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Abstract— This paper investigates the performance of wireless
systems that employ finite-blocklength channel codes for trans-
mission and operate under queueing constraints in the form
of limitations on buffer overflow probabilities. A block fad ing
model, in which fading stays constant in each coherence block
and change independently between blocks, is considered. Itis
assumed that channel coding is performed over multiple coher-
ence blocks. An approximate lower bound on the transmission
rate is obtained from Feintein’s Lemma. This lower bound is
considered as the service rate and is incorporated into the
effective capacity formulation, which characterizes the maximum
constant arrival rate that can be supported under statistical
queuing constraints. Performances of variable-rate and fixed-
rate transmissions are studied. The optimum error probability
for variable rate transmission and the optimum coding rate for
fixed rate transmission are shown to be unique. Moreover, the
tradeoff between the throughput and the number of blocks over
which channel coding is performed is identified.

I. I NTRODUCTION

An important class of wireless systems (e.g., systems that
support streaming or interactive video applications) operate
under quality of service (QoS) constraints in the form of
limitations on queueing delays or buffer overflows. A measure
of the throughput under such constraints is effective capacity
[1], [2]. Effective capacity of wireless systems has recently
been studied in various setting (see e.g., [1]-[4] and references
therein). In most prior work, the service rates supported by
the wireless channel are assumed to be equal to the instan-
taneous channel capacity values and no decoding errors are
considered. On the other hand, in practice, since finite block-
length codewords are employed, communication is performed
at rates less than the channel capacity with nonzero prob-
ability of error. Recently, [5] has analyzed the performance
of finite block-length codewords in the presence of statistical
QoS constraints. However, in [5], coding is assumed to be
performed over one coherence block in which the fading stays
constant. In this paper, we consider a more general setting
and assume that codewords are sent over multiple coherence
blocks. Hence, each codeword experiences multiple fading
realizations. Coding over multiple blocks generally improves
the performance since codeword length can be increased and
protection against severe fading can be provided as codewords
see multiple channel states. However, coding over many blocks
can also lead to long delays or buffer overflows. Therefore, it
is of significant interest to analyze the throughput of channel
coding over multiple coherence blocks in the presence of
buffer constraints, and identify whether there exists an optimal
number of blocks over which coding needs to be performed.

II. SYSTEM MODEL

In this paper, we consider a block flat-fading channel,
and assume that the fading coefficients stay constant for a
coherence block ofn symbols and change independently from
one block to another. The discrete-time input and output
relationship in thelth block is given by

yi = hlxi + wi i = 1, 2, . . . , n (1)

wherexi and yi are the complex-valued channel input and
output, respectively, in theith symbol duration,hl is the
channel fading coefficient in thelth block, andwi is the
circularly symmetric complex Gaussian noise with zero mean
and varianceN0, i.e., wi ∼ CN (0, N0). We assume that the
receiver has perfect channel side information (CSI) and hence
perfectly knows the realizations of the fading coefficients{hl}.
On the other hand, we consider both cases of perfect and no
CSI at the transmitter.

The channel input is assumed to be subject toE{|xi|2} ≤
Es. It is well-known that when the receiver has perfect CSI,
the capacity achieving input for the above fading Gaussian
channel is Gaussian distributed. Hence, we assume thatxi ∼
CN (0, Es). Since the input and noise are Gaussian distributed,
the output is also conditionally Gaussian, i.e.,yi|hl ∼
CN (0, Es|hl|2 + N0). Moreover,yi|xi, hl ∼ CN (hlxi, N0).
We further assume that the input is independent and iden-
tically distributed (i.i.d.) i.e.,pxn =

∏n
i=1 pxi

(xi), which
implies pyn|xn,hl

=
∏n

i=1 pyi|xi,hl
(yi|xi, hl), and pyn|hl

=
∏n

i=1 pyi|hl
(yi|hl).

III. PRELIMINARIES

A. Effective Capacity

In [2], effective capacity is defined as the maximum constant
arrival rate1 that a given service process can support in order to
guarantee a statistical QoS requirement specified by the QoS
exponentθ. If we defineQ as the stationary queue length, then
θ is the decay rate of the tail distribution of the queue length
Q:

lim
q→∞

logP (Q ≥ q)

q
= −θ. (2)

Therefore, for largeqmax, we have the following approxima-
tion for the buffer violation probability:P (Q ≥ qmax) ≈
e−θqmax . Hence, while largerθ corresponds to more strict
QoS constraints, smallerθ implies looser QoS guarantees.

1For time-varying arrival rates, effective capacity specifies the effective
bandwidth of the arrival process that can be supported by thechannel.
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Similarly, if D denotes the steady-state delay experienced in
the buffer, thenP (D ≥ dmax) ≈ e−θδdmax for large dmax,
where δ is determined by the arrival and service processes
[3]. The effective capacity is given by

RE(θ) = − lim
t→∞

1

θt
loge E{e−θS[t]} bits/s, (3)

where the expectation is with respect toS[t] =
∑t

i=1 rs[i],
which is the time-accumulated service process.{rs[i], i =
1, 2, . . .} denotes the discrete-time stationary and ergodic
stochastic service process.

B. Mutual Information Density and Channel Coding Rate

As detailed above, effective capacity is determined by
specifying the service rate or equivalently the instantaneous
transmission rate. We assume that the transmitter performs
channel coding overm coherence blocks wherem = 1, 2, . . .
Therefore, it sends codewords of lengthnm and each code-
word experiencesm independent channel conditions. An upper
bound on the maximum decoding error probabilities of random
codes of lengthnm is given by Feinstein’s Lemma [6], [7]:

ǫ ≤P
(

1

nm
i(xnm; ynm|hm1 ) ≤ R+ γ

)

+ P (xnm /∈ Snm) + e−nmγ (4)

where γ > 0 is an arbitrary constant,Snm =
{

1
nm

∑nm
i=1 E{|xi|2} ≤ E

}

is the constraint set,
i(xnm; ynm|hm1 ) is the mutual information density conditioned
on the fading coefficients(h1, h2, . . . , hm) seen in m
coherence blocks. The conditional mutual information density
is defined as

i(xnm; ynm|hm1 ) = log2
p(ynm|xnm, hm1 )

p(ynm|hm1 )
. (5)

Next, we obtain an expression for the mutual information
density of the considered channel and input models (i.e., fading
Gaussian channel with Gaussian input), and derive, under
certain assumptions, an approximate lower bound on the rates
attained by coding overm coherence blocks.

For the system model introduced in Section II , we have

1

nm
i(xnm; ynm|hm

1 )

=
1

nm

m
∑

l=1

ln
∑

i=(l−1)n+1

i(xi; yi|hl)

=
1

nm

m
∑

l=1

ln
∑

i=(l−1)n+1

log2

fyi|xi,hl
(yi|xi, hl)

fyi|hl
(yi, hl)

=
1

nm

m
∑

l=1

ln
∑

i=(l−1)n+1

(

log2

(

1 +
Es|hl|2
N0

)

+
|yi|2 log2 e
|hl|2Es +N0

− |yi − hlxi|2 log2 e
N0

)

=
1

m

m
∑

l=1

log2(1 +
Es|hl|2
N0

)

+
log2 e

nm

m
∑

l=1

ln
∑

i=(l−1)n+1

(

|yi|2
|hl|2Es +N0

− |yi − hlxi|2
N0

)

Denoting SNR = Es

N0
and extending the results in [6] and

[7], we can immediately show thati(xnm; ynm)/(nm) has
the same distribution as the random variable [8]

1

m

m
∑

l=1

log2(1 + SNR|hl|2) +
log2 e

nm

m
∑

l=1

√

SNR|hl|2
1 + SNR|hl|2

n
∑

i=1

wli

where wli’s are i.i.d. Laplace random variables, each with
zero mean and variance 2. The sum ofnm i.i.d. Laplace
random variables has a Bessel-K distribution [6] and generally
is difficult to deal with directly. On the other hand, for
large enough values of the blocklengthnm, it can be well
approximated by a Gaussian random variable [7]. Therefore,
the mutual information density achieved with the codewords
of length nm spreading overm coherence blocks can be
approximated as

1

nm
i(xnm; ynm)

∼ CN
(

1

m

m
∑

l=1

log2(1 + SNRzl),
log22 e

m

m
∑

l=1

2SNRzl
nm(1 + SNRzl)

)

(6)

where we have definedzl = |hl|2. With this approximation,
the first probability expression on the right-hand side of (4)
can be written in terms of the GaussianQ-function:

P

(

1

nm
i(xnm; ynm|hm1 ) ≤ R+ γ

)

= Q





1
m

∑m
l=1 log2(1 + SNRzl)−R− γ
√

log2
2 e

m

∑m
l=1

2SNRzl
nm(1+SNRzl)



 . (7)

By noting that theQ-function is invertible, we can rewrite the
upper bound in (4) as a lower bound on the instantaneous rate
achieved by coding overm coherence blocks:

R ≥ 1

m

m
∑

l=1

log2(1 + SNRzl)−

√

√

√

√

log22 e

m

m
∑

l=1

2SNRzl
nm(1 + SNRzl)

×Q−1(ǫ − P (xnm /∈ Snm)− e−nmγ)− γ (8)

for any γ > 0. Although the above lower bound can also be
used in the subsequent analysis, we opt to further simplify it to
make the analysis more tractable analytically. For sufficiently
large values ofnm, the termsP (xnm /∈ Snm) and e−nmγ

become very small and can be neglected2. Moreover, since
the lower bound holds for anyγ > 0, we can see that an
approximate lower bound for the transmission rate is

R ≥ Rl,ǫ =
1

m

m
∑

l=1

log2(1 + SNRzl)

−

√

√

√

√

log22 e

m

m
∑

l=1

2SNRzl
nm(1 + SNRzl)

Q−1(ǫ) (9)

2As nm increases without bound, it can be easily seen thatP (xnm /∈
Snm) approaches zero by noting the fact that the codewords are generated
according topxnm =

∏nm
i=1 pxi(xi) wherepxi is the Gaussian distribution

with zero mean and varianceE and by applying the law of large numbers
which tells us that the sample variance approaches the statistical varianceE .
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where the notationRl,ǫ is used to emphasize that this is a
lower bound for rates achieved with decoding error probability
ǫ. Henceforth, the analysis is based onRl,ǫ.

IV. EFFECTIVE THROUGHPUT WITHCHANNEL CODING

OVER MULTIPLE COHERENCEBLOCKS

The rate lower bound in (9) gives a characterization of the
tradeoffs and interactions between the instantaneous transmis-
sion rate, decoding error probability and the fading coefficients
when channel coding is performed over multiple coherence
blocks using finite blocklength codes. In particular, we note
thatRl,e is achieved with probability1−ǫ. With probabilityǫ,
decoding error occurs. We assume that the receiver reliablyde-
tect the errors, and apply a simple ARQ mechanism and sends
a negative acknowledgement requesting the retransmissionof
the message in case of an erroneous reception. Therefore, the
data rate is effectively zero when error occurs. Under this
assumption, the service rate (in bits pernm symbols) is

rs =

{

0, with probability ǫ
nmRl,ǫ, with probability1− ǫ

(10)

Similarly as in [5], we obtain the following result on the
effective rate by inserting the above service rate formulation
into the definition in (3) and noting that the service rate varies
independently for one sequence ofm blocks to another due
to the block fading assumption. Since it characterizes the
throughput achieved by transmitting at rates possibly below
the channel capacity using finite blocklength codes, we refer to
this throughput measure as effective rate rather than effective
capacity in the remainder of the paper.

Theorem 1: The effective rate (in bits per channel use) at a
given SNR, error probabilityǫ, codeword lengthnm, and QoS
exponentθ is

RE(θ) = − 1

θnm
loge Ez

{

ǫ + (1− ǫ)e−θnmRl,ǫ
}

(11)

whereRl,ǫ is given in (9), andz = (z1, . . . , zm) is the vector
composed of the channel states experienced inm blocks.

The effective rate in (11) provides a lower bound on the
throughput as a function ofSNR, decoding error probability
ǫ, fading coefficients, coherence blocklengthn, the number
of blocks,m, over which coding is performed, and the QoS
exponentθ. The following result shows that given the other
parameters, the effective rate is maximized at a unique decod-
ing error probability. Note that using very strong codes and
having small error probabilities in the transmission necessitates
small transmission rates leading to small throughput. On the
other hand, if higher transmission rates with relatively weak
channel coding are preferred, then communication reliability
degrades and more retransmissions are required again lowering
the throughput.

Theorem 2: Given the values ofm > 0, n > 0, θ > 0 and
SNR> 0, the function

Ψ(ǫ) = E
{

ǫ+ (1− ǫ)e−θnmRl,ǫ
}

(12)

is strictly convex inǫ and hence the optimalǫ > 0 that mini-
mizeΨ(ǫ), or equivalently maximizes the effective throughput,
is unique.
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Fig. 1. The effective rate as a function ofǫ. n = 200.

Proof: See Appendix A.
In Fig. 1, we plot the effective rate as a function ofǫ in

the Rayleigh fading channel withE{z} = 1. In the figure, we
assumeSNR = 0 dB, θ = 0.01, andn = 200. We provided
curves for different values ofm. We can see that the effective
throughput is indeed maximized at a uniqueǫ.

Another interesting tradeoff is the one between the through-
put and the number of block over which coding takes place.
Note that coding over multiple blocks is generally beneficial
in terms of increasing the transmission rate on the average
because transmitted codewords experience multiple channel
fading realizations and may not get exceedingly affected by
severe fading in one block. On the other hand, coding (with
possible retransmissions in cases of decoding errors) over
multiple blocks may lead to unacceptable delays in systems
operating under buffer constraints captured by the QoS ex-
ponentθ in this paper. Therefore, coding over many blocks
may lead to decreased throughput eventually. In Fig. 2, we
plot the effective throughput as a function ofm for differentθ
values with fixedǫ = 0.01. We assumen = 50. In the figure,
we observe that the optimalm that maximizes the effective
rate under a givenǫ varies withθ. Whenθ = 0 and therefore
there are no buffer constraints, effective rate increases with
increasingm. Coding over ever increasing number of blocks
improves the performance. Indeed, asm → ∞, effective rate
approaches the ergodic capacity in the case ofθ = 0. However,
we see a strikingly different behavior in the presence of QoS
limitations. We note that forθ > 0, effective rate is maximized
at a finite value ofm. Moreover, the optimal value ofm
diminishes asθ increases. Therefore, coding over fewer blocks
should be preferred under stringent buffer limitations.

In Fig. 3, we plot the optimal effective rate (optimized over
the decoding error probability,ǫ) as a function ofθ for given
m values. We setn = 50. We find that for smallθ values,
havingm = 10 achieves the highest effective rate, while asθ
increases, havingm = 10 starts providing the lowest effective
throughput, due to similar reasons as outlined above.

A. Fixed Rate Transmissions

Heretofore, we have implicitly assumed that the transmit-
ter has perfect CSI and considered the scenario in which
the transmitter employs variable-rate transmissions withrates
characterized byRl,ǫ given in (9). Note that in order to

3
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Fig. 3. The optimal effective rate vs.θ. n = 50.

transmit at the rateRl,ǫ, the transmitter needs to know the
fading coefficients{zl}ml=1. A more practical scenario is the
one in which the transmitter does not know the channel states
and send the information at a fixed rate ofR. Note that
in this case, the decoding error probability varies with the
fading coefficients in each set ofm blocks in contrast to
being constant in the previous analysis. The codeword error
probability for a given channel statez is

ǫ(z, R) = Q





1
m

∑m
l=1 log2(1 + SNRzl)−R

√

1
m

∑m
l=1

2SNRzl
nm(1+SNRzl)

log2 e



 (13)

obtained by using (9). The effective rate is then expressed as

RE(θ,R)

= − 1

θnm
loge Ez

{

ǫ(z, R) + (1 − ǫ(z, R))e−θnmR
}

= − 1

θnm
loge E

{

Q





1
m

∑m
l=1 log2(1 + SNRzl)−R

√

1
m

∑m
l=1

2SNRzl
nm(1+SNRzl)

log2 e





+



1−Q





1
m

∑m
l=1 log2(1 + SNRzl)−R

√

1
m

∑m
l=1

2SNRzl
nm(1+SNRzl)

log2 e







 e−θnmR

}

.

(14)

We have the following result.

Theorem 3: Assume that the values ofn, m, θ > 0 and
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Fig. 4. The effective rate as a function ofR. n = 200.

SNR> 0 are fixed, then the function

Φ(R) = E

{

Q





1
m

∑m
l=1 log2(1 + SNRzl)−R

√

1
m

∑m
l=1

2SNRzl
nm(1+SNRzl)

log2 e





+



1−Q





1
m

∑m
l=1 log2(1 + SNRzl)−R

√

1
m

∑m
l=1

2SNRzl
nm(1+SNRzl)

log2 e







 e−θnmR

}

is minimized at a uniqueR and hence the optimalR that
minimizesΦ(R) or equivalently maximizes the effective rate
in (14) is unique.
Proof: See Appendix B.

In Fig. 4, we plot the effective rate as a function of the
fixed transmission rateR for differentm values. We assume
that θ = 0.01, n = 200. It is noted that there is a unique
R that maximizes the effective throughput. While we see in
the figure that the optimal effective throughput increases as
m increases from 1 to 10, further numerical analysis showed
results similar to those discussed in the variable-rate case, i.e.,
effective rate starts decreasing whenm is increased beyond a
threshold value.

V. CONCLUSION

We have analyzed the performance of channel coding over
multiple blocks with possible decoding errors in the presence
of queueing constraints. We have characterized the effective
throughput. We have discussed two different transmission
strategies. For the case when the transmission rate is varied and
the error probability is kept fixed over different codewords, we
have shown that the optimal error probability that maximizes
the effective throughput is unique. Similarly, when the trans-
mission rate is kept fixed, we have proved that the optimal
rate that maximizes the effective throughput is also unique.
Through numerical analysis, we have quantified the tradeoff
between the throughput and the number of blocks over which
coding is performed.

APPENDIX

A. Proof to Theorem 2

We first prove the following.
Proposition 1: The function

f(ǫ) = (1− ǫ)e−θnmRl,ǫ (15)
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is strictly convex inǫ.

Proof: Denote

−θnmRl,ǫ = aQ−1(ǫ) + b (16)

where we, from (9), define

a = θ

√

√

√

√

m
∑

l=1

2nSNRzl
1 + SNRzl

log2 e, b = −θn
m
∑

l=1

log2(1 + SNRzl).

(17)

Note thata > 0 sinceSNR> 0, zl > 0 and θ > 0. Then we
can rewrite (15) as

f(ǫ) = (1− ǫ)eaQ
−1(ǫ)+b. (18)

The first and second derivative off(ǫ) with respect toǫ are

ḟ(ǫ) =
(

aQ̇−1(ǫ)(1 − ǫ)− 1
)

eaQ
−1(ǫ)+b (19)

f̈(ǫ) =

(

a(1− ǫ)
(

Q̇−1(ǫ)
)2

− 2Q̇−1(ǫ) + (1− ǫ)Q̈−1(ǫ)

)

× aeaQ
−1(ǫ)+b (20)

whereQ̇−1(ǫ) andQ̈−1(ǫ) denote the first and second deriva-
tives ofQ−1(ǫ) with respect toǫ. Note that for an invertible
and differentiable functiong, we haveg(g−1(x)) = x. Taking
the derivative of both sides, we have

ġ(g−1(x))ġ−1(x) = 1 ⇒ ġ−1(x) =
1

ġ(g−1(x))
(21)

whereġ(g−1(x)) denotes the first derivative ofg evaluated at
g−1(x), and ġ−1(x) is the derivative ofg−1 with respect to
x. Noting that

Q(x) =

∫ ∞

x

1√
2π
e−

t2

2 dt, Q̇(x) = − 1√
2π
e−

x2

2 , (22)

we can derive the following

Q̇−1(ǫ) = −
√
2πe−

(Q−1(ǫ))2

2 . (23)

Note thatQ̇−1(ǫ) < 0 for 0 ≤ ǫ ≤ 1. DifferentiatingQ̇−1(ǫ)
with respect toǫ, we have

Q̈−1(ǫ) = 2πQ−1(ǫ)e−Q−1(ǫ))2 . (24)

Next, we consider the following two cases:

1) ǫ < 1
2 : We haveQ−1(ǫ) > 0 for this case and hence

Q̈−1(ǫ) > 0. Together with the fact thaṫQ−1(ǫ) < 0, we can
immediately see thaẗf(ǫ) > 0 for ǫ < 1

2 .

2) ǫ > 1
2 : We haveQ−1(ǫ) < 0 for this case. Substituting

(23) and (24) to (20) and denotingx = Q−1(ǫ), the expression

inside the parentheses of (20) can be written as

a(1− ǫ)
(

Q̇−1(ǫ)
)2

− 2Q̇−1(ǫ) + (1− ǫ)Q̈−1(ǫ) (25)

= a(1 − ǫ)2πe−(Q−1(ǫ))2 + 2
√
2πe−

(Q−1(ǫ))2

2

+ (1− ǫ)2πQ−1(ǫ)e−Q−1(ǫ))2 (26)

= a(1 −Q(x))2πe−
x2

2 + 2
√
2πe

x2

2 + (1−Q(x))2πxe−x2

(27)

= e
x2

2

(

2π(1−Q(x))(x + a)e
x2

2 + 2
√
2π
)

(28)

≥ e
x2

2

(

2π(1−Q(x))xe
x2

2 + 2
√
2π
)

(29)

≥ e
x2

2

(

2π
1√

2π(−x)
e−

x2

2 xe
x2

2 + 2
√
2π

)

(30)

= e
x2

2 (−
√
2π + 2

√
2π) = e

x2

2

√
2π > 0 (31)

where (29) follows from the facts thata > 0 and hencex+a >
x. (30) is obtained from the following upper bound

1−Q(x) = Q(−x) > 1√
2π(−x)

e−
x2

2 for x < 0 (32)

and the fact thatx < 0 for this case, and hence multiplication
of x(1−Q(x)) can be lowerbounded. Therefore,f̈(ǫ) > 0 for
ǫ > 1

2 .

Also note thatǫ = 1
2 meansQ−1(ǫ) = 0, so we have

a(1− ǫ)
(

Q̇−1(ǫ)
)2

− 2Q̇−1(ǫ) + (1− ǫ)Q̈−1(ǫ) (33)

= a(1− ǫ)2πe−(Q−1(ǫ))2 + 2
√
2πe−

(Q−1(ǫ))2

2

+ (1− ǫ)2πQ−1(ǫ)e−Q−1(ǫ))2 (34)

= aπ + 2
√
2π > 0 (35)

and as a resulẗf(ǫ) > 0.

From the above discussion, we can find thatf̈(ǫ) > 0 for
all ǫ ∈ [0, 1]. f(ǫ) is strictly convex inǫ. �

Now, let ψ(ǫ) = ǫ + (1 − ǫ)e−θnmRl,ǫ = ǫ + f(ǫ).
ψ̈(ǫ) = f̈(ǫ) > 0. Since the nonnegative weighted sum of
strictly convex functions is a convex function [9], we can
conclude thatΨ(ǫ) is convex.

B. Proof to Theorem 3

First, for any given channel state pairz = (z1, z2, . . . , zm),
we define

µ =
1

m

m
∑

l=1

log2(1 + SNRzl), (36)

δ =

√

√

√

√

1

m

m
∑

l=1

2SNRzl
nm(1 + SNRzl)

log2 e (37)

and note thatµ > 0, δ > 0. We can find thatΦ(0) =
1, Φ(∞) = 1, andΦ(R) < 1 for all R ∈ (0,∞). Note that

Q(x) =

∫ ∞

x

1√
2π
e−

t2

2 dt. (38)
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The first and second derivatives ofΦ(R) in R are given by

Φ̇(R) = E

{

1√
2πδ

e
−

(µ−R)2

2δ2

}

(

1− e
−θnmR

)

− θnm

(

1− E

{

Q

(

µ−R

δ

)})

e
−θnmR (39)

Φ̈(R) = E

{

1√
2πδ

e
−

(µ−R)2

2δ2
µ−R

δ2

}

(

1− e
−θnmR

)

+ θnme
−θnmR

×
(

E

{

2√
2πδ

e
−

(µ−R)2

2δ2

}

+ θnm

(

1− E

{

Q

(

µ−R

δ

)}))

(40)

Now we need the following result.
Proposition 2: Φ̈(R) = 0 has only one solution.

Proof: Obviously,Φ̈(0) > 0. Letting Φ̈(R) = 0 and perform-
ing a simple computation, we have

−
E

{

1√
2πδ

e−
(µ−R)2

2δ2
µ−R
δ2

}

E

{

1√
2πδ

e−
(µ−R)2

2δ2

}

= θnm









2 + θnm
1− E

{

Q
(

µ−R
δ

)}

E

{

1√
2πδ

e−
(µ−R)2

2δ2

}









e−θnmR

1− e−θnmR
.

(41)

First, we can show that the left-hand side (LHS) of (41) is an
increasing function inR. Let

g(R) = E

{

1√
2πδ

e−
(µ−R)2

2δ2

}

. (42)

1√
2πδ

e−
(µ−R)2

2δ2 is log-concave function [9]. Since the nonneg-
ative weighted sum of concave functions is concave,g(R) is
log-concave function [9]. And hence− loge g(R) is convex
function. Note that

LHS =
d

dR
(− loge g(R)) (43)

thus the derivative of LHS of (41) is greater than0, and as a
result it is increasing inR.

Next, we can prove that the right-hand side (RHS) of (41) is
a decreasing function inR. Note that e−θnmR

1−e−θnmR is decreasing
in R. Let

1− E

{

Q

(

µ−R

δ

)}

= E

{

∫
µ−R

δ

−∞

1√
2π
e−

t2

2 dt

}

= g(u(R)),

(44)

whereg(x) = E

{

∫ x

−∞
1√
2π
e−

t2

2 dt
}

and u(x) = µ−R
δ

. We

know that g(x) is a log-concave function [9], and from [9,
Eq. 3.10], we can see thatloge g is concave function, andu
is concave and nonincreasing inR, and henceloge g(u(R))

is concave function inR directly.So
E

{

1
√

2πδ
e
−

(µ−R)2

2δ2

}

1−E{Q(µ−R
δ )} is an

increasing function, i.e.,
1−E{Q(µ−R

δ )}
E

{

1
√

2πδ
e
−

(µ−R)2

2δ2

} is a decreasing

function inR. Thus, the RHS of (41) is decreasing in R, and

hence (41) has only one solution. �

Denote the unique solution töΦ(R) = 0 asR′. We know
that Φ̈(R) > 0 for all R < R′, or Φ̇(R) is increasing
equivalently, andΦ̈(R) < 0 for all R > R′, or Φ̇(R)
is decreasing equivalently. Note here that

∫∞
0

Φ̇(R)dR =

Φ(∞) − Φ(0) = 0, Φ̇(0) = −θnm(1 − E
{

Q(µ
δ
)
}

) < 0,
so Φ̇(R′) > 0. Otherwise,Φ̇(R) is decreasing forR > R′,
and henceΦ̇(R) ≤ 0,

∫∞
0

Φ̇(R)dR < 0. Contradiction. Also
note thatΦ̇(∞) = 0, so Φ̇(R) > 0 for R > R′. Thus, there
is only solution toΦ̇(R) = 0 in the rangeR ∈ (0, R′), and
Φ(R) is minimized at this value.
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