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Intermediate Asymptotics for Critical and Supercritical Aggregation

Equations and Patlak-Keller-Segel models

Jacob Bedrossian
∗

Abstract

We examine the long-term asymptotic behavior of dissipating solutions to aggregation equa-
tions and Patlak-Keller-Segel models with degenerate power-law and linear diffusion. The pur-
pose of this work is to identify when solutions decay to the self-similar spreading solutions of
the homogeneous diffusion equations. Entropy dissipation methods provide a natural solution to
this question and make it possible to derive quantitative convergence rates in L1. The estimated
rate relates the nonlinearity of the diffusion and the decay of the interaction kernel at infinity.
For supercritical problems with kernels in W 1,1(Rd), we obtain the optimal convergence rates
associated with the diffusion equations.

1 Introduction

The most widely studied mathematical models of nonlocal aggregation phenomena are the Patlak-
Keller-Segel (PKS) models, originally introduced to study the chemotaxis of microorganisms [38,
27, 24, 23]. Similar models are also used to study the formation of herds and flocks in ecological
systems [11, 45, 35, 22]. A common theme is the competition between the tendency for organisms
to diffuse, e.g. under Brownian motion or to avoid over-crowding, and for organisms to aggregate
into groups through nonlocal self-attraction. The parabolic-elliptic PKS models are a subclass of
the general aggregation-diffusion equations

ut +∇ · (u∇K ∗ u) = ∆A(u). (1)

The local and global existence and uniqueness of models such as (1) is well studied (see for instance
[5, 6, 8, 10, 42, 43, 44, 18]). However, less is known about the long-term qualitative behavior
of solutions. In this work, we are interested in examining the asymptotic profiles of dissipating
solutions to (1) in the special case

{

ut +∇ · (u∇K ∗ u) = ∆um, m ≥ 1,

u(0, x) = u0(x) ∈ L1
+(R

d; (1 + |x|2)dx) ∩ L∞(Rd),
(2)

where L1
+(R

d;µ) :=
{

f ∈ L1(Rd;µ) : f ≥ 0
}

. In particular, we are interested in determining when
solutions to (2) converge in L1(Rd) as t → ∞ to the self-similar spreading solutions of the diffusion
equation

ut = ∆um. (3)

All dissipating solutions are weak⋆ converging to zero as t → ∞, but this kind of result implies that
for 1 << t < ∞, the dissipating solutions all look more or less like self-similar solutions of (3). For
this reason, these results are often referred to as intermediate asymptotics.

∗jacob.bedrossian@math.ucla.edu, University of California-Los Angeles, Department of Mathematics
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Supercritical problems are those in which the aggregation is dominant at high concentrations,
subcritical problems are those in which the diffusion dominates at high concentrations, and critical

problems are those in which the effects are in approximate balance. It is known that supercritical
problems exhibit finite time blow up for solutions of arbitrarily small mass and subcritical problems
have global solutions [42, 43, 5, 8]. The critical case is more interesting; data with small mass exists
globally, whereas finite time blow up is possible for large mass [8, 5, 10, 43]. In this work, we will
refer to the case m < 2− 2/d as supercritical and m = 2− 2/d as critical. This is in contrast to the
definition used in [5], where the critical diffusion exponent was taken to depend on the singularity
of the kernel. Here, achieving such a precise balance is not the primary interest. In the sense of
[5, 8, 43, 42], m = 2 − 2/d is the critical exponent for the Newtonian potential, which is the most
singular kernel known to have unique, local-in-time solutions [5].

As strong nonlinearities vanish quickly near zero, scaling heuristics suggest that the nonlocal
aggregation term should become irrelevant for small data in the critical and supercritical regime.
We use entropy dissipation methods [16, 46, 17, 14, 13, 7] to obtain several intermediate asymptotics
results which show this to be true, and that solutions of (2) converge to self-similar solutions of
(3). Entropy dissipation methods are well-suited for proving the convergence to equilibrium states
of nonlinear Fokker-Plank-type equations for arbitrary data [16, 14]. Through a change of variables
employed below, this also provides convergence to self-similarity of nonlinear homogeneous diffusion
equations [17]. In contrast to these works, we employ such methods to prove a small data result,
treating the nonlocal aggregation term as a perturbation. The change of variables will also clarify
how the long-range behavior of the kernel affects the problem. The key step is to derive a sufficiently
strong decay estimate to allow one to invoke entropy dissipation methods that normally only apply
to the homogeneous diffusion equations.

The first result, Theorem 1, covers the case K ∈ W 1,1(Rd). Here, the nonlocal term can be
considered to have a finite characteristic length-scale which becomes vanishingly small relative to
the length-scale of the solution as it dissipates. A result similar to Theorem 1 for Lp, 1 < p < ∞,
was proved for the special case of the Bessel potential in [32, 33] with the compactness method of
[26] (see also [47]). In contrast to methods based on compactness, the entropy dissipation methods
obtain quantitative convergence rates in L1, which by interpolation against the decay estimates,
provides convergence in all Lp, 1 ≤ p < ∞. For supercritical problems, the convergence rate is
shown to be the same as the optimal rates for (3) [16, 46, 17, 14, 47].

