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THE RCCN CRITERION OF SEPARABILITY FOR STATES IN
INFINITE-DIMENSIONAL QUANTUM SYSTEMS

YU GUO AND JINCHUAN HOU

Abstract. In this paper, the realignment criterion and the RCCN criterion of separability for

states in infinite-dimensional bipartite quantum systems are established. LetHA andHB be

complex Hilbert spaces with dimHA ⊗ HB = +∞. Let ρ be a state onHA ⊗ HB and{δk} be

the Schmidt coefficients ofρ as a vector in the Hilbert spaceC2(HA) ⊗ C2(HB). We introduce

the realignment operationρR and the computable cross norm‖ρ‖CCN of ρ and show that, if

ρ is separable, then‖ρR‖Tr = ‖ρ‖CCN =
∑

k
δk ≤ 1. In particular, ifρ is a pure state, thenρ is

separable if and only if‖ρR‖Tr = ‖ρ‖CCN =
∑

k
δk = 1.

1. Introduction

The quantum entanglement is one of the most striking features of the quantum mechanics

and it is used as a physical resource for communication information processing [1]. Conse-

quently, the detection of entanglement, that is, distinguishing separable and entangled states,

has been investigated extensively [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. However, in spite

of the considerable effort, no necessary-sufficient criterion that is practically implementable

is known so far even though in finite-dimensional bipartite quantum systems. The case of

infinite-dimensional systems can’t be neglected since theydo exist in the quantum world

[14, 15]. Therefore, how to recognize the separability of states in infinite-dimensional sys-

tems is a more difficult problem that is of both fundamental and practical importance within

quantum mechanics and quantum information theory.

It is known that, a density operatorρ (i.e., a positive trace-one operator) acting on a sep-

arable Hilbert spaceH = HA ⊗ HB describing the state of two quantum systems A and B, is

calledseparableif it can be written as a convex combination

ρ =
∑

i

piρ
A
i ⊗ ρB

i ,
∑

i

pi = 1, pi ≥ 0 (1)

or can be approximated in the trace norm by the states of the above form [16, 17], whereρA
i

andρB
i are (pure) states in the subsystems A and B which are described by the complex Hilbert

spacesHA andHB, respectively. Otherwise,ρ is calledentangled. Let Ss−p be the set of all
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separable pure states. It is shown in [18] that, any separable stateρ admits a representation

of the Bochner integral

ρ =

∫

Ss−p

ϕ(ρA ⊗ ρB)dµ(ρA ⊗ ρB), (2)

whereµ is a Borel probability measure onSs−p, ρA ⊗ ρB ∈ Ss−p andϕ : Ss−p → Ss−p is a

measurable function. Particularly, if dimHA ⊗ HB < +∞, then a stateρ acting onHA ⊗ HB is

separable if and only ifρ can be written as [16]

ρ =

n
∑

i=1

piρ
A
i ⊗ ρB

i , (3)

whereρA
i andρB

i are pure states in the subsystems A and B, respectively, and wherepi ≥ 0

with
n
∑

i=1
pi = 1 andn ≤ (dimHA⊗HB)2. In the infinite-dimensional case, there exists separable

state that can not be written in the form
+∞
∑

i=1
piρ

A
i ⊗ ρB

i with
+∞
∑

i=1
pi = 1 [18].

For the finite-dimensional bipartite quantum systems, K. Chen and L.-A. Wu proposed the

realignment criterion in [2], which reads as: ifρ is a separable state of the bipartite quantum

system, then the trace norm of the realignment matrix ofρ is not larger than 1. A short

later, O.Rudolph proved in [11] that ifρ is a state of the bipartite quantum system, then the

computable cross norm ofρ equals the trace norm of the realignment matrix ofρ. This result,

combining the result in [2], is called therealignment criterion or computable cross norm

criterion (or RCCN criterion briefly) [2, 10, 11]. Then, a natural problem is arisen: whether

or not there is a counterpart result for the infinite-dimensional bipartite quantum systems?

We find that the answer is ‘yes’. The aim of the present paper isto establish the realignment

criterion and the RCCN criterion for the infinite-dimensional bipartite quantum systems.

