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Abstract— This paper investigates the performance of wireless Il. SYSTEM MODEL

systems that employ finite-blocklength channel codes for éns- . . .
mission and operate under queueing constraints in the form In this paper, we consider a block flat-fading channel,

of limitations on buffer overflow probabilities. A block fading and assume that the fading coefficients stay constant for a
model, in which fading stays constant in each coherence blkc coherence block of symbols and change independently from
and change independently between blocks, is considered. 6 one block to another. The discrete-time input and output
assumed that channel coding is performed over multiple cohe relationship in thdt® block is given by

ence blocks. An approximate lower bound on the transmission
rate is obtained from Feintein’s Lemma. This lower bound is
considered as the service rate and is incorporated into the
effective capacity formulation, which characterizes the rximum  where z; and y; are the complex-valued channel input and
constant arrival rate that can be supported under statistial output, respectively, in theth symbol duration,h; is the

queuing constraints. Performances of variable-rate and figd- . . . . s
rate transmissions are studied. The optimum error probabilty channel fading coefficient in théth block, andw; is the

for variable rate transmission and the optimum coding rate br ~ circularly symmetric complex Gaussian noise with zero mean
fixed rate transmission are shown to be unique. Moreover, the and varianceNy, i.e., w; ~ CN(0, Ny). We assume that the
tradeoff between the throughput and the number of blocks ove  receiver has perfect channel side information (CSI) anaden
which channel coding is performed is identified. perfectly knows the realizations of the fading coefficiefits}.

l. INTRODUCTION On the other hand, we consider both cases of perfect and no
| at the transmitter.
he channel input is assumed to be subjecE{tr;|?} <

vy =hxi+w;, 1=1,2,....n (1)

. ) C

An important class of wireless systems (e.g., systems tha

support streaming or interactive video applications) afger . .

unzgr quality of gservice (QoS) constrairllatz i the )forrr? s. It is well-known that when the receiver has perfect CSl,

o . e capacity achieving input for the above fading Gaussian
limitations on queueing delays or buffer overflows. A measur pactty g np g

. ) . ) channel is Gaussian distributed. Hence, we assumerthat
of the throughput under such constraints is effective capac . . . . .
: . : CN(0,&5). Since the input and noise are Gaussian distributed,
[1], [2]. Effective capacity of wireless systems has rebent

S ) ) the output is also conditionally Gaussian, i.@uh; ~
been studied in various setting (see e.g., [1]-[4] and ezfees CN(0, &2 + No). Moreover, y;|zs, hi ~ CN (huas, No).

‘here'.”)- In most prior work, the service rates supportgd We further assume that the input is independent and iden-
the wireless channel are assumed to be equal to the mstf';m— s - : n :
. . ically distributed (i.i.d.) i.e.,p;» = [[,_; s, (i), which

taneous channel capacity values and no decoding errors V(N — I (ys|s lf;) z;nd .
considered. On the other hand, in practice, since finitekbloc > py"(w"gl)_ i=1 Pyslos o \WilTe, By SRR Pyn by =
length codewords are employed, communication is perform =1 Pyslha Yl 11)-
at rates less than the channel capacity with nonzero prob- I1l. PRELIMINARIES
ability of error. Recently, [5] has analyzed the performanc : .

.2 ' : .. A. Effective Capacit
of finite block-length codewords in the presence of statidti _p y o ) )
QoS constraints. However, in [5], coding is assumed to be!n [2], effective capacity is defined as the maximum constant
performed over one coherence block in which the fading sta§gival ratdl that a given service process can supportin order to
constant. In this paper, we consider a more general settiigarantee a statistical QoS requirement specified by the QoS
and assume that codewords are sent over multiple coherefiggonent. If we defineq as the stationary queue length, then
blocks. Hence, each codeword experiences multiple fadifids the decay rate of the tail distribution of the queue length
realizations. Codin_g over multiple blocks genera_lly imEs Q: I log P(Q>q) 9 @)
the performance since codeword length can be increased and qg{; q -

protection against severe fading can be provided as COd&NO{herefore for largey we have the following approxima-
see multiple channel states. However, coding over man)kblocﬁon for th,e buffer \I/Iilg)lcf;\tion probability:P(Q > quay) ~
can also lead to long delays or buffer overflows. Therefdre, 1=, Hence, while larger corresponds to m“(l)ar’é strict