In general, if the kernel does not have critical scaling at large length-scales, the long-range effects
should still become irrelevant as the solution dissipates. That is, we should expect results similar
to the K ∈ W 1,1(Rd) case to hold, except when m = 2− 2/d and ∇K ∼ |x|1−d as |x| → ∞. Indeed,
when K is the Newtonian potential, there exists at least one self-similar spreading solution to (2)
when m = 2 − 2/d [10, 8, 9, 12]. In the presence of linear diffusion, these are additionally known
to be the global attractors [10, 9]. Theorem 2 below extends Theorem 1 to the general case of
K 6∈ W 1,1(Rd), where the decay of K is characterized by γ ∈ [d−1, d] such that |∇K(x)| = O(|x|−γ)
as |x| → ∞. We show that if γ > d − 1, then dissipating solutions converge to the self-similar
spreading solutions of (3). However, in contrast to Theorem 1, the long-range effects appear to
degrade the convergence rate and Theorem 2 provides a quantitative estimate of this effect in terms
of m and γ. It is not known whether the rates obtained in Theorem 2 are sharp. When γ = d− 1,
the kernel behaves like the Newtonian potential on large length-scales, and the result is no longer
expected to hold if m = 2−2/d. Indeed, we expect solutions to converge to the self-similar solutions
of (2) constructed in [10, 8]. However, Theorem 2 asserts that in supercritical cases, self-similar
solutions to (3) again govern the intermediate asymptotics. Thus, Theorem 2 provides intermediate
asymptotics for Patlak-Keller-Segel models with linear diffusion in dimensions d ≥ 3.

In what follows, we denote ‖u‖p := ‖u‖Lp(Rd) where Lp(Rd) := Lp is the standard Lebesgue
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space. The standard characteristic function for some S ⊂ R
d is denoted 1S and we denote the

ball BR(x0) :=
{

x ∈ R
d : |x− x0| < R

}

. In formulas we use the notation C(p, k,M, ..) to denote a
generic constant, which may be different from line to line or term to term in the same formula. In
general, these constants will depend on more parameters than those listed, for instance those which
are fixed by the problem, such as K and the dimension, but these dependencies are suppressed.
We use the notation f .p,k,... g to denote f ≤ C(p, k, ..)g where again, dependencies that are not
relevant are suppressed.

1.1 Statement of Results

We need the following definition from [5], which we restate here.

Definition 1. We say a kernel K is admissible if K ∈ W 1,1
loc (R

d) and the following holds:

(R) K ∈ C3 \ {0}.

(KN) K is radially symmetric, K(x) = k(|x|) and k(|x|) is non-increasing.

(MN) k′′(r) and k′(r)/r are monotone on r ∈ (0, δ) for some δ > 0.

(BD)
∣

∣D2K(x)
∣

∣ ≤ C |x|−d for some C > 0.

The definition ensures that the kernel is radially symmetric, attractive, reasonably well-behaved
at the origin and has second derivatives which define bounded distributions on Lp for 1 < p < ∞.

It is important to note that all admissible kernels satisfy ∇K ∈ L
d

d−1
,∞, where Lp,∞ denotes the

weak-Lp space, making the Newtonian potential effectively the most singular of admissible kernels
[5]. Provided K is admissible, (2) has a unique local-in-time weak solution with values in L1

+(R
d; (1+

|x|2)dx)∩L∞(Rd) [5, 6, 10, 44, 4]. For a given initial condition u0(x) ∈ L1
+(R

d; (1+|x|2)dx)∩L∞(Rd),

the unique weak solution to (2) satisfies u(t) ∈ C([0, T );L1
+(R

d; (1 + |x|2)dx)) ∩ L∞([0, T ) × R
d).

Moreover, u(t) is a solution to (2) in a sense which is slightly stronger than a distribution solution,
but the distinction is not important here [5, 6]. Weak solutions conserve mass and we define
M = ‖u0‖1 = ‖u(t)‖1.

The self-similar solutions to the diffusion equation (3) are well-known, see for instance [47] and
[17]. In the linear case m = 1, the self-similar solution is simply the heat kernel,

U(t, x;M) =
M

(4πt)d/2
e

−|x|2

4t . (4)

In the case of degenerate diffusion m > 1, the self-similar solution is given by the Barenblatt
solution,

U(t, x;M) = t−βd

(

C1 −
(m− 1)β

2m
|x|2 t−2β

)
1

m−1

+

, (5)

where C1 is determined from the conservation of mass and

β =
1

d(m− 1) + 2
. (6)

The entropy dissipation methods of [16, 46, 17, 14] were used to determine the optimal rate of
convergence in L1(Rd) to self-similarity. That is, any solution u(t) of (3) satisfies

t
dβ

(

1− 1

p

)

‖u(t)− U(t;M)‖p . (1 + t)
− 2β

p
min( 1

2
, 1

m), ∀p, 1 ≤ p < ∞.

