isomorphic to Y1 via

Y1 −→ Yg, x 7→ gx.

Here, Y1 is just the ordinary Deligne-Lusztig variety for the torus T ◦ in the connected
group G◦. Moreover, h ∈ G◦ acts on Yg on the left as hg does on Y1, and the right
T ◦-actions on Y1, Yg commute with the above isomorphism.
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If H i
c(Y )θ1 and Hj

c (Y )θ2 have a common GF -constituent, then clearly there is also a
common G◦-constituent of H i

c(Yg)θ1 and Hj
c (Yh)θ2 for some g, h ∈ S. But then by [10,

Prop. 13.3] the pairs (T◦, θg1), (T
◦, θh2 ) are geometrically G-conjugate, where we identify

θi with its restriction to T ◦. This is the claim. �

For T ≤ G a maximal torus, let us set T ◦
0 := C◦

T
(σ)F and G0 := C◦

G
(σ)F . Note that

when G = G◦ is connected then T ◦
0 = T and G0 = G.

Definition 5.2. A semisimple element s ∈ G is called regular if it lies in a unique
maximal “torus” of G, which happens if and only if its connected centralizer is a (true)
torus of G◦ (which, in general, will not be a maximal torus of G◦.)

Lemma 5.3. Let s ∈ G◦σ be regular semisimple in the maximal “torus” T, so C :=
CG(s) = CT(s) = CT(σ). Then the characteristic function of the G-conjugacy class of s
is given by

ψ =
1

|C|
∑

θ∈T̂

θ(s−1)RT,θ

where T̂ := Irr(T ).

Proof. In the connected case, this is just [5, Prop. 7.5.5]. We mimic the proof given there.
Let ψ′ denote the characteristic function of [s]. The claim follows if we can show that
〈ψ′, ψ′〉 = 〈ψ, ψ′〉 = 〈ψ, ψ〉. Clearly, 〈ψ′, ψ′〉 = 1/|C|. Next.

〈ψ, ψ′〉 = 1

|G| |C|
∑

θ∈T̂

∑

g∈[s]

θ(s−1)RT,θ(g) =
1

|C|2
∑

θ∈T̂

θ(s−1)RT,θ(s).

In our situation where s is semisimple regular, contained in the unique maximal “torus”
T, the character formula for RT,θ [11, Prop. 2.6] takes the following form:

RT,θ(s) =
1

|T | |C◦
G(s)|

∑

{h∈G|s∈Th}

|C◦
T (s)| θ(sh) =

1

|T |
∑

h∈NG(T )

θ(sh).

So

〈ψ, ψ′〉 = 1

|C|2 |T |
∑

h∈NG(T )

∑

θ∈T̂

θ(s−1)θ(sh) =
1

|C|2 |T |
∑

h∈NG(T )

sh∼s in T̂

|T̂ | = 1

|C|

by the orthogonality relations for T̂ . Finally

〈ψ, ψ〉 = 1

|C|2
∑

θ,θ′∈T̂

θ(s−1)θ′(s) 〈RT,θ, RT,θ′〉.

But by [11, Prop. 4.8] we have

〈RT,θ, RT,θ′〉 =
1

|T ◦
0 |

|{g ∈ NG0(T ) | gθ = θ′}|,
so

〈ψ, ψ〉 = 1

|C|2 |T0|
∑

g∈NG0
(T )

∑

θ∈T̂

θ(s−1) gθ(s) =
1

|C|2 |T0|
∑

g∈NG0
(T )

sg∼s

|C| = 1

|C| .

�
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Remember our standing assumptions that G/G◦ is cyclic and consists of semisimple
elements and F acts trivially on G/G◦. We now give a proof for an explicit bound on
character values on regular semisimple elements (the key argument is taken from Malle
[33, §5] where the connected case is treated):

Theorem 5.4. Let G = GF as above, s ∈ G◦σ regular semisimple, lying in the (unique)
maximal “torus” T of G, and χ ∈ Irr(G). Then

|χ(s)| ≤ |WG(T
◦)| ≤ |W (G)|,

where WG(T
◦) := NG(T

◦)/T◦ and W (G) := NG(T
◦)/T◦.

Proof. Let C := CG(s). If ψ denotes the characteristic function of the G-conjugacy class
[s] of s then

〈χ, ψ〉 = 1

|G|
∑

g∈G

χ(g)ψ(g−1) = χ(s) |[s]|/|G| = χ(s)/|C|,

so χ(s) = |C|〈χ, ψ〉. With Lemma 5.3 this gives

χ(s) = |C|〈χ, ψ〉 =
∑

θ∈T̂

θ(s−1)〈χ,RT,θ〉.

If 〈χ,RT,θ〉 = 0 for all θ then χ(s) = 0 and the claim holds. So assume that there exists θ
with 〈χ,RT,θ〉 6= 0. Now, if θ′ ∈ Irr(T ) is such that (T, θ) is not geometrically G-conjugate
to (T, θ′), then RT,θ, RT,θ′ do not have any constituent in common by Proposition 5.1.

Thus there is at most one NG(T
◦)-orbit Θ(χ) on T̂ such that χ occurs in RT,θ for some

θ ∈ Θ(χ). Also, as χ is irreducible,

〈χ,RT,θ〉 ≤ 〈RT,θ, RT,θ〉
1
2 = |W0(T, θ)|

1
2

(the last equality by [11, Prop. 4.8]), where

W0(T, θ) := {w ∈ W0(T) | θw = θ}, W0(T) := NG0(T)/T ◦
0 .