. . g . (&
IS O.f significant mFerest to analyze the thr_oughput of cf&hnn%ps constraints, smallef implies looser QoS guarantees.
coding over multiple coherence blocks in the presence

buffer constraints, and |der_1t|fy Wh_ether there exists ammj 1For time-varying arrival rates, effective capacity spesifithe effective
number of blocks over which coding needs to be performedandwidth of the arrival process that can be supported byhanel.


http://arxiv.org/abs/1009.6205v1

Similarly, if D denotes the steady-state delay experienced iBenoting SNR = Jf,— and extending the results in [6] and

the buffer, thenP(D > dpax) ~ e %max for large dpax, [7], We can |mmed|ately show thaiz"™;y"™)/(nm) has
where § is determined by the arrival and service processése same distribution as the random variable [8]
[3]. The effective capacity is given by

1og2 e _ SNRI[*
— log, (1 4 SNRIIy i
Rp(0) = — lim i log E{e %51}  bits/s (3) ; ogz(1+ SNRfu ") Z 1—|—SNR|hl|2 Z“’l
—

where the expectation is with respect $t] = Z- rolil, where wy;'s are i.i.d. Laplace random variables, each with

which is the time-accumulated service proce@&,[] — zero mean and variance 2. The sumof. ii.d. Laplace
1,2,...} denotes the discrete-time stationary and ergooﬁ@ndom variables has a Bessel-K distribution [6] and gélyera
stochasuc service process. is difficult to deal with directly. On the other hand, for

. _ _ large enough values of the blocklengthn, it can be well

B. Mutual Information Density and Channel Coding Rate approximated by a Gaussian random variable [7]. Therefore,

As detailed above, effective capacity is determined B¢ mutual information density achieved with the codewords
specifying the service rate or equivalently the instantaise of length nm spreading overn coherence blocks can be
transmission rate. We assume that the transmitter perfor@iproximated as

channel coding ovem coherence blocks where = 1,2, . 1 -
Therefore, it sends codewords of length: and each code- nmz(x y")
word experiences: independent channel conditions. An upper 1 log2 ¢ & 9SNR2
bound on the maximum decoding error probabilities of random CN <— Z log, (1 + SNRz;), —2 Z ! )
codes of lengttm is given by Feinstein’s Lemma [6], [7]: M= m i nm(l+ SNRZ!()ES)
1 ; nm nm m
esp (%Z(x sy IR < R+7) where we have defineg = |h;|2. With this approximation,
+ P(z"™ ¢ Sp) + ™Y (4) the first probability expression on the right-hand side[df (4
can be written in terms of the Gaussi@afunction:
where 7 > 0 is an arbitrary constant,S,.,, = 1
{-LY "M E{|x|?} <€} is  the  constraint  set, P (—i(a:"m;y"mm’l”) < R+’y)
i(z™™; y™™|hY") is the mutual information density conditioned m
on the fading coefficients(h,hs,...,hy,) Seen inm 1 LS logy(1+SNRy) — R —
coherence blocks. The conditional mutual information dgns =Q ToaZ ¢ SSNRS (7)
is defined as \/ 25 Y SR

. mmpmy p(y By noting that theR-function is invertible, we can rewrite the
i(@™™ sy " hY") = log, (5) : :
upper bound in[{4) as a lower bound on the instantaneous rate

p(y™™|hT") ‘ .
Next, we obtain an expression for the mutual informatioﬂCh'eved by coding over. coherence blocks:

density of the considered channel and input models (i.éinéga

m 2 m
Gaussian channel with Gaussian input), and derive, unng—Zlog2(1+SNRzl)_ logzez 2SNRz;
certain assumptions, an approximate lower bound on the rate " = mo nm(1 + SNRz;)
e Coonce oS I wehave % 0P €S = @
1 . o mmtsm for any v > 0. Although the above lower bound can also be
%Z(x R used in the subsequent analysis, we opt to further simpltfy i
m make the analysis more tractable analytically. For sufiiitye
= _Z Z i(zs; yilhe) large values ofnm, the termsP(z™™ ¢ S,,,) and e~ "™
=1 i=(—1)n+1 become very small and can be negleBtedoreover, since
_ Li i log Syilwsng (WilTi, ht) the Iower bound holds for any > 0, we can see Fhat an
nm 2 fyain (yis ) approximate lower bound for the transmission rate is