This rate should be contrasted with the rates obtained in Theorems 1 and 2, where it is shown that
kernels with finite length-scales do not have much effect on the rate, but strong nonlocal effects do.
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Theorem 1 (Intermediate Asymptotics I: Finite Length-Scale). Let d ≥ 2, m ∈ [1, 2 − 2/d]
and K ∈ W 1,1 be admissible. Let f ∈ L1

+(R
d; (1 + |x|2)dx) ∩ L∞(Rd). Then there exists an

ǫ0(‖f‖1, ‖f‖(2−m)d/2) > 0 such that for all ǫ < ǫ0, if u0 = ǫf then the weak solution u(t) to

(2) is global and satisfies

‖u(t)‖∞ . (1 + t)−dβ . (7)

Moreover, if m < 2− 2/d, then u(t) satisfies

t
dβ

(

1− 1

p

)

‖u(t) − U(t;M)‖p . (1 + t)
−β

p , ∀p, 1 ≤ p < ∞, (8)

and if m = 2− 2/d, then for all δ > 0, u(t) satisfies

t
dβ

(

1− 1

p

)

‖u(t) − U(t;M)‖p .δ (1 + t)
−β

p
(1−δ)

, ∀p, 1 ≤ p < ∞. (9)

Here β is defined in (6) and U(x, t;M) is the self-similar solution to (3) with mass M = ǫ‖f‖1
given in (4) or (5).

Theorem 2 (Intermediate Asymptotics II: Infinite Length-Scales). Let d ≥ 2 and K be admissible

with ∇K(x) = O(|x|−γ) as |x| → ∞ for some γ ∈ [d−1, d]. If γ = d−1 then suppose m ∈ [1, 2−2/d)
and otherwise we may take m ∈ [1, 2 − 2/d]. Let f ∈ L1

+(R
d; (1 + |x|2)dx) ∩ L∞(Rd). Then there

exists an ǫ0(‖f‖1, ‖f‖(2−m)d/2) > 0 such that for all ǫ < ǫ0, if u0 = ǫf then the weak solution u(t)
to (2) is global and satisfies

‖u(t)‖∞ . (1 + t)−dβ . (10)

Moreover, for all δ > 0, u(t) satisfies

t
dβ

(

1− 1

p

)

‖u(t)− U(t;M)‖p .δ (1 + t)−
β
p
min(1,1+γ−β−1−δ), ∀p, 1 ≤ p < ∞. (11)

Here β and U(t, x;M) are as above.

Remark 1. Note that f ∈ L1
+(R

d; (1 + |x|2)dx) ∩ L∞(Rd) implies f log f ∈ L1(Rd) by Jensen’s
inequality for probability measures.

Remark 2. The works of [31] and [3] prove that in many subcritical cases, there exist nontrivial
stationary solutions to (2), and thus nothing analogous to Theorems 1 and 2 holds. However,
between this work and [31, 3], still not every case is covered. For instance, if K ∈ L1(Rd) and
2 − 2/d < m < 2, stationary solutions are only known to exist for sufficiently large mass, and the
behavior of smaller solutions is unknown. Moreover, convergence to these stationary solutions is
only known in certain cases [28].

Remark 3. The convergence rate in (8) is optimal, as it matches that of the corresponding diffusion
equation. Optimality is not known for (9) or (11), however we suspect that these rates are nearly
optimal. Note that the convergence rate obtained in (11) reduces to (8) and (9) when γ = d.
Moreover, if γ = d− 1, then the convergence rate goes to zero as m ր 2− 2/d.

Remark 4. It seems natural to expect convergence in the Euclidean Wasserstein distance, a result
which is well-known for (3) and related models [37, 2, 13, 15]. This has been shown in certain cases
of the critical PKS model decaying to the self-similar solution of (2) [12].

Remark 5. From the proof, it will be clear that the decay estimates (7) and (10) imply the interme-
diate asymptotics results with the stated convergence rates. Indeed, the smallness conditions are
only required to obtain these estimates. This has a number of implications, which we outline in the
following remarks.
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Remark 6. For critical problems with γ > d − 1, it is natural to conjecture that (9) or (10) holds
for all solutions satisfying M < Mc, where Mc is the critical mass [20, 10, 8, 5]. Of course, it is
sufficient to provide the decay estimate (7) for all such solutions.