Moreover, the orbit Θ(χ) has length [NG(T
◦) : NG(T

◦, θ)] = [WG(T
◦) : WG(T

◦, θ)], and

|θ(s)| ≤ θ(1) ≤ [T : T ◦| 12 = [G : G◦]
1
2 , so that finally

|χ(s)| = |C| · |〈χ, ψ〉| = |
∑

θ∈Θ(χ)

θ(s)−1〈χ,RT,θ〉|

≤
∑

θ∈Θ(χ)

|θ(s)−1||W0(T, θ)|
1
2 ≤ |Θ(χ)| · [G : G◦]

1
2 |W0(T, θ)|

1
2

= |WG(T
◦)| · |WG(T, θ)|

1
2/WG(T

◦, θ) ≤ |WG(T
◦)|

for any θ ∈ Θ(χ). �

The second to last term in the previous inequality is even slightly better than our claim
whenever θ is not in general position (i.e., when χ is not an irreducible Deligne-Lusztig
character ±RT,θ).

Remark 5.5. Assume that G = G◦ is connected.

(a) If χ is unipotent, so contained in some RT,1, then W (T, θ) = WG(T) and we obtain

the bound |WG(T)| 12 .
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(b) Since there are roughly |T |/|WG(T)| characters not vanishing on a regular element

t ∈ T , and |CG(t)| = |T |, one might expect an average character value of |WG(T)| 12
on t. The example of G = SL2(q) shows that character values will be larger than this:
there exist irreducible characters which on regular semisimple elements of order q+1
take value ζ + ζ−1, ζ a q + 1st root of unity. This has absolute value arbitrarily close
to 2 = |WG(T)|.

(c) See also [14, Thm. 3] for an elementary proof of a result that still gives an explicit
(but worse) bound.

For truly disconnected groups we expect that the correct upper bound should be
|W0(T)|; this would follow from the above proof once a stronger disjointness statement
than the one in Proposition 5.1 has been established, which compares characters of T
instead of their restrictions to T ◦.

6. Algebraic Groups

We now consider triples in simple algebraic groups. For notational convenience, we
now use standard font letters G to denote algebraic groups, and G(q) for the fixed groups
under Frobenius endomorphisms with respect to an Fq-rational structure.

Fix a prime p and let k be the algebraic closure of Fp. Let G be a simple algebraic
group over k. Of course, since G is locally finite, we cannot expect to generate G with a
finite number of elements. The replacement for generation is the property of generating
the group G(q) over a finite field Fq for arbitrarily large q.

We do have to exclude G = SL2. In this case, there is a strong rigidity result (see e.g.
[32]) and the conclusion of Theorem 6.11 fails.

We first need a result about maximal subgroups of simple algebraic groups.

Lemma 6.1. Let G be a simple (simply connected) algebraic group over k. There exist
positive integers m and m′ (depending only upon the rank of the group) such that for any
proper closed subgroup H of G one of the following holds:

(1) H is contained in a (maximal) positive dimensional subgroup;
(2) H is not contained in any proper positive dimensional closed subgroup and |H| ≤

m; or
(3) H contains G(q) for some prime power q > m′ (including the possibility of a

twisted form).

Moreover, there are only finitely many conjugacy classes of subgroups in (1) or (2).

Proof. If G is classical, this follows from Aschbacher’s theorem on maximal subgroups
and representation theory. If G is exceptional, then the result follows by the description
of closed maximal subgroups (and maximal Lie primitive groups) in Liebeck–Seitz [28].
The finiteness of the number of conjugacy classes follows by [28] for (1) and by Martin
[35, Prop. 1.4] for (2). �

We next define some subvarieties of G3. For conjugacy classes C1, C2 and C3 in G let

V (C1, C2, C3) = {(x1, x2, x3) | xi ∈ Ci, x1x2x3 = 1}.
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For M a subgroup of G we set VM(C1, C2, C3) = V (C1, C2, C3) ∩M3 and

V (M) =
⋃

g∈G

{(x, y, z) ∈ G3 | xyz = 1, 〈x, y〉 ≤Mg}.

We need a result about dimensions of centralizers. Recall that an algebraic group
is called reductive if it has no positive-dimensional closed connected unipotent normal
subgroup.

Lemma 6.2. Let G be a reductive algebraic group with G◦ non-abelian. If g ∈ G, then
dimCG(g) > 0.

Proof. Let f : gG◦×G◦ → gG◦× gG◦ be the morphism (gx, h) 7→ (gx, hgxh−1). Suppose
the result if false. It follows that for an open subset X of gG◦ × gG◦, every fiber of f is
finite. By passing to a smaller open subset X , we may even assume that every fiber of f
has order at most n (where n is the degree of the corresponding function field extension).
This implies that the centralizer in G of every element of gG◦ ∩X has order at most n.
In particular, the order of every element of gG◦ ∩ X is bounded. Since this is a closed
condition, it follows that every element of gG◦ has bounded order.

It suffices to assume that G◦ is semisimple (pass to the group generated by the derived
subgroup of G◦ and g). If g has an orbit of size e on a simple component S of G◦, then we
can pass to 〈ge, S〉. Thus, we may assume that G◦ is simple. If g ∈ G◦, then dimCG(g) is
at least the rank of G. So we may assume that g induces an outer automorphism of G◦

of finite order — i.e., g is in the coset of a graph automorphism τ of order d ≤ 3.
Let T be a maximal torus of CG(τ). This has positive dimension. Choose t ∈ T of

large order. Then τt has large order contradicting the fact that every element of τG has
bounded order. �

We also need the following fact (see [17, Th. 1.2] for a closely related result where M
is assumed to be reductive but C is arbitrary):

Lemma 6.3. Let G be an algebraic group,M a closed subgroup, C a semisimple conjugacy
class of G. Then C ∩M is a finite union of M-classes.

Proof. It suffices to assume thatM/M◦ is cyclic of order d prime to the characteristic (by
considering the finitely many cosets xM◦ where x is semisimple). By a result of Steinberg
(see [11, Prop. 1.3]) every semisimple element of M normalizes a maximal torus T of
M◦. Since all maximal tori of M are conjugate, it suffices to assume that T is normal
in M . Thus, M◦ = T × U where U is unipotent. Since x is semisimple, xd ∈ T . Thus,
C := 〈T, x〉 is a complement to U in M . We claim that any two complements of U in
M are conjugate in M . By induction on dimU , it suffices to assume that U is abelian
(and of prime exponent if the characteristic is positive). Clearly, T is contained in any
complement of U . Thus, it suffices to observe thatH1(C/T, U) = 0 (since U is a projective
C/T -module). Thus, we may assume that M = C is reductive. Now we can apply [17,
Th. 1.2]. �

We note a trivial bound:

Lemma 6.4. Let G be a simple algebraic group, M ≤ G a closed proper subgroup. Let
Ci, 1 ≤ i ≤ 3, be conjugacy classes of regular semisimple elements.
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(a) If d is the minimal dimension of CM(x) for x ∈M , then

dim (V (C1, C2, C3) ∩ V (M)) ≤ dimM + dimG− 2d.

(b) In particular, if M◦ is nonabelian and reductive, then

dim (V (C1, C2, C3) ∩ V (M)) ≤ dimM + dimG− 2.

Proof. Conjugation defines a surjective morphism f : G ×W → V (C1, C2, C3) ∩ V (M),
where W = VM(C1, C2, C3).

Let x ∈ W . Then f(u−1, xu) = x for every u ∈M . Thus dim f−1(x) ≥ dimM for every
x ∈ W . Since every element of the image of f is in the G-orbit of some element of W ,
each fiber of f has dimension at least dimM .

By Lemma 6.3 the intersection Ci∩M is a finite union ofM-classes. Thus, dimCi∩M ≤
dimM − d. It follows that dimW ≤ 2(dimM − d) and so

dimV (C1, C2, C3) ∩ V (M) ≤ dimG+ dimW − dimM ≤ dimG+ dimM − 2d

as claimed in (a).
If M◦ is nonabelian and reductive, then every centralizer has positive dimension by

Lemma 6.2. Thus, d ≥ 1 and (b) follows from (a). �

We can now compute dim V (C1, C2, C3).

Theorem 6.5. Let G be a simple simply connected algebraic group of rank r. Let Ci,
1 ≤ i ≤ 3, be classes of regular semisimple elements of G. Then dimV (C1, C2, C3) =
2 dimG− 3r. Moreover there is precisely one irreducible component of this dimension.

Proof. By Gow [16, Thm. 2] the variety V (C1, C2, C3) is nonempty and the image of
the multiplication map from C1 × C2 to G contains the dense open subset consisting
of all semisimple elements. So this map is dominant, whence each nonempty fiber has
dimension at least dimG − 2r. Since C3 has dimension dimG − r, this gives the bound
dimV (C1, C2, C3) ≥ 2 dimG− 3r.

If r = 1, it is straightforward to compute directly (cf. [32]). Now assume that r > 1.
Choose a large power q of p so that the Ci are defined over G(q). Now we count the

Fq-points of V (C1, C2, C3) using the character formula given in the introduction. We just
use the following facts:

(a) |χ(x)| ≤ c for some constant c depending only on the rank of the group for any
irreducible character χ of G(q) and any regular semisimple element x ∈ G(q), by
Theorem 5.4;

(b)
∑

χ χ(1)
−1 ≤ 1 + O(q−1/2) where the sum is over all irreducible characters of

G(q) (this follows easily from Deligne-Lusztig theory as well, see the proof of [30,
Thm. 1.1], using that the Coxeter number of a simple algebraic group not of type
A1 is larger than 2); and

(c) Ci(q) is a single G(q) conjugacy class (since centralizers of semisimple elements in
groups of simply connected type are connected).

It follows that

|V (C1, C2, C3)(q)| =
|G(q)|2
c1c2c3

(1 +O(q−1/2)) = q2 dimG−3r(1 +O(q−1/2)),

where ci are the orders of centralizers in G(q) of elements from Ci.
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The result now follows by the Lang-Weil theorem [27] on the number of points of an
irreducible variety over a finite field. �

If G is not simply connected, a variant of the previous result is still true.

Corollary 6.6. Let G be a simple algebraic group of rank r and Ci, 1 ≤ i ≤ 3, classes of
regular semisimple elements of G. Then dim V (C1, C2, C3) = 2 dimG− 3r.

For π : Ĝ → G a simply connected covering of G, with (central) kernel Z, choose

conjugacy classes Di, 1 ≤ i ≤ 3, of Ĝ that project onto Ci. Let Zi = {z ∈ Z | zDi = Di}
and set Z0 = Z1Z2Z3. Then the number of components of V (C1, C2, C3) of maximal
dimension is [Z : Z0].

Proof. For each z ∈ Z, let V (z) be the variety of triples in D1 × D2 × D3 with product
z. By the previous result, this is an irreducible variety of dimension 2 dimG − 3r (this
variety is isomorphic to V (D1, D2, z

−1D3)). Let X := X(D1, D2, D3) = ∪zV (z). Observe
that π(X) = V (C1, C2, C3).

Suppose that (x1, x2, x3) ∈ V (C1, C2, C3). Choose yi ∈ Di with π(yi) = xi. Thus,
(y1, y2, y3) ∈ V (z) for some z ∈ Z. Indeed, we see that π(V (z1)) = π(V (z2)) if and only
if z1Z0 = z2Z0, and that the π(V (zi)) are disjoint if z1Z0 6= z2Z0. Let R be a set of coset
representative for Z/Z0. Thus, V (C1, C2, C3) is a disjoint union of the π(V (t)), t ∈ R.
Since π is a finite map, this implies by the previous result that dim V (D1, D2, D3) =
dimV (C1, C2, C3) and that there are [Z : Z0] different components of maximal dimension.

�

We extend the upper bound to connected but not necessarily reductive groupsH . Recall
the notion of regular semisimple elements from Definition 5.2.

Corollary 6.7. Let H be a connected algebraic group, with unipotent radical U and set
L = H/U , a reductive group. Let Ci, 1 ≤ i ≤ 3, be regular semisimple conjugacy classes of
H. Then dimV (C1, C2, C3) ≤ 2 dim[H,H ]− 3r where r is the rank of [H,H ]/U ∼= [L, L].

Proof. First assume that U = 1. So L = T [L, L] where [L, L] is semisimple and T is the
connected component of the center of L. We may assume that V (C1, C2, C3) is nonempty.
Then clearly the result reduces to [L, L] which is a central product of simple groups,
whence the previous result applies.

Now suppose that U 6= 1. Note that if h ∈ H is a regular semisimple element, then
CU(h) = 1, whence [h, U ] = U ≤ [H,H ]. This implies that all elements of hU are
conjugate. Also, the image of Ci in L is a conjugacy class of semisimple regular elements
in L. Thus, we see that dimV (C1, C2, C3) = dimVL(C1, C2, C3) + 2 dimU and so the
result follows by the previous case. �

There is a a version of this for some disconnected groups as well. We will say an
algebraic group is almost simple if its connected component is simple and contains the
center. The proof of the next result is identical to that of the upper bound in Theorem 6.5
using Theorem 5.4.

Corollary 6.8. Let G be a not necessarily connected almost simple algebraic group.
Let Ci, 1 ≤ i ≤ 3, be conjugacy classes of regular semisimple elements of G. Then
dimV (C1, C2, C3) ≤ 2 dimG−∑3

i=1(dimG− dimCi).
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Note that the result applies equally well to the case that G is (essentially) a direct
product of such groups.

We only need to apply the corollary in a special case which depends upon the following
result.

Lemma 6.9. Let G be a disconnected algebraic group such that G◦ is simple and G/G◦

is generated by a graph automorphism τ of order d. Let X = τG◦. Then the minimum
dimension of CG(x), x ∈ X, is the number of orbits of τ on the Dynkin diagram of G.
Moreover, a generic element of X is semisimple regular.

Proof. By inspection, we can choose τ such that CG(τ)
◦ is a simple algebraic group of

rank equal to the number of orbits of τ on the Dynkin diagram, and τ centralizes a regular
semisimple element g ∈ T of order prime to d in some τ -stable maximal torus T ≤ G◦.
Thus, (τg)d = gd is regular semisimple in G◦. It follows that (τg′)d is regular semisimple
for an open subvariety of g′ ∈ T (and so also for g′ ∈ G◦), whence the second statement
follows. If (τt)d is regular semisimple, then the centralizer of τt in G◦ is T0 := CT (τ), a
maximal torus of CG(τ).

Let f : G◦× τT → X be the conjugation map. The previous paragraph shows that the
generic fiber of f has dimension equal to that of T0, whence f is a dominant map. This
shows that for elements in a nonempty subvariety of X , the dimension of the centralizer is
equal to that of T0, whence that is the minimum dimension. This completes the proof. �

We will also need the following result which is a version of [18, Thm. 3.3].

Theorem 6.10. Let G be a simple algebraic group over an algebraically closed field k of
characteristic p ≥ 0. Let N be a positive integer.

(a) If p = 0, then {(x, y) ∈ G × G | G = 〈x, y〉} is a nonempty open subvariety of
G×G.

(b) If p > 0, then {(x, y) ∈ G × G | G(q)g ≤ 〈x, y〉 for some g ∈ G, q > N} is a
nonempty open subvariety of G×G.

Proof. We first give the proof for p > 0. It suffices to assume that k = Fp. By Guralnick–
Tiep [21, Thm. 11.7] for the classical groups and using Liebeck-Seitz [29] for the excep-
tional groups, there is a finite collection of rational kG-modules such that the only proper
closed subgroups of G irreducible on all of them are conjugates of G(q) for some suffi-
ciently large q (this includes twisted versions). The set of pairs which are reducible on
any finite collection of modules is a closed condition. Since G(q) is 2-generated, the set is
nonempty (one only needs to know this for some sufficiently large q).

If p = 0, then no proper closed subgroup is irreducible on the collection of submodules
given. Since one can easily find two elements which generate a dense subgroup, the result
follows. �

Theorem 6.11. Assume that G is a simple simply connected algebraic group of rank r > 1
over the algebraic closure k of Fp. Let Ci, 1 ≤ i ≤ 3, be semisimple regular classes. Fix
a positive integer m. Let V0 denote the irreducible component of V (C1, C2, C3) of largest
dimension. Assume also that G 6= SL3 if each Ci consists of elements of order 3. Then
for a generic x := (x1, x2, x3) ∈ V0 we have that 〈x1, x2〉 ≥ G(q) for some q > m.
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Proof. As noted above, the set of pairs (u, v) ∈ G×G such that 〈u, v〉 contains G(q) for
some q > m is open in G × G. Thus, if the result fails, it follows by Lemma 6.1 that
for every x ∈ V0, 〈x1, x2〉 ≤ M for some closed subgroup M either with M a positive
dimensional maximal closed subgroup of G or with |M | ≤ m and M not contained
in any proper positive dimensional subgroup. There are only finitely many conjugacy
classes of such M as we have already noted in Lemma 6.1. Thus, V0 is contained in
the finite union of these V (M). Since V0 is irreducible, this implies that V0 is contained
in the closure of V (M) for some fixed M . As we have seen above, this implies that
2 dimG − 3r = dimV0 ≤ dimM + dimG, whence dimM ≥ dimG − 3r. In particular,
since r > 1 this implies that dimM > 0, and even that dimM > r unless possibly
G = SL3 and r = 2.

Suppose that M is a maximal subgroup that is connected (or more generally M◦ con-
tains all semisimple elements ofM). It follows by Corollary 6.7 that dim VM(C1, C2, C3) ≤
2 dim[M,M ] − 3r1, where r1 denotes the rank of [M,M ]. Arguing as in the proof of
Lemma 6.4, this implies that

2 dimG− 3r = dimV (C1, C2, C3) ≤(dimG− dimM) + dimVM(C1, C2, C3)

≤ dimG− dimM + 2dim[M,M ]− 3r1.

Thus dimG ≤ 2 dim[M,M ]−dimM −3r1+3r. This clearly cannot be the case if r1 = r.
In particular, M cannot be of type Dn in Cn in characteristic 2. If r1 ≤ r−1, this implies
that dimG ≤ 2 dim[M,M ]−dimM+3. IfM is not semisimple and r1 = r−1, this yields
dimG ≤ dimM +1 which cannot occur since r > 1. If M is semisimple of rank r−1, the
inequality above gives dimG ≤ dimM +3. There are no proper semisimple subgroups of
codimension at most 3. Thus, we see that either r1 < r − 1 or at least one of the classes
Ci ∩M is not contained in M◦. In particular, M is reductive.

Now Ci ∩M is a finite union of conjugacy classes of M by Lemma 6.3. Thus,

dimV (C1, C2, C3) ∩M3 = dimV (D1, D2, D3)

where Di is a conjugacy class of M with Di ⊆ Ci ∩M .
Suppose that M◦ is a torus. As we have noted above, this implies that r = 2 and G =

SL3. Indeed, arguing as above, we see that dimV (D1, D2, D3) + 6 ≥ dim V (C1, C2, C3) =
10 or dimV (D1, D2, D3) ≥ 4. Clearly, dimV (D1, D2, D3) ≤ dimD1 + dimD2. It follows
that the Di have finite centralizer in M◦. The only possibility is that the Di consist of
elements of order 3, but this is excluded by hypothesis.

Thus, every element of M has a positive dimensional centralizer in M by Lemma 6.2.
Then with Lemma 6.4(b) the argument above gives a bit more:

dimM ≥ dimG− 3r + 2.

Consider the case that G is classical. First suppose that M is reducible on the natural
module. Then M must be the stabilizer of a nondegenerate space of dimension less than
1/2 the dimension of the space and dimM ≥ dimG− 3r+2. The only possibility is that
G is an orthogonal group, M is the stabilizer of a nondegenerate 1-space and p > 2 (if
p = 2, every semisimple element in M is contained in M◦ and so the better inequality
applies).

If G is of type Dn, n ≥ 4, then M = 2 × M◦ and so we see that dim(V0 ∩ M3) ≤
2 dimM◦ − 3(n− 1). Thus, arguing as above, dimM ≥ dimG− 2, a contradiction.
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Suppose that G is of type Bn, n ≥ 3 and M◦ = Dn. Then apply Corollary 6.8 and
Lemma 6.9 and argue as above. This gives the inequality 2 dimG − 3n ≤ dimG −
dimM + 2dimM − 3(n− 1) or dimG ≤ dimM + 3, a contradiction.

IfM is irreducible but not almost simple, then either the natural module is imprimitive,
tensor decomposable or tensor induced. By inspection, the only example with dimM ≥
dimG − 3r + 2 is for G = Sp4 and M = SL2 ≀ 2. If xyz = 1 with x, y, z ∈ M , then
at most two of the elements can live outside M◦. It follows that at least one of the
three elements has a 2-dimensional centralizer in M◦, whence the argument above gives
dimV (C1, C2, C3) ∩M3 ≤ dimM − 3 and we obtain a contradiction.

Suppose that M is almost simple. Using the bound dimM ≥ dimG−3r+2 eliminates
almost all possibilities (by the results of Lübeck [31] where he explicitly computes all
irreducible modules of dimension less than r3M/8). The exceptions are the cases where
(M,G) = (SL2 = SO3, SL3), (M,G) = (G2, B3) or (M,G) = (Spn, SLn) with n = 4, 6. In
all these cases, M is connected, so it follows that dimV (M) ≤ dimG+ dimM − 3r1 and
this is sufficient to show that dim V (M) < dimV0.

Now let G be an exceptional group. By [28], it follows that dimM < dimG − 3r + 2
for any maximal reductive subgroup of G, whence the result follows. �

Remark 6.12. In the excluded case G = SL3 and Ci containing elements of order 3, the
proof does not exclude that we might generate a subgroup of the normalizer of the torus.
Indeed that’s what happens since it is well-known (and easy to see) that the triangle
group generated by three elements of order 3 is solvable.

Another application of the Lang-Weil theorem [27] gives:

Corollary 6.13. Let G and the Ci be as in Theorem 6.11. If the Ci are defined over Fq

with q sufficiently large, then there exist xi ∈ Ci with product 1 which generate G(q)

Proof. By the previous results, we just have to count the number of triples in V0 which
are conjugate to a triple in some subfield group G(q0). It is easy to see that these do not
contribute enough to affect the result. �

Remark 6.14. It follows by an easy argument that the results extend to arbitrary fields.
Here is the sketch (we thank Michael Larsen for pointing this out to us).

Let G be a simple simply connected algebraic group over an algebraically closed field
k. Let Ci, 1 ≤ i ≤ 3, be semisimple regular conjugacy classes of G. Let V be the variety
of triples (x1, x2, x3) with xi ∈ Ci and product 1. Since the Ci are semisimple classes this
is a closed subvariety of G×G×G. This is defined over some finitely generated subring
R of k. If M is a generic maximal ideal of R, then the reduction of V (R) modulo M will
have the same dimension as M and the same number of irreducible components of this
dimension over the algebraic closure of R/M . Since R/M is a finite field, the result now
follows from Theorem 6.11. One can also show that there are triples in V that generate
a dense subgroup of G (as long as k is not algebraic over a finite field). In characteristic
0, it follows that the set of triples in this variety that generate a dense subgroup contains
a nonempty open subvariety of the component of maximal dimension.
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7. Generating Conjugacy Classes

We now return to finite groups. In the proof of Theorem 1.1, we showed that in many
finite simple groups there exist conjugacy classes C and D such that G is generated by
any pair of elements in C ×D. Moreover, in almost all the cases C and D were Aut(G)-
invariant. We investigate this further in this section. We will prove the following version
of Theorem 1.3

Theorem 7.1. Let G be a finite almost simple group with socle S. There exist conjugacy
classes C and D of G such that S ≤ 〈c, d〉 for all (c, d) ∈ C ×D. Moreover aside, from
the cases S = O+

8 (q), q ≤ 3, we may take C,D ⊂ S. In all cases, we may assume that D
is contained in S.

If G contains a triality automorphism of S = O+
8 (2), the classes C and D cannot both

be chosen to be contained in S. It seems likely this is also true for q = 3.
One way of producing such classes is rather obvious:

Lemma 7.2. Let G be a finite group with g ∈ G. Assume that g is contained in a unique
maximal subgroup M of G. Let C = gG. Let D be the set of derangements of G in the
permutation action on G/M . Then G = 〈g, h〉 for any h ∈ D.

Of course, D is always nonempty (by the well-known observation of Jordan). Moreover,
if the G-class of M is Aut(G)-invariant, then we can take C = gAut(G) and D will also be
Aut(G)-invariant. Such elements exist in many (but not all) finite simple groups.

We start the proof of Theorem 7.1 by showing that alternating groups satisfy the result.

Proposition 7.3. Let G = An, n ≥ 5. There exist conjugacy classes C,D of Sn contained
in An such that G = 〈x, y〉 for any x ∈ C, y ∈ D.

Proof. First suppose that n = 4m ≥ 8 is divisible by 4. Let g be a product of a 2m + 1
cycle and a 2m− 1 cycle. Thus, some power of g is a 2m− 1 cycle. Let M be a maximal
subgroup containing g. We show that M must be intransitive. Since there is a unique
intransitive such maximal subgroup, the result will follow.

Since gcd(2m + 1, 2m − 1) = 1, M cannot be transitive and imprimitive. If M is
primitive, it follows by Williamson [38] that M cannot exist.

Next suppose that n = 2m ≥ 10 with m odd. Let g be a product of disjoint cycles of
lengths m− 2 and m+ 2. Argue precisely as above.

If n = 6, let C be the set of all 5-cycles and let D be the class of elements of order 4 in
G. The only maximal subgroups containing an element g of order 5 are A5 (two classes),
none of which contain an element of order 4 (thus, C and D are Aut(G)-invariant).

Now suppose that n ≥ 5 is odd. Let g be an n-cycle. If n is prime, let h be a 3-cycle.
Then G = 〈g, h〉 (since any primitive group containing a 3-cycle contains G). If n is not
prime, let q be a prime with n/2 < q < n− 3, which exists by Bertrand’s postulate. Let
h be the product of a 3-cycle and a q-cycle. Then 〈g, h〉 is clearly primitive and contains
a 3-cycle, whence the claim follows. �

Proposition 7.4. Let G be a sporadic simple group. Then there exist Aut(G)-classes
C,D of G such that G = 〈x, y〉 for any (x, y) ∈ C ×D.
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Proof. This follows by the proof of Proposition 4.1, except for J2 and the Tits group. For
the first group, all pairs (x, y) ∈ 5c× 7a generate, for 2F4(2)

′ the same is true for all pairs
of elements from 13a× 16a, by [6]. �

It remains to consider the finite simple groups of Lie type.

Proposition 7.5. Theorem 7.1 holds for the linear groups Ln(q).

Proof. First consider L2(q). The alternating groups L2(4) ∼= L2(5) ∼= A5 and L2(9) ∼= A6

were treated in Lemma 7.3. For q ≥ 11 let C1 contain elements of order (q+1)/d and C2

elements of order (q−1)/d, where d = gcd(2, q−1). Then by the well-known classification
of subgroups of L2(q), any pair (x, y) ∈ C1 × C2 will generate. For L2(7) we let C2 be a
class of 7-elements instead.

For n ≥ 3 let C1 contain elements of order (qn− 1)/(q− 1)/d, and C2 elements of order
(qn−1 − 1)/d, where d = gcd(n, q − 1). If n ≥ 5 then any pair from C1 × C2 generates by
our Corollary 3.4, unless (n, q) ∈ {(6, 2), (7, 2)} when one of the two Zsigmondy primes
does not exist. In the first of these cases, the only proper overgroup of elements from C2

is an end-node parabolic, while in the second the only proper overgroup of elements from
C1 is the normalizer of a Singer cycle, by [19, Lemmas 2.3 and 2.4], but neither contains
elements of order 26 − 1.

Similarly, for 3 ≤ n ≤ 4 it follows from [19, Lemma 2.3] that any pair generates unless
possibly (n, q) ∈ {(3, 2), (3, 4), (4, 2), (4, 3)}. The groups L3(2) ∼= L2(7) and L4(2) ∼= A8

were already considered before. According to [6] the group L3(4) is generated by any pair
of elements of orders 5 and 7; the group L4(3) is generated by any pair of elements of
orders 5 and 13. �

Proposition 7.6. Theorem 7.1 holds for the unitary groups Un(q), n ≥ 3.

Proof. For n ≥ 8 this was already shown in Proposition 3.6, using the two classes in
Table 3. For n ≤ 7 odd let C1 contain elements of order (qn + 1)/(q + 1)/d, where
d = gcd(n, q + 1). By [19, Lemma 2.5] the only maximal overgroup of such an element is
the normalizer of the maximal torus of that order, in which case we’re done by Lemma 7.2,
or (n, q) ∈ {(5, 2), (3, 3), (3, 5)}. In the latter three groups, no maximal subgroup contains
elements of orders 11 and 9, 7 and 12, respectively 7 and 8.

For n ≤ 6 even let C1 contain elements of order (qn−1 + 1)/d. By [19, Lemma
2.6] the only maximal overgroup of such an element is the normalizer of SUn−1(q), or
(n, q) ∈ {(4, 2), (6, 2), (4, 3), (4, 5)}. In these last four groups, no maximal subgroup con-
tains elements of orders 5 and 9, 11 and 30, 7 and 9, respectively 7 and 13. �

Proposition 7.7. Theorem 7.1 holds for the symplectic groups S2n(q), n ≥ 2, q odd for
n ≥ 3, (n, q) 6= (2, 2), (2, 3).

Proof. For n ≥ 3 this was already shown in Proposition 3.7, using the two classes in
Table 3, unless (n, q) = (4, 3). For S8(3) there is only one class of maximal subgroups
containing elements of order (q4+1)/2, viz. the normalizer of an extension field subgroup
S4(9), by [19, Lemma 2.8].

For n = 2 let C1 consist of elements of order (q2 + 1)/d, d = gcd(2, q − 1), and C2 of
regular semisimple elements of order q + 1 with centralizer of order (q + 1)2/d. By [19,
Lemma 2.8] no maximal subgroup can contain elements from both classes. �
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Proposition 7.8. Theorem 7.1 holds for the orthogonal groups O2n+1(q), n ≥ 3.

Proof. For n ≥ 7 this was already shown in Proposition 3.8, using the two classes in
Table 3. Now assume that 4 ≤ n ≤ 6. We take C1 to contain regular semisimple elements
of order (qn+1)/d, d = gcd(2, q−1), and C2 containing elements of order (qn−1+1)(q+1)/d.
By [19, Lemma 2.7 and 2.8] no maximal subgroup contains both types of elements, unless
possibly when n = 4, q = 2, in which case there is no Zsigmondy prime for (qn−1 + 1)/d.
The only maximal subgroups of O9(2) = S8(2) of order divisible by 17 are O−

8 (2).2, S4(4).2
and L2(17). The latter two do not contain elements of order 20, and the first only contains
one class, while O9(2) contains two such classes.

For n = 3 let C1 be a class of elements of order (q3 + 1)/d, d = gcd(2, q − 1), and
C2 a class of elements of order (q3 − 1)/d. According to [19, Lemma 2.7 and 2.8] no
maximal subgroup contains both types of elements, unless possibly q ∈ {2, 3, 4, 5}. For
S6(4) = O7(4) and O7(5) none of the additional maximal subgroups has elements of order
(q3 + 1)/d. No maximal subgroup of S6(2) = O7(2) contains elements of orders 9 and 15,
and no maximal subgroup of O7(3) contains elements of orders 13 and 14. �

Proposition 7.9. Theorem 7.1 holds for the orthogonal groups O−
2n(q), n ≥ 4.

Proof. This was already shown in Proposition 3.9, using the two classes in Table 3, ex-
cept when (n, q) ∈ {(4, 2), (5, 2), (6, 2), (4, 4)}. No maximal subgroup of O−

8 (2) has order
divisible by both 7 and 17; no maximal subgroup of O−

10(2) has order divisible by both 11
and 17; no maximal subgroup of O−

12(2) has elements of order both 11 and 65 by [19,
Lemma 2.10]; no maximal subgroup of O−

8 (4) has order divisible by both 257 and 13. �

Proposition 7.10. Theorem 1.3 holds for the orthogonal groups O+
2n(q), n ≥ 4.

Proof. Let C1, C2 denote the conjugacy classes of O+
2n(q) chosen in the proof of Proposi-

tion 3.10. Then the claim follows for n ≥ 7 (as well as for n = 5 provided that q ≥ 5).
For n = 6 let C1, C2 consist of elements with invariant subspaces of types 5− ⊕ 1− respec-
tively 4− ⊕ 2−. Then any pair of elements from C1 × C2 acts irreducibly, and then by
Corollary 3.4 they generate G.

For n = 5 let C1, C2 contain elements with invariant subspaces of types 4− ⊕ 1− re-
spectively 3− ⊕ 2−. Then we conclude as before unless possibly when q = 2. No maximal
subgroup of O+

10(2) has order divisible by 17 and 31.
So now assume that n = 4. Let C1, C2 contain regular semisimple elements with

invariant subspaces of types 3− ⊕ 1− respectively 2− ⊕ 2−. Such classes exist whenever
q ≥ 4. Let H ≤ G contain elements from both classes. Then clearly H is irreducible on
the natural module. Thus, by [19, Lemma 2.9] either H is contained in the normalizer
of SU4(q), of U3(q) or of Spin7(q), or q ∈ {2, 3, 5}. The order of U3(q) is not divisible
by a Zsigmondy prime divisor of q2 + 1. Regular semisimple elements of order q2 + 1 in
SU4(q) and in Spin7(q) have centralizer order divisible by q−1, while elements in C2 have
centralizer order dividing (q2 + 1)2. Thus, H = G for q /∈ {2, 3, 5}. For q = 5 the only
additional subgroup of order divisible by 13 = (q2+1)/2 is 2.2B2(8), but its order is prime
to 3.

So now assume that q = 3. Suppose that G is almost simple with socle S = O+
8 (3).

Note that S contains 3 conjugacy classes of elements of order 20. The Sylow 5-subgroups
of each these subgroups of order 20 are not conjugate in S. Thus, any subgroup of S
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containing elements of order 20 in more than one class must contain a Sylow 5-subgroup
of S. Thus by [6], the only maximal subgroups containing such elements are isomorphic
to M := (A6 × A6).2

2. We claim that M has a unique conjugacy class of elements of
order 20. Note that in A6×A6, there are 4 conjugacy classes of elements of order 20. The
centralizer of any of them in M is contained in A6 × A6, whence these classes are fused
in M . Note that M embeds in S6 ≀ 2, whence all elements of order 20 are contained in
A6 × A6. Thus, there are no maximal subgroups of S containing two different conjugacy
classes of elements of order 20.

If |G : S| has order prime to 3, then there are at least two distinct G-classes of elements
of order 20 in S. The result follows in this case. If 3 does divide |G : S|, then all three
classes of elements of order 20 in S are fused in G. Let C be the set of all elements of
order 20 in S. Let D be the G-conjugacy class of an outer automorphism of order a power
of 3. If (c, d) ∈ C ×D, then by the discussion above, S = 〈c, cd〉, whence the result.

Finally, let G = O+
8 (2). It can be checked by a random computer search that there

are no Aut(G)-invariant subsets C,D ⊂ G such that any pair from C × D generates.
Now let C,D be two distinct classes of elements of order 15 in G. These are fused under
the triality automorphism. Note that the third powers of elements from C, D are not
conjugate either, so that any subgroup containing elements x ∈ C and y ∈ D must
have order divisible by 25. According to the Atlas the only maximal subgroups with this
property are three classes of subgroups (A5 × A5).2

2, (conjugate under triality) and each
intersects a unique class of 15-elements of G. Hence 〈x, y〉 does not lie in any proper
subgroup. Argue as in the case of q = 3 to complete the proof. �

Theorem 7.1 now follows by the propositions in this section.
Using a straightforward reduction to the almost simple case yields the following result

[9, Thm. C].

Corollary 7.11. Let X be a family of finite groups closed under subgroups, quotients and
extensions. A finite group G belongs to X if and only if for every x, y ∈ G, 〈x, yg〉 ∈ X
for some g ∈ G.
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