1=1i=(1—1)n+1
m

Elh 1
:—Z Z <log2 (1+ ]'Vol') R> Ry, ZEZIOgQ(l-i-SNRzl)

=1 i=(-1)n+1

lyil*logo e |yi — huaif* logy e
|hl|2€s +NO N()

1 «— Eslhu?

LS togy(1 4 £
L No 2As nm increases without bound, it can be easily seen fhat"™™ ¢
Snm) approaches zero by noting the fact that the codewords areraged

l
+ log, e Em: En: lyi|? _ lyi — huza” according topynm = [[1] pe,; (x;) wherep,, is the Gaussian distribution
nm ) [hi]2Es + No No with zero mean and variancé and by applying the law of large numbers
I=1i=(-1)n+1 which tells us that the sample variance approaches thetatativariancet.



where the notation?,; . is used to emphasize that this is a 0s T
lower bound for rates achieved with decoding error proligbil A
e. Henceforth, the analysis is based By.. o4r

IV. EFFECTIVE THROUGHPUT WITHCHANNEL CODING
OVER MULTIPLE COHERENCEBLOCKS

0.251

The rate lower bound if19) gives a characterization of the
tradeoffs and interactions between the instantaneousrian
sion rate, decoding error probability and the fading coieffits 005}
when channel coding is performed over multiple coherence 0 _ _ _
blocks using finite blocklength codes. In particular, weenot ¢
that R; . is achieved with probability —e. With probabilitye,
decoding error occurs. We assume that the receiver relgsbly
tect the errors, and apply a simple ARQ mechanism and sends
a negative acknowledgement requesting the retransmisgion
the message in case of an erroneous reception. Therefere Rfpof: See Appendix A.
data rate is effectively zero when error occurs. Under thisIn Fig. [, we plot the effective rate as a function ©ofn
assumption, the service rate (in bits pen symbols) is the Rayleigh fading channel witR{z} = 1. In the figure, we

. . assumesNrR = 0 dB, 8 = 0.01, andn = 200. We provided
re = { 0, with probability (10) curves for different values of.. We can see that the effective
nmhye, with probabilityl —e throughput is indeed maximized at a unique

Similarly as in [5], we obtain the following result on the Another interesting tradeoff is the one between the threugh
effective rate by inserting the above service rate fornmat put and the number of block over which coding takes place.
into the definition in[[B) and noting that the service rateesr Note that coding over multiple blocks is generally beneficia
independently for one sequence naf blocks to another due in terms of increasing the transmission rate on the average
to the block fading assumption. Since it characterizes thecause transmitted codewords experience multiple channe
throughput achieved by transmitting at rates possibly weeldading realizations and may not get exceedingly affected by
the channel capacity using finite blocklength codes, we tefe severe fading in one block. On the other hand, coding (with
this throughput measure as effective rate rather thantaffec possible retransmissions in cases of decoding errors) over
capacity in the remainder of the paper. multiple blocks may lead to unacceptable delays in systems

Theorem 1. The effective rate (in bits per channel use) at aperating under buffer constraints captured by the QoS ex-
given sNR, error probabilitye, codeword lengtmm, and QoS ponentd in this paper. Therefore, coding over many blocks

Effective rate (bits/channel use)

o
o

Fig. 1. The effective rate as a function afn = 200.

exponent is may lead to decreased throughput eventually. In Hg. 2, we
1 plot the effective throughput as a functionseffor differentd
Re(0) = T log, E, {e+ (1 —€)e "™ el (11) values with fixede = 0.01. We assumer = 50. In the figure,
L . ) we observe that the optimah that maximizes the effective
whereR, . is given in [9), andz = (z1,..., 2, is the vector 0 nder a given varies withd. Whend — 0 and therefore

composed of the channel states experiencent iblocks. there are no buffer constraints, effective rate increasiéls w
The effective rate m[]]l) provides a lower bound on th|‘?1creasingm. Coding over ever increasing number of blocks

thro“QhP“t as a function a$nR, decoding error probability improves the performance. Indeed,ras— oo, effective rate

¢, fading coefﬁments,_ coherqnce_ blocklength the number approaches the ergodic capacity in the case-ef0. However,

of blocks, m, over which coding is performed, and the Q0S¢ see a strikingly different behavior in the presence of QoS

exponenty. The following result shows that given the othefinitations. We note that fof > 0, effective rate is maximized

parameters, the effective rate is maximized at a unlquediecgt a finite value ofm. Moreover, the optimal value ofn

Ing error probability. Not(_e_t_hat_ using very §tr(_)ng ches AWl minishes a9 increases. Therefore, coding over fewer blocks

having small error probabilities in the transmission nettates ¢p,0.id be preferred under stringent buffer limitations.

small transm_issipn rates Ieadin_g to small t.hroughput. @n th In Fig.[3, we plot the optimal effective rate (optimized over

other hand, if higher transmission rates with relativelyawe decoding error probability) as a function off for given

channel coding are preferred, then communication reltybilm values. We set, — 50. We find that for small) values

degrades and more retransmissions are required agairimgmehavingm — 10 achieves the highest effective rate, whilefas

the throughput. increases, having: = 10 starts providing the lowest effective

Theorem 2: Given the values ofn > 0,7 > 0,6 > 0 and 5 ghput, due to similar reasons as outlined above.
SNR > 0, the function

_ —O0nmRy .

v =E {6 +(1=e)e } (12) Heretofore, we have implicitly assumed that the transmit-
is strictly convex ine and hence the optimal> 0 that mini- ter has perfect CSI and considered the scenario in which
mize ¥ (¢), or equivalently maximizes the effective throughputhe transmitter employs variable-rate transmissions véths
is unique. characterized byR; . given in [3). Note that in order to

A. Fixed Rate Transmissions
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Fig. 2. The effective rate as a function of. n = 50.e = 0.01. Fig. 4. The effective rate as a function & n = 200.

SNR > 0 are fixed, then the function

LS logy(1+ SNRyy) — R

®(R) = E{Q

L 2SNR:
\/a 2 1=1 mm(TrSNRe) 1082 €

% Z;il 10g2(1 + SNRZl) - R e@nmR}

m 2SNR:

\/% > i 1SNz 1082 €
is minimized at a uniquek and hence the optimaR that
minimizes®(R) or equivalently maximizes the effective rate
in I4) is unique.
Proof: See Appendix B.

In Fig. 4, we plot the effective rate as a function of the
fixed transmission raté for differentm values. We assume
that® = 0.01, n = 200. It is noted that there is a unique

R that maximizes the effective throughput. While we see in

;“'g’?sm't atﬁ_th.e ratd%lfn’ the transmitter .neleds to knqw rethe figure that the optimal effective throughput increases a
ading coefficients{z }i,. A more practical scenario is the increases from 1 to 10, further numerical analysis showed

one in which the transmitter does not know the channel stafés o . . A )
: . . résults similar to those discussed in the variable-rate,dass,
and send the information at a fixed rate &f Note that

in this case, the decoding error probability varies with theffectlve rate starts decreasing whenis increased beyond a

fading coefficients in each set ofi blocks in contrast to thresold value.
being constant in the previous analysis. The codeword error V. CONCLUSION

probability for a given channel stateis We have analyzed the performance of channel coding over

1 —m multiple blocks with possible decoding errors in the presen

m 2i=1108>(1 + SNRey) — R (13) of queueing constraints. We have characterized the eféecti

\/% Z;’il %%10&6 throughput. We have discussed two qliffgrent trgnsmission
strategies. For the case when the transmission rate igheanid

obtained by using({9). The effective rate is then expressedtfe error probability is kept fixed over different codewgnde

Effective rate (bits/channel use)

+|1-0Q

Fig. 3. The optimal effective rate vé. n = 50.

e(z,R) =Q

R4, R) have shown that the optimal error probability that maximaize
1 the effective throughput is unique. Similarly, when thenga
=-3 log, E, {€(z,R) + (1 — e(z, R))e” "™H} mission rate is kept fixed, we have proved that the optimal
nm rate that maximizes the effective throughput is also unique
_ 1 log. B4 Q % >oe logy (14 SNRy) — R Through numerical analysis, we have quantified the tradeoff
=g ge \/L e 2SNRe 10 o between the throughput and the number of blocks over which
m 24=1 nm(1+SNRe;) 082 coding is performed.

~ > 1ogy(1 4+ SNRz) — R —onmp | APPENDIX
\/ Lywm __2NRy jog,. ¢ A. Proof to Theorem[2

nm(1+SNRz;)
(14) We first prove the following.
Proposition 1: The function

+1-@

We have the following result.
_ —O0nmRy
Theorem 3: Assume that the values of, m, # > 0 and fle)=(1—¢ee : (15)



is strictly convex ine.

Proof: Denote

—OnmR; . = aQ (e) +b

(16)
where we, from[(P), define

m

:92

=1

2nSNRz;

17 SR logy e,b = —HnZ log, (1 + SNRz;).

=1
(17)

Note thata > 0 sincesNR > 0, z; > 0 andé > 0. Then we
can rewrite [(Ib) as

fle) = (18)

The first and second derivative ¢fe¢) with respect toe are
@)= (0O - 1)
fo = (-0 (¢0) - 20 @ + 1= 9070

% qe®@(e)+b

(1— €)es@ '+

aQ (e)+b (19)

(20)

inside the parentheses §f120) can be written as

a9 (@7@) ~207 0+ 1-907)  (@5)
=a(l— 5)27‘1’67(@71(6))2 +2V27e™ (@
+(1—2rQ Y(e)e™@ O (26)
=a(l - Q(m))?we‘é + 2\/ﬁe§ +(1- Q(:zc))?mce_w2
(27)
— e (2701 - Q)= + a)e’s + 2v2r) (28)
> T (27T(1 - Q(x))xe% + 2\/%) (29)
> e% <2wme§xeé + 2\/%) (30)
— T (—V2m +2V27) = T V27 > 0 (31)

where [29) follows from the facts that> 0 and hence:+a >
z. (30) is obtained from the following upper bound

1
1 — = — >
and the fact that < 0 for this case, and hence multiplication

of 2(1—Q(z)) can be lowerbounded. Thereforge) > 0 for
€> 1.

e_é forz <0 (32)

whereQ ' (e) and@Q~(¢) denote the first and second deriva- Also note thate = & meansQ~'(¢) = 0, so we have
tives of Q!(e) with respect toc. Note that for an invertible )
and differentiable functiog, we haveg(g—!(z)) = x. Taking a(l—e) (Q*l(e)) —2Q Y e)+(1—-)Q71(e) (33)
the derivative of both sides, we have o (0 1(?
) . . 1 =a(l —e)2me” @ ()" 4 2\/2me™— =
(g () (x)=1=¢ () = ———— 21 B —O-1(e))2
whereg(g~!(z)) denotes the first derivative gf evaluated at =am +2V21 >0 (35)

g 1(x), andg—1(x) is the derivative ofg~! with respect to
x. Noting that

o0 1 t2 . 1 m2
= Iz dt, =— T 22
| e tadw o=t @
we can derive the following
Q—l(e) _ _\/%6_(@’2(6)) . (23)
Note thatQ~!(¢) < 0 for 0 < ¢ < 1. Differentiating Q" (e)
with respect toe, we have
Q7 (e) = 2rQ N (e)e™ @ (D", (24)

Next, we consider the following two cases:

1) € < 2 We have@~
Q7 '(e) > 0. Together with the fact tha@
immediately see thaf(¢) > 0 for ¢ <3

1(e) < 0, we can

2) € > 3: We haveQ~
(23) and[(2h) to[[20) and denoting= Q~

L(¢), the expression

L(e) > 0 for this case and hence

L(e) < 0 for this case. Substituting

and as a resulf(¢) > 0.