The paper is organized as follows. In section 2, we summarizethe studies on the re-

alignment criterion and the RCCN criterion for finite-dimensional bipartite quantum sys-

tems, which enlightens the way how to generalize the conception of realignment to the

infinite-dimensional case. Section 3 devotes to generalizing the notion of the realignment

operation to the infinite-dimensional systems, and presenting the realignment criterion and

the RCCN criterion for infinite-dimensional bipartite quantum systems. LetHA andHB be

Hilbert spaces. We introduce three equivalent definitions of the realignment operation from

the Hilbert-Schmidt classC2(HA⊗HB) intoC2(HB⊗HB,HA⊗HA) and reveal that the realign-

ment operation

T 7→ TR (4)

is an isometry with respect to the Hilbert-Schmidt norm‖ · ‖2. Letρ be a state onHA⊗HB and

{δk} be the Schmidt coefficients ofρ regarded as a vector in the Hilbert spaceC2(HA)⊗C2(HB).

We show that, ifρ is separable, then‖ρR‖Tr = ‖ρ‖CCN =
∑

k
δk ≤ 1. In particular, ifρ is a pure
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state, thenρ is separable if and only if‖ρR‖Tr = ‖ρ‖CCN =
∑

k
δk = 1 (Criteria 3.3 and 3.7).

Thus ‖ρR‖Tr = ‖ρ‖CCN =
∑

k
δk > 1 signals the entanglement ofρ. The RCCN criterion

just provides a necessary condition for separability [11].However, the RCCN criterion can

detect many states with positive partial transpose (PPT) [10, 11], i.e., the so-called PPT states

(which are bound entangled states). Several examples are given to illustrate the relations

between the RCCN criterion and the PPT criterion. They show that the infinite-dimensional

RCCN criterion can also detect some PPT states as desired (see Examples 3.8-3.10). A final

conclusion is included in the last section.

We fix some notations. Throughout the paper we use the Dirac’ssymbols. R, C and

N stand for the set of all real numbers, the set of all complex numbers and the set of all

nonnegative integers, respectively. The bra-ket notation, 〈·|·〉 stands for the inner product in

the given Hilbert spaces, i.e.,HA ⊗ HB, HA, or HB. The set of all bounded linear operators on

some Hilbert spaceH is denoted byB(H), the set of trace class operators onH is denoted by

T (H) and the set of all Hilbert-Schmidt class operators onH is denoted byC2(H). A ∈ B(H)

is self-adjoint ifA† = A (A† stands for the adjoint operator ofA); A is said to be positive,

denoted byA ≥ 0, if A† = A and〈ψ|A|ψ〉 ≥ 0 for all |ψ〉 ∈ H. AT stands for the transpose of

the operatorA, ‖ · ‖Tr denotes the trace norm and‖ · ‖2 denotes the Hilbert-Schmidt norm, i.e.,

‖A‖Tr = Tr((A†A)
1
2 ) and‖A‖2 = (Tr(A†A))

1
2 . By S(HA), S(HB) andS(HA ⊗ HB) we denote

the sets of states onHA, HB and HA ⊗ HB, respectively. BySsep we denote the set of all

separable states inS(HA ⊗ HB). A stateρ is called a pure state if Tr(ρ2) = 1 and is called

a mixed state if Tr(ρ2) < 1 as usual. We also call a unit vector|ψ〉 ∈ HA ⊗ HB a pure state

which is corresponding to the density operatorρ = |ψ〉〈ψ|. We fix in the ‘local Hilbert space’

HA, HB orthonormal bases{|m〉}NA
m=1 and {|µ〉}NB

µ=1, whereNA = dimHA and NB = dimHB,

respectively (note that we use Latin indices for the subsystem A and the Greek indices for the

subsystem B. Also,NA andNB may be+∞). Then, a vector|ψ〉 ∈ HA ⊗ HB can be written as

|ψ〉 = ∑m,µ dmµ|m〉|µ〉 ∈ HA ⊗ HB. Let Dψ = (dmµ) (or [dmµ]) be the coefficient operator of|ψ〉.
Remark thatDψ = (dmµ) can be regarded as an operator fromHB into HA and it is a Hilbert-

Schmidt class operator with the Hilbert-Schmidt norm‖Dψ‖2 = ‖|ψ〉‖. We writeD̄ = ( ¯dmµ),

where ¯dmµ is the complex conjugation ofdmµ. The partial transpose ofρ ∈ S(HA ⊗ HB) with

respect to the subsystem B (resp. A) is denoted byρTB (resp. ρTA), that is,ρTB = (I ⊗ T)ρ

(resp. ρTA = (T ⊗ I )ρ), whereT is the map of taking transpose with respect to the given

orthonormal basis.