Remark 7. It will be evident from the proofs that ǫ0 depends on the constants in the Gagliardo-
Nirenberg-Sobolev inequality and we do not make an effort to determine the ‘optimal’ ǫ0. Moreover,
we do not make an effort to prove that ǫ0 only depends on the L(2−m)d/2 norm, which is the
controlling norm for supercritical problems [18, 42, 43, 5]. That is, if K were the Newtonian
potential, then (2) has a scaling symmetry which leaves the L(2−m)d/2 norm invariant. We remark
that global existence and uniform boundedness of solutions to (2) can be shown to only depend on
this norm in supercritical cases [18], but here the stronger decay estimates (7) and (10) are required.

Remark 8. The results of [5] suggest that if the kernel K is less singular than the Newtonian potential
at the origin, the L(2−m)d/2 norm could, in some cases, possibly be replaced by a weaker one.

Remark 9. We consider only the case of power-law diffusion, however, the estimates (7),(10) hold
for (1) provided A′(z) ≥ czm−1 for some c > 0. Therefore, it is likely possible to apply the methods
of [7, 13] to this more general case under some additional structural assumptions.

1.2 Outline of Proof

The proof of Theorems 1 and 2 involves several steps. As mentioned above, we use the entropy
dissipation methods of [16, 17, 14] and in particular, the time-dependent rescaling used in [17]. All of
the computations will be formal, they can be made rigorous for weak solutions either with a suitable
parabolic regularization and passing to the limit, as in for instance [6, 5, 14, 4], or presumably also
lifting to strictly positive solutions, as is common in the study of the porous media equation [47].

Following [17], we define θ(τ, η) such that

e−dτθ(τ, η) = u(t, x), (12)

with coordinates eτη = x and βeβ
−1τ − β = t, where β is given by (6). In what follows we denote

α := dβ. In these coordinates, if u(t, x) solves (2) then θ(τ, η) solves,

∂τθ = ∇ · (ηθ) + ∆θm − e(1−α−β)β−1τ∇ · (θ(edτ∇K(eτ ·) ∗ θ)). (13)

Moreover, U(t, x;M) is stationary in these coordinates, and will be denoted by FM (η). That is (see
[17]),

U(t, x;M) =

(

1 +
t

β

)−dβ

FM

(

(

1 +
t

β

)−β

x

)

= FM (η). (14)

In fact, FM (η) is the unique non-negative solution with mass M to the (degenerate, if m > 1)
elliptic equation

0 = ∇ · (ηθ) + ∆θm. (15)

In what follows we will refer to FM as the ground state Barenblatt solution. Clearly, ground state
solutions are stationary solutions of the homogeneous Fokker-Plank equation

∂τθ = ∇ · (ηθ) + ∆θm. (16)

Therefore, the asymptotic convergence to self-similar profiles of solutions to (3) is equivalent to the
convergence to the stationary profiles of (16). This was the fundamental observation made in [17]
and is the purpose of the rescaling (12).
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A primary step to proving Theorems 1 and 2 is establishing that θ(τ, η) ∈ L∞
τ,η(R

+ ×R
d). Note

that by the change of variables, this estimate is the decay estimates (7) and (10). This estimate is
what allows us to treat the inhomogeneous non-local term in (13) as a vanishing perturbation of
(16). The decay estimate ‖u(t)‖∞ . t−dβ, or equivalently, ‖θ(τ)‖∞ . 1, is easily obtained for (3) in
the linear case and the classical Aronson-Bénilan estimate proves it in the case m > 1 [47]. Clearly,
no such analogues are available for (13). However, a standard Alikakos iteration [1] argument can
be applied to (13) to prove a uniform bound in the rescaled variables. This method is commonly
used in Patlak-Keller-Segel for obtaining L∞(R+ × R

d) bounds of (2) [25, 29, 5, 8, 42, 43, 44]. It
is at this step we require the smallness in L1 and, in potentially supercritical cases, of the critical
norm L(2−m)d/2. Blow up results in [44, 43, 5, 8] imply that some smallness conditions on these
norms are necessary, and similar conditions are taken in [32, 33, 9, 43, 42].

Once we have established θ(τ, η) ∈ L∞
τ,η(R

+ × R
d), we prove that solutions to (13) converge to

FM and estimate the convergence rate in L1. In fact, these are done together, as the quantitative
estimate is direct and removes the need for compactness arguments. The primary step of the entropy
dissipation method is an estimate of the decay of the entropy associated to (16). In the case m = 1,
the entropy is given by,

H(θ) =

∫

θ log θdη +
1

2

∫

|η|2 θdη, (17)

and the entropy production functional by

I(θ) =

∫

θ |∇ log θ + η|2 dη. (18)

In the nonlinear case m > 1, the corresponding quantities are,

H(θ) =
1

m− 1

∫

θmdη +
1

2

∫

|η|2 θdη, (19)

and the entropy production functional,

I(θ) =

∫

u

∣

∣

∣

∣

m

m− 1
∇um−1 + η

∣

∣

∣

∣

2

dη. (20)

In the nonlinear case, these entropies were originally introduced for studying (16) in [36, 40]. Both
(17) and (19) are displacement convex [34] and in fact, (16) is a gradient flow for (19) or (17) in the
Euclidean Wasserstein distance [37, 2], and if f(τ, η) solves (16), then

d

dτ
H(f(τ)) = −I(f(τ)).

For a given mass M , (19) has a unique non-negative minimizer which is the ground state FM . That
is, if we define the relative entropy

H(θ|FM ) = H(θ)−H(FM ), (21)

then H(θ|FM ) ≥ 0 with equality if and only if θ = FM [17, 39]. In order to estimate a convergence
rate, it is therefore sensible to measure how quickly H(θ|FM ) → 0. Following the method of [17],
this is made possible by the following two crucial theorems. The first relates the entropy production
functional (20) to the relative entropy (21). This represents a generalization of the Gross logarithmic
inequality [21] (see also [39]).
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Theorem 3 (Generalized Gross Logarithmic Sobolev Inequality [17, 14, 39, 21]). Let f ∈ L1
+(R

d)
with ‖f‖1 = M and let FM be the ground state Barenblatt solution with mass M . Then,

H(f |FM ) ≤
1

2
I(f). (22)

For the Fokker-Plank equation (16), Theorem 3 implies H(θ(τ)|FM ) . e−2τ . The (generalized)
Csiszar-Kullback inequality [19, 30] relates the relative entropy to the L1 norm.

Theorem 4 (Csiszar-Kullback Inequality [14]). Let f ∈ L1
+(R

d) with ‖f‖1 = M and let FM be the

ground state Barenblatt solution with mass M . Then,

‖f − FM‖1 . H(f |FM )min( 1

2
, 1

m). (23)

Note that since we are interested in 1 ≤ m ≤ 2 − 2/d, we will only apply the inequality with
exponent 1/2.

To prove Theorems 1 and 2, the purpose of proving θ(τ, η) ∈ L∞
τ,η(R

+ × R
d) is to control the

growth of ‖edτ∇K(eτ ·) ∗ θ‖∞. Ultimately, this provides a bound essentially of the form,

d

dτ
H(θ(τ)) ≤ −I(θ(τ)) + C(M, ‖θ‖L∞

τ,η(R
+×Rd))e

−γτ ,

for some γ > 0 (in reality, it is not quite as clean). Theorem (3) then implies,

d

dτ
H(θ(τ)|FM ) ≤ −2H(θ(τ)|FM ) + C(M, ‖θ‖L∞

τ,η(R
+×Rd))e

−γτ .

Integrating this and applying Theorem 4 implies,

‖θ − FM‖1 . e−
τ
2
min(2,γ),

which after rescaling and interpolation against the decay estimates (7),(10), will prove Theorems 1
and 2.

2 Theorem 1

Proof. (Theorem 1: Intermediate Asymptotics I) Let q = (2−m)d/2 and let η, τ and θ(η, τ) be
as defined in §1.2. As detailed above, we first establish that θ(η, τ) ∈ L∞

τ,η(R
+ ×R

d) using Alikakos
iteration [1] (see also [25, 29, 5, 8, 43, 44, 42]). The first step is to prove the following lemma which
allows control over finite Lp norms. In what follows we denote θ0(η) := θ(η, 0) = u(x, 0).

Lemma 1. For all q ≤ p < ∞, there exists Cq = Cq(p,M) and CM = CM (p, ‖θ0‖q) such that if

‖θ0‖q < Cq and M < CM , then ‖θ(τ)‖p ∈ L∞
τ (R+).

Proof. Define I =
∫

θm−1
∣

∣∇θp/2
∣

∣

2
dx. We estimate the time evolution of ‖θ‖p using integration by

parts, Hölder’s inequality and Lemma 4 in the appendix,

d

dτ
‖θ‖pp = −

4mp

(p+ 1)2
I + (p − 1)e(1−α−β)β−1τ

∫

θp∇ · (edτ∇K(eτ ·) ∗ θ)dη + d(p − 1)‖θ‖pp

≤ −C(p)I + C(p)e(1−α−β)β−1τ‖θ‖pp+1‖∇(edτ∇K(eτ ·) ∗ θ)‖p+1 + C(p)‖θ‖pp

≤ −C(p)I + C(p)e(1−α)β−1τ‖θ‖p+1
p+1 + C(p)‖θ‖pp.
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We bound the second term using the using the homogeneous Gagliardo-Nirenberg-Sobolev inequality
(Lemma 3 in appendix),

‖θ‖p+1
p+1 . ‖θ‖

α2(p+1)
q Iα1(p+1)/2,

where α2 = 1− α1(p +m− 1)/2 and

α1 =
2d(q − p− 1)

(p+ 1) (q(d− 2)− d(p +m− 1))
.

By the definition of q we have that,

α1(p + 1)

2
=

d(q − p− 1)

q(d− 2)− d(p +m− 1)
= 1.

We also estimate the second term using Lemma 3,

‖θ‖pp . Mβ2pIβ1p/2, (24)

where β2 = 1− β1p/2 and,
β1p

2
=

d(p− 1)

2− d+ d(p+m− 1)
< 1,

by 1− 2/d < m. Then applying weighted Young’s inequality for products,

d

dτ
‖θ‖pp ≤

(

C1(p)e
(1−α)β−1τ‖θ‖

α2(p+1)
q − C2(p)

)

I + C3(p)M
γ(p), (25)

for γ(p) = 2β2p/(2− β1p) > 0. If m = 2− 2/d, then q = 1 and 1−α = 0, therefore by conservation
of mass it is possible to choose M sufficiently small such that the first term in (25) is less than −δI
for some δ > 0. If m < 2 − 2/d, then q > 1 and we must take advantage of 1 − α < 0. Note that
(25) holds for p = q; therefore since 1−α < 0, a continuity argument establishes that for ‖θ0‖q and
M sufficiently small,

‖θ(τ)‖qq ≤ ‖θ0‖
q
q + C3(q)M

γ(q)τ.

Then by (25) for p > q, if M and ‖θ0‖q additionally satisfy

C1(p)e
(1−α)β−1τ (C3(q)M

γ(q)τ + ‖θ0‖
q
q)

α2(p+1)/q − C2(p) < −δ,

for all τ > 0, then the first term is less than −δI. By 1−α < 0 we may always choose M and ‖θ0‖q
such that this is possible. Therefore, whether q > 1 or q = 1, for small initial data in the suitable
sense, we have

d

dτ
‖θ‖pp ≤ −δI + C(M,p).

Using (24) and Young’s inequality for products, we have a lower bound on I,

‖θ‖pp − C(M) ≤ I.

This proves,
d

dτ
‖θ‖pp ≤ −δ‖θ‖pp + C(M,p),

which immediately concludes the lemma with ‖θ‖pp ≤ max(‖θ0‖
p
p, C(M,p)δ−1).

Alikakos iteration [1] is a standard method for using a result such as Lemma 1 to imply a result
of the following form.
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Lemma 2. There exists Cq = Cq(M) and CM = CM (‖θ0‖q) such that if ‖θ0‖q < Cq and M < CM ,

then ‖θ(τ)‖∞ ∈ L∞
τ (R+).

Proof. Standard iteration implies ‖θ(τ)‖∞ ∈ L∞
τ (R+), provided

~v := e(1−α−β)β−1τ edτ∇K(eτ ·) ∗ θ ∈ L∞
τ,η(R

+ × R
d).

See [25, 5, 29, 42, 43]. For instance, an iteration lemma due to Kowalczyk [29] may be extended
easily to the case R

d, d ≥ 2 and to include the ∇ · (ηθ) term in (13) [5].
Fix p > d. Then by Lemma 1, for sufficiently small M and ‖θ0‖q, ‖θ(τ)‖p ∈ L∞

τ (R+). Therefore
by Lemma 4 in the appendix,

‖∇~v‖p = ‖e(1−α−β)β−1τ∇
(

edτ∇K(eτ ·) ∗ θ
)

‖p . e(1−α)β−1τ‖θ‖p . e(1−α)β−1τ .

Moreover, by ∇K ∈ L1(Rd),

‖~v‖p ≤ e(1−α−β)β−1τ‖θ‖p . e(1−α−β)β−1τ .

Since 1− α ≤ 0, Morrey’s inequality implies ~v ∈ L∞
τ,η(R

+ × R
d) and the lemma follows.

By Lemma 2 and the definition of τ ,

‖u(t)‖L∞
x (Rd) = e−dτ‖θ‖L∞

η (Rd) . (1 + t)−dβ ,

establishing (7).
Now that the requisite decay estimate has been established, we proceed by estimating the decay

of the relative entropy (21). By Young’s inequality, ∇K ∈ L1(Rd) and Lemma 2,

‖edτ∇K(eτ ·) ∗ θ‖∞ ≤ ‖∇K‖1‖θ‖∞ . 1. (26)

We first settle the case m > 1. By a standard computation, (26) and Cauchy-Schwarz, for all
δ > 0,

d

dτ
H(θ(τ)|FM ) = −I(θ) + e(1−α−β)β−1τ

∫

∇

(

1

m− 1
θm +

1

2
|η|2
)

· θedτ∇K(eτ ·) ∗ θdη

≤ −I(θ) + e(1−α−β)β−1τI(θ)1/2
(
∫

θ
∣

∣

∣
edτ∇K(eτ ·) ∗ θ

∣

∣

∣

2
dη

)1/2

≤ (1− e−2δτ )I(θ) +Ce(2−2α−2β)β−1τ+2δτ .

Let γ(δ) := (2α+ 2β − 2)β−1 − 2δ > 0. By Theorem 3 we therefore have,

d

dτ
H(θ(τ)|FM ) ≤ −2I(1 − e−2δτ )H(θ|FM ) + Ce−γτ . (27)

Solving the differential inequality (27) implies,

H(θ|FM ) . e−τ min(2,γ(δ)).

Now by Theorem 4,
‖θ(τ)− FM‖1 . e−

τ
2
min(2,γ(δ)).
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Re-writing in terms of x and t and using (14),

‖u(t)− U(t;M)‖1 . (1 + t)−
β
2
τ min(2,γ(δ)).

If m < 2−2/d, it can be verified that δ > 0 may always be chosen small enough such that 2 < γ(δ).
If instead m = 2−2/d, then 2d+2−2β−1 = 2. This establishes (9) in the case p = 1. Interpolation
against (7) completes the proof.

We now settle the case m = 1. The time evolution of the relative entropy is similar to above.
By (26) and Cauchy-Schwarz, for all δ > 0,

d

dτ
H(θ(τ)|FM ) = −I(θ) + e(1−α−β)β−1τ

∫

∇

(

log θ +
1

2
|η|2
)

· θedτ∇K(eτ ·) ∗ θdη

≤ −I(θ) + e(1−α−β)β−1τI(θ)1/2
(
∫

θ
∣

∣

∣
edτ∇K(eτ ·) ∗ θ

∣

∣

∣

2
dη

)1/2

≤ (1− e−δτ )I(θ) + Ce(2−2α−2β)β−1τ+δτ .

The rest of the proof follows similarly to the case m > 1 using Theorems 3 and 4. This concludes
the proof of Theorem 1.

3 Theorem 2

The proof of Theorem 2 is a technical refinement of Theorem 1.

Proof. (Theorem 2: Intermediate Asymptotics II) In order to properly extend Theorem 1
we must estimate the quantities ‖edτ∇K(eτ ·) ∗ θ‖p appearing in (26) and the proof of Lemma 2.
However, ∇K 6∈ L1(Rd) and Young’s inequality is not sufficient; indeed, ‖edτ∇K(eτ ·)∗θ‖p will not be
bounded uniformly in time. We separately estimate the growth of the quantities ‖λd∇K(λ·)1B1(0)‖1
and ‖λd∇K(λ·)1Rd\B1(0)‖p as λ → ∞. Using |∇K(x)| . |x|−γ for sufficiently large |x|, if γ < d,
then for large λ,

∫

λd |∇K(λy)| 1B1(0)(|y|)dy =

∫

|y|≤λ
|∇K(y)| dy

=

∫

Sd−1

∫ λ

0
|∇K(ρω)| rρd−1dρdω

. 1 + λd−γ . (28)

Similarly, if γ = d, then for large λ,

∫

λd |∇K(λy)| 1B1(0)(|y|)dy . 1 + log λ. (29)

On the other hand, for ∞ > q > d/(d − 1) and λ sufficiently large, since γ ≥ d− 1,

∫

λqd |∇K(λy)|q 1Rd\B1(0)(|y|)dy =

∫

|y|≥λ
λqd−d |∇K(y)|q dy

= λqd−d

∫

Sd−1

∫ ∞

λ
|∇K(ρω)|q ρd−1dρdω

. λq(d−γ). (30)
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Similarly,

sup
|x|≥1

∣

∣

∣
λd∇K(λx)

∣

∣

∣
. 1 + λd−γ . (31)

The proof of Lemma 1 extends to cover Theorem 2 since Lemma 4 holds by admissibility of K.
Lemma 2 extends provided we can bound ~v := e(1−α−β)β−1τedτ∇K(eτ ·) ∗ θ in L∞

η (Rd) uniformly
in time. Indeed, fix p > d. Then for M and ‖θ0‖q sufficiently small, we have by Lemma 1,
‖θ(τ)‖p ∈ L∞

τ (R+). By Lemma 4,

‖∇~v‖p . e(1−α)β−1τ‖θ‖p . e(1−α)β−1τ .

If γ < d then, by (28), (30) and Young’s inequality, for some d/(d − 1) < q ≤ p,

‖~v‖q ≤ e(1−α−β)β−1τ
(

‖edτ∇K(eτ ·)1B1(0) ∗ θ‖q + ‖edτ∇K(eτ ·)1Rd\B1(0) ∗ θ‖q

)

. e(1−α−β)β−1τ
(

e(d−γ)τ ‖θ‖q + e(d−γ)τM
)

.

. e(1−β−γβ)β−1τ .

Similarly if γ = d, then (29) and (30) imply,

‖~v‖q . e(1−β−γβ)β−1τ + τe(1−β−γβ)β−1τ .

Since 1 − β − γβ ≤ 0 and 1 − α ≤ 0, by Morrey’s inequality we may conclude ~v ∈ L∞
τ,η(R

+ × R
d),

thus allowing Lemma 2 to apply under the hypotheses of Theorem 2. Re-writing in terms of x and
t, this implies (10).

To complete the proof of Theorem 2, we estimate the decay of the relative entropy (21). The
proof of Theorem 1 used the estimate (26). Here we use (31) and (28) to imply, if γ < d,

‖edτ∇K(eτ ·) ∗ θ‖∞ ≤
(

‖edτ∇K(eτ ·)1B1(0) ∗ θ‖∞ + ‖edτ∇K(eτ ·)1Rd\B1(0) ∗ θ‖∞

)

. e(d−γ)τ (‖θ‖∞ +M) . e(d−γ)τ . (32)

Similarly, if γ = d then, for all δ > 0, for τ sufficiently large,

‖edτ∇K(eτ ·) ∗ θ‖∞ . τ ≤ eδτ .

The growth of (32) in time is the source of the degraded convergence rate observed in (11). Indeed,
computing the decay of the relative entropy (with linear or nonlinear diffusion) as above with (32),

d

dτ
H(θ(τ)|FM ) =≤ −I(θ) + e(1−α−β)β−1τI(θ)1/2

(
∫

θ
∣

∣

∣
edτ∇K(eτ ·) ∗ θ

∣

∣

∣

2
dη

)1/2

≤ (1− e−2δτ )I(θ) + Ce(2(1−α−β)β−1+2(d−γ)+2δ)τ .

As before, Theorems 3 and 4 imply,

‖θ(τ)− FM‖1 . e−τ min(1,1+γ−β−1−δ).

Re-writing in terms of x and t and interpolating against (10) completes the proof. The corresponding
argument follows also for γ = d, absorbing the mild growth of ‖edτK(eτ ·) ∗ θ‖∞ into the δ already
introduced.

11



4 Acknowledgments

The author would like to thank Andrea Bertozzi, Thomas Laurent and Nancy Rodŕıguez for helpful
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5 Appendix

Lemma 3 (Homogeneous Gagliardo-Nirenberg-Sobolev). Let d ≥ 2 and f : Rd → R satisfy f ∈
Lp ∩ Lq and ∇fk ∈ Lr. Moreover let 1 ≤ p ≤ rk ≤ dk, k < q < rkd/(d− r) and

1

r
−

k

q
−

s

d
< 0. (33)

Then there exists a constant CGNS which depends on s, p, q, r, d such that

‖f‖Lq ≤ CGNS‖f‖
α2

Lp‖ |∇|s fk‖α1

Lr , (34)

where 0 < αi satisfy

1 = α1k + α2, (35)

and
1

q
−

1

p
= α1(

−s

d
+

1

r
−

k

p
). (36)

The following lemma verifies that the distributions defined by the second derivatives of admissible
kernels behave as expected under mass-invariant scalings.

Lemma 4. Let K be admissible. Then ∀ p, 1 < p < ∞, u ∈ Lp and t > 0, we have

‖∇
(

td∇K(t·) ∗ u
)

‖p .p t‖u‖p. (37)

Proof. We take the second derivative in the sense of distributions. Let φ ∈ C∞
c , then by the

dominated convergence theorem,

∫

td∂xi
K(tx)∂xj

φ(x)dx = lim
ǫ→0

∫

|x|≥ǫ
td∂xi

K(tx)∂xj
φ(x)dx

= −t lim
ǫ→0

∫

|x|=ǫ
td−1∂xyK(tx)

xj
|x|

φ(x)dS − tPV

∫

td∂xi,xj
K(tx)φ(x)dx.

By ∇K ∈ Ld/(d−1),∞, we have ∇K = O(|x|1−d) as x → 0. Therefore for ǫ sufficiently small, there
exists C > 0 such that,

∣

∣

∣

∣

∣

t

∫

|x|=ǫ
td−1∂xi

K(tx)
xj
|x|

φ(x)dS

∣

∣

∣

∣

∣

≤ Ct

∫

|x|=ǫ
|x|1−d |φ(x)| dS

= Ct

∫

|x|=1
|ǫx|1−d |φ(ǫx)| ǫd−1dS = Ct |φ(0)| .

The admissibility conditions (R),(BD) and (KN) are sufficient to apply the Calderón-Zygmund
inequality [Theorem 2.2 [41]], which implies that the principal value integral in the second term is
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a bounded linear operator on Lp for all 1 < p < ∞. The operator norms, which are the implicit
constants in (37), only depend on the bound in (BD) and on the smoothness condition

∫

|x|>2|y|
|K(x− y)−K(x)| dx ≤ B.

Both of these conditions are clearly left invariant under the rescaling in (37) and this concludes the
proof.
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