From the above discussion, we can find thi&t) > 0 for
all € € [0,1]. f(e) is strictly convex ine. O
_Now, let % (e) e+ (1 — e)e0mie — ¢ 4 f(e).
P(e) = f(e) > 0. Since the nonnegative weighted sum of
strictly convex functions is a convex function [9], we can
conclude that¥(¢) is convex.

B. Proof to Theorem3

First, for any given channel state pair= (21, 22,...,2m),
we define
1 m
= — ) log,(1+ SNRz), (36)
m
=1
1 — 2SNRz;
_JEZ 1+SNRz)1g2€ (37)

and note thaty > 0,6 > 0. We can find that®(0)

1, ®(c0) =1, and®(R) < 1 for all R € (0,00). Note that
> 1 2
= T2 dt. 38
Q) = [ o= (39)



1 (n=R)?2

The first and second derivatives ®{ R) in R are given by

B = { VI } (1-emmr)

— onm (1 “E {Q (/%R) })

2
! 67% B R} (1 -

V2o 92

(n—R)?

(efoi o (-a{o ()

(40)
Now we need the following result.
Proposition 2: ®(R) = 0 has only one solution.

Proof: Obviously,®(0) > 0. Letting ®(R) = 0 and perform-
ing a simple computation, we have

(39)

d(R) :IE{

n—R
1 E{Q( 5 )} e OnmR
=0Onm | 2+ 0nm .
L _w-mp? 1 —e-0nmR
E e 262
V2w

(41)

First, we can show that the left-hand side (LHS)[afl (41) is afd)

increasing function inRk. Let

1 (n—R)?
g(R)=E {—6_262 . (42)
V2md
1 ef( ;51; -
V27d

ative weighted sum of concave functions is concag&®) is
log-concave function [9]. And hence log, g(R) iS convex
function. Note that

LHS = % (—log. g(R)) (43)

thus the derivative of LHS of{41) is greater th@nand as a
result it is increasing inR.

6797L77LR) + anmefenmR

is log-concave function [9]. Since the nonneg-(g

hence[[4ll) has only one solution. O

Denote the unique solution (R) = 0 as R’. We know
that &(R) > 0 for all R < R/, or ®(R) is increasing
equivalently, and®(R) < 0 for all R > R/, or ®(R)
is decreasing equivalently. Note here thﬁf0 ®(R)dR =
P(oc0) — ®(0) = 0, ©(0) = —Onm(1 —E{Q(£4)}) < 0,
so ®(R’) > 0. Otherwise,®(R) is decreasing foR > R/,
and henceb(R) < 0, [;° ®(R)dR < 0. Contradiction. Also
note that®(co) = 0, so ®(R) > 0 for R > R'. Thus, there
is only solution to®(R) = 0 in the rangeR € (0, R’), and
®(R) is minimized at this value.
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(2]

(3]

(4

(5]
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(8]

Next, we can prove that the right-hand side (RHSYof (41) is

a decreasing function iR®. Note that% is decreasing
in R. Let
u

efe (5 i)

whereg(z) = E< [*_ \/%e_%dt} and u(z) = £5%. We

(44)

know thatg(z) is a log-concave function [9], and from [9,

Eqg. 3.10], we can see th&ig, g is concave function, and

is concave and nonincreasing M, and hencdog, g(u(R))
( 2

1 ei M;éR)
is concave function inR directly.So e

o 1e{e(tsY))

1-e{Q(454)}

1L o~ (MQSR? :

V2§ €

E
is an

increasing function, i.e.;

g(u(R)),

is a decreasing

function in R. Thus, the RHS of{{41) is decreasing in R, and
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