2. The RCCNcriterion for finite-dimensional systems

To find a way of generalizing the notion of the realignment of ablock matrix to that of an

operator matrix acting on an infinite-dimensional Hilbert space, in this section, we summarize
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some known facts about the realignment criterion and the related RCCN criterion for finite-

dimensional bipartite quantum systems in references [2, 11, 19, 20, 21] and discuss them

briefly. Assume that dimHA = NA and dimHB = NB are finite throughout this section.

Firstly, we recall the definition of the realignment operation for theNANB×NANB matrices,

i.e., theNA×NA block matrices with each block is of sizeNB×NB. Recalling that, for aNA×NA

block matrixT = (Bi j )NA×NA with each blockBi j of the sizeNB × NB, 1 ≤ i, j ≤ NA, the row

realignment matrixTR of T is defined as

TR = [(vec(B11))T , . . . , (vec(B1NA))
T , . . . ,

(vec(BNA1))T , . . . , (vec(BNANA))T ]T ,
(5)

which is aN2
A × N2

B matrix, where for a givenX = [xi j ] with 1 ≤ i ≤ s and 1≤ j ≤ t, vec(X)

is defined by

vec(X) = [x11, . . . , x1t, x21, . . . , x2t, . . . , xs1, . . . , xst].

For example, in the case of a two-qubit system, let

ρ =















B11 B12

B21 B22















=









































ρ11 ρ12 ρ13 ρ14

ρ21 ρ22 ρ23 ρ24

ρ31 ρ32 ρ33 ρ34

ρ41 ρ42 ρ43 ρ44









































,

where Bi js are operators on the space associated with the second system. Then the row

realignment matrix ofρ (ref. [20]) is

ρR =









































ρ11 ρ12 ρ21 ρ22

ρ13 ρ14 ρ23 ρ24

ρ31 ρ32 ρ41 ρ42

ρ33 ρ34 ρ43 ρ44









































.

It is clear that the realignment operationT 7→ TR is a linear map, that is, (αT + βS)R =

αTR + βSR, α, β ∈ C.

The so-called realignment criterion due to Chen and Wu [2] isthe following

The realignment criterion for finite-dimensional bipartit e systems.Assume that HA

and HB are of finite-dimensions andρ ∈ S(HA ⊗ HB) is a state. Ifρ is separable, then

‖ρR‖Tr ≤ 1.

The realignment criterion presents a quite strong necessary condition for separability which

is easily performed and independent to the well-known PPT criterion. However, the above

definition of the realignment operation cannot be generalized to the infinite-dimensional

cases. Fortunately, there are several different definitions of the realignment operation that

are equivalent to each other. This allows us to find ways of generalizing the realignment

operation to infinite-dimensional cases.
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With respect to a fixed product basis{|m〉|µ〉} of HA ⊗ HB = C
NA ⊗ CNB, every operator

A ∈ B(HA⊗HB) can be written in the formA = [amµ,nν], where the entryamµ,nν = 〈m|〈µ|A|n〉|ν〉,
the double indices (mµ)↔ (m−1)NB+µ and (nν)↔ (n−1)NB+ ν refer respectively to rows

and columns of matrixA. Then we have [20]

AR = [ãmn,µν], ãmn,µν = amµ,nν, (6)

where the double indices (mn)↔ (m−1)NA+n and (µν) ↔ (µ−1)NB+ν refer respectively to

rows and columns of matrixAR. For the above exampleρ in the case of a two-qubit system,

using the double indices, we may write

ρ =









































ρ11,11 ρ11,12 ρ11,21 ρ11,22

ρ12,11 ρ12,12 ρ12,21 ρ12,22

ρ21,11 ρ21,12 ρ21,21 ρ21,22

ρ22,11 ρ22,12 ρ22,21 ρ22,22









































and then

ρR =









































ρ̃11,11 ρ̃11,12 ρ̃11,21 ρ̃11,22

ρ̃12,11 ρ̃12,12 ρ̃12,21 ρ̃12,22

ρ̃21,11 ρ̃21,12 ρ̃21,21 ρ̃21,22

ρ̃22,11 ρ̃22,12 ρ̃22,21 ρ̃22,22









































=









































ρ11,11 ρ11,12 ρ12,11 ρ12,12

ρ11,21 ρ11,22 ρ12,21 ρ12,22

ρ21,11 ρ21,12 ρ22,11 ρ22,12

ρ21,21 ρ21,22 ρ22,21 ρ22,22









































.

The operation of realignment can also be defined in another alternative way [11]. For a

NA × NA matrix A = [amn] ∈ B(HA) (resp. NB × NB matrix B = [bµν] ∈ B(HB)) in terms of

the basis{|m〉} (resp. {|µ〉} ), regardA (resp. B) as a vector|A〉 = ∑
m,n

amn|m〉|n〉 in CN2
A (resp.

|B〉 = ∑
µ,ν

bµν|µ〉|ν〉 in CN2
B). If ρ =

s
∑

k=1
Ak ⊗ Bk ∈ S(HA ⊗ HB), then

ρR =

s
∑

k=1

|Ak〉〈Bk|, (7)

where〈Bk| denotes the transpose of|Bk〉 (not the conjugate transpose as usual),k = 1, 2, . . . ,

s. In particular, for any pure stateρψ = |ψ〉〈ψ|, write |ψ〉 = ∑m,µ dmµ|m〉|µ〉 andD = [dmµ], then

by [20],

ρR
ψ = D ⊗ D̄. (8)

It follows that, for any mixed stateρ =
t
∑

i=1
piρi, wherepi ≥ 0,

t
∑

i=1
pi = 1 andρi are pure states

of the bipartite system,i = 1, 2,. . . , t, ρR can be defined to be

ρR =

t
∑

i=1

piρ
R
i =

t
∑

i=1

piDi ⊗ D̄i , (9)

whereρi = |ψi〉〈ψi | with |ψi〉 =
∑

d(i)
mµ|m〉|µ〉 andDi = [d(i)

mµ] is the coefficient matrix of|ψi〉
[20].
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Similarly, the column realignment matrix ofρ, denoted byρRc
, was defined in [2]. For the

two-qubit stateρ mentioned above, we have

ρRc
=









































ρ11 ρ21 ρ12 ρ22

ρ31 ρ41 ρ32 ρ42

ρ13 ρ23 ρ14 ρ24

ρ33 ρ43 ρ34 ρ44









































.

It is easy to check that,

ρRc
= [ρ̃νµ,nm]T , ρ̃νµ,nm= ρmµ,nν; (10)

if ρ =
∑

k
Ak ⊗ Bk with Ak =

∑

m,n
a(k)

mn|m〉〈n| andBk =
∑

µ,ν

b(k)
µν |µ〉〈ν|, then

ρRc
=

s
∑

k=1

|Ãk〉〈B̃k|, (11)

where|Ãk〉 =
∑

m,n
a(k)

mn|n〉|m〉 and|B̃k〉 =
∑

µ,ν

b(k)
µν |ν〉|µ〉, k = 1, 2,. . . , s; if ρ =

t
∑

i=1
piρi, then

ρRc
=

t
∑

i=1

piρ
R′
i =

t
∑

i=1

piD
T
i ⊗ D̄i

T
, (12)

whereρi, pi andDi defined as in Eq.(9). For instance, using the double indices,the column

realignment matrix of the exampleρ mentioned above is

ρRc
=









































ρ̃11,11 ρ̃11,12 ρ̃11,21 ρ̃11,22

ρ̃12,11 ρ̃12,12 ρ̃12,21 ρ̃12,22

ρ̃21,11 ρ̃21,12 ρ̃21,21 ρ̃21,22

ρ̃22,11 ρ̃22,12 ρ̃22,21 ρ̃22,22









































T

=









































ρ11,11 ρ12,11 ρ11,12 ρ12,12

ρ21,11 ρ22,11 ρ21,12 ρ22,12

ρ11,21 ρ12,21 ρ11,22 ρ12,22

ρ21,21 ρ22,21 ρ21,22 ρ22,22









































.

The singular values ofρR andρRc
are equal [21]. In fact, letFA =

NA
∑

m,n=1
|m〉〈n| ⊗ |n〉〈m| and

FB =
NB
∑

µ,ν=1
|µ〉〈ν|⊗|ν〉〈µ|; thenFA (resp.FB) is a unitary matrix of sizeN2

A×N2
A (resp.N2

B×N2
B).

FA andFB are the so-called swap operators or the flip operators [22]. It is easily checked that

FA|Ak〉 = |Ãk〉 andFB|Bk〉 = |B̃k〉, k = 1, 2, . . . . It turns out that

ρR = FAρ
Rc

FB. (13)

Therefore, we need to consider the row realignment only.

In the following, the realignment of a matrix always refers to the row realignment of the

matrix unless specified.

Note that, for any stateρ ∈ S(HA ⊗ HB), one has

‖ρR‖2 = ‖ρ‖2 ≤ ‖ρ‖Tr = 1. (14)
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For anyC ∈ B(HA ⊗ HB), thecomputable cross normof C, ‖C‖CCN, is defined by:

‖C‖CCN := inf {
s
∑

k=1
‖Ak‖2‖Bk‖2 : C =

s
∑

k=1
Ak ⊗ Bk,

Ak ∈ B(HA), Bk ∈ B(HB)},
(15)

where the infimum is taken over all finite decompositions ofC into a finite sum of simple

tensors [11].

Notice that the linear spaceB(HA⊗HB) can be considered as a Hilbert space if it is equipped

with the (complex) Hilbert-Schmidt scalar product:

〈A|B〉 := Tr(A†B),A, B ∈ B(HA ⊗ HB),

the Hilbert-Schmidt norm,‖ · ‖2, reads as

‖A‖2 := (Tr(A†A))1/2.

Then, everyρ ∈ S(HA ⊗ HB) can be regarded as a ‘vector’ in the Hilbert spaceB(HA ⊗
HB) equipped with the Hilbert-Schmidt inner product. It follows that there is a Schmidt

decomposition ofρ:

ρ =

r
∑

k=1

δkEk ⊗ Fk,

where the coefficients {δk} are positive,{Ek}, {Fk} are orthonormal sets of Hilbert spaces

B(HA),B(HB), respectively, andr is the Schmidt number ofρ. The set of the positive numbers

{δk} is uniquely determined by the corresponding vectorρ, and they are called the Schmidt

coefficients ofρ [21].

It is showed in [11, 20, 21] that

‖ρ‖CCN = ‖ρR‖Tr =

r
∑

k=1

δk, (16)

whereδk is the Schmidt coefficients ofρ. From this point of view, this cross norm‖ρ‖CCN of

ρ is called computable cross norm ofρ, and the following criterion is calledthe realignment

or computable cross norm criterion(the RCCN criterion for short) due to [11, 19, 20].

The RCCN criterion for finite-dimensional bipartite quantu m systemsLet HA and HB

be finite-dimensional Hilbert spaces andρ ∈ S(HA ⊗ HB) be a state. Letρ =
r
∑

k=1
δkEk ⊗ Fk be

the Schmidt decomposition ofρ as a vector ofC2(HA) ⊗ C2(HB). If ρ is separable, then

‖ρ‖CCN = ‖ρR‖Tr =

r
∑

k=1

δk ≤ 1. (17)

In particular, if ρ is a pure state, thenρ is separable if and only if

‖ρ‖CCN = ‖ρR‖Tr =

r
∑

k=1

δk = 1. (18)
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It is known that the RCCN criterion is neither weaker nor stronger than the PPT criterion

[11]. Namely, there exist PPT entangled states which can be detected by the RCCN criterion,

while there are non-PPT entangled states which can not be detected by the RCCN criterion

(for instance, certaind × d Werner states, ref. [10, 11, 16]).

3. The RCCNcriterion for infinite-dimensional systems

In this section, we will establish the realignment criterion and the RCCN criterion for

infinite-dimensional bipartite quantum systems. Unless specifically stated, we assume that at

least one ofHA andHB is of infinite dimension throughout this section.

In [3], we proposed a so-called realignment operation for a given pure state in infinite-

dimensional bipartite quantum systems. For a given fixed product basis{|m〉|µ〉} of HA ⊗ HB,

every unit vector|ψ〉 can be written in|ψ〉 = ∑
m,µ

dmµ|m〉|µ〉. Write D = (dmµ) andD̄ = ( ¯dmµ).

Then the realignment operator of the pure stateρψ = |ψ〉〈ψ| is defined to be

ρR′
ψ = D ⊗ D̄. (19)

It is straightforward that‖ρR′
ψ ‖2 = ‖D⊗D̄‖2 = ‖D‖2 ·‖D̄‖2 = 1,ρR′

ψ ∈ C2(HB⊗HB,HA⊗HA). As

the realignment operation must be linear, we can define a realignment operation for a mixed

stateρ =
∑k

i=1 piρi by ρR′ =
∑k

i=1 piρ
R′
i , whereρis are pure states,k ∈ N or k = +∞. This

definition obviously coincides with that for finite-dimensional systems.

Like the case of finite-dimensions, for an arbitrarily fixed product basis{|m〉|µ〉}, ρψ can be

written in an infinite matrix of double indices

ρψ = (ρψmµ,nν), ρ
ψ
mµ,nν := 〈m|〈µ|ρψ|n〉|ν〉 (20)

and we have

ρR′
ψ = D ⊗ D̄ = (ρ̃ψmn,µν), ρ̃

ψ
mn,µν = 〈m|〈n|ρR′

ψ |µ〉|ν〉. (21)

It is easy to check that

ρ̃ψmn,µν = ρ
ψ
mµ,nν. (22)

Inspired by Eq.(22), we now give a definition of the realignment operation. As usual, we

denote byC2(H,K) (C2(H) if H = K) the set of all Hilbert-Schmidt operator from the Hilbert

spaceH into the Hilbert spaceK. That is,C2(H,K) is a Hilbert space with respect to the

complex scalar product〈A|B〉 := Tr(A†B),A, B ∈ C2(H,K). The Hilbert-Schmidt norm ofA

is ‖A‖2 = (Tr(A†A))1/2.

Definition 3.1.Let T ∈ C2(HA⊗HB) and Z∈ C2(HB⊗HB,HA⊗HA). Let{|m〉} and{|µ〉} be

arbitrarily given orthonormal bases of HA and HB, respectively. Then T and Z can be written

respectively in

T = (tmµ,nν), tmµ,nν = 〈m|〈µ|T |n〉|ν〉
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and

Z = (zmn,µν), zmn,µν = 〈m|〈n|Z|µ〉|ν〉.

If

zmn,µν = tmµ,nν, (23)

we say that Z is the realignment operator of T , denoted by TR = Z, with respect to the given

bases.

The realignment operationR : C2(HA⊗HB)→ C2(HB⊗HB,HA⊗HA) defined byRT = TR

as in the Definition 3.1 is an isometry, namely,R is linear and‖RT‖2 = ‖TR‖2 = ‖T‖2 for

everyT. Particularly, for anyρ ∈ S(HA ⊗ HB), we have

‖ρR‖2 = ‖ρ‖2 ≤ ‖ρ‖Tr = 1. (24)

By Eqs.(20)-(22) and Definition 3.1, it follows that, for anymixed stateρ =
∑

i
pi |ψi〉〈ψi |

where
∑

i
pi = 1, pi ≥ 0, ρi = |ψi〉〈ψi | are pure states, we have

ρR =
∑

i

piDi ⊗ D̄i = ρ
R′, (25)

where the series converges in Hilbert-Schmidt norm onC2(HB⊗HB,HA⊗HA), andDi = (d(i)
mµ)

whenever|ψi〉 =
∑

m,µ
d(i)

m,µ|m〉|µ〉. Thus the realignment operation defined in Definition 3.1 coin-

cides with that introduced in [3]. It is also clear thatρR is independent on the decomposition

of ρ, that is, ifρ =
∑

j
q j |φ j〉〈φ j | is another decomposition ofρ into an infinite convex combi-

nation, then
∑

i
piDi ⊗ D̄i =

∑

j
q jD′j ⊗ D̄′j, whereD′j = (d( j)

mµ) whenever|φ j〉 =
∑

m,µ
d( j)

m,µ|m〉|µ〉.

Remark 3.2. (1) It is clear that the realignment operation in Definition 3.1 is an infinite-

dimensional generalization of the row realignment of a matrix for finite-dimensional case as

discussed in section 2.

(2) The trace norm and the Hilbert-Schmidt norm of the realignment operator of a state is

independent on the choice of the bases ofHA andHB.

(3) Similarly, we can define the column realignment operation T 7→ TRc
by Eq.(10). Then,

if ρ =
∑

i pi |ψi〉〈ψi |, we haveρRc
=
∑

i piDT
i ⊗ D̄i

T , wherepi, Di are the same as the ones

mentioned above. LetFA :=
∑

m,n |m〉|n〉〈n|〈m| andFB :=
∑

µ,ν |µ〉|ν〉〈ν|〈µ|. It turns out that

F†A/B = FA/B, FA/BF†A/B = IA/B andρRc
= FAρ

RFB, whereIA/B is the identity operator onHA/B.

It follows that‖ρR‖Tr = ‖ρRc‖Tr. Thus, it is sufficient to discuss the row realignment operation

only.

In what follows, we will show that the set of the realignment operators of the separable

states are trace class operators fromHB ⊗ HB into HA ⊗ HA. In fact, we have
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Criterion 3.3. (The realignment criterion for infinite-dimensional bipart ite quantum

systems) If ρ ∈ S(HA ⊗ HB) is separable, then

‖ρR‖Tr ≤ 1. (26)

In particular, if ρ is a pure state, thenρ is separable if and only if

‖ρR‖Tr = 1. (27)

Proof. The last assertion was already proved in [3], that is, for thecase thatρ is a pure

state,ρ is separable if and only if‖ρR‖Tr = 1.

If ρ is a separable mixed state, then by Eq.(2), there exist a Borel probability measureµ

onSs−p and a measurable functionϕ : Ss−p → Ss−p such thatρ has a representation of the

Bochner integral

ρ =

∫

Ss−p

ϕ(ρA ⊗ ρB)dµ(ρA ⊗ ρB), ρA ⊗ ρB ∈ Ss−p. (28)

It is known that, from the definition of the Bochner integral,there exists a sequence of step

functions{ϕn} such that

ϕ(ρA ⊗ ρB) = lim
n→∞

ϕn(ρ
A ⊗ ρB)

with respect to the trace norm, where

ϕn(ρ
A ⊗ ρB) =

kn
∑

i=1

χEi (ρ
A ⊗ ρB)ρA

i ⊗ ρB
i ,

χEi (·) is the characteristic function ofEi and{Ei}kn
i=1 is a partition ofSs−p. Thus

ρ = lim
n→∞

kn
∑

i=1

µ(Ei)ρ
A
i ⊗ ρB

i

with respect to the trace norm, as well as with respect to the Hilbert-Schmidt norm. Because

the realignment operation is continuous, we have

ρR = lim
n→∞

kn
∑

i=1
µ(Ei)(ρA

i ⊗ ρB
i )R

= lim
n→∞

∫

Ss−p
(ϕn(ρA

i ⊗ ρB
i ))Rdµ(ρA ⊗ ρB)

=
∫

Ss−p
(ϕ(ρA

i ⊗ ρB
i ))Rdµ(ρA ⊗ ρB)

(29)

with respect to the Hilbert-Schmidt norm. Therefore,

‖ρR‖Tr ≤
∫

Ss−p
‖(ϕ(ρA ⊗ ρB))R‖Trdµ(ρA ⊗ ρB)

=
∫

Ss−p
1dµ(ρA ⊗ ρB) = 1

as‖(ϕ(ρA ⊗ ρB))R‖Tr = 1 by Eq.(27). This completes the proof. �
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LetSR
sep= {ρR : ρ ∈ Ssep}. The previous criterion shows thatSR

sep⊂ T1(HB⊗HB,HA⊗HA),

whereT1(HB ⊗ HB,HA ⊗ HA) denotes the set of all trace-class operators fromHB ⊗ HB into

HA ⊗ HA with the trace-norm not greater than 1.

Next we will show that, there is another alternative way to perform realignment operation

for all states which is equivalent to the operation proposedas in Definition 3.1.

Let A ∈ B(HA), B ∈ B(HB). For given bases{|m〉} and{|µ〉} of HA andHB, respectively,A

andB can be written in the formA =
∑

m,n
amn|m〉〈n| andB =

∑

µ,ν

bµν|µ〉〈ν|. RegardA as a vector

|A〉 = ∑
m,n

amn|m〉|n〉 in the Hilbert spaceC2(HA) andB as|B〉 = ∑
µ,ν

bµν|µ〉|ν〉 in the Hilbert space

C2(HB), respectively. Let〈B| denote the transpose of|B〉. Let ρ be a separable state with

ρ =
∑

i
piρ

A
i ⊗ ρB

i , wherepi ≥ 0,
∑

i
pi = 1, ρA

i andρB
i are pure states inS(HA) andS(HB),

respectively. It is easy to see thatρR =
∑

i
piDi ⊗ D̄i =

∑

i
pi |ρA

i 〉〈ρB
i | as|ρA

i 〉〈ρB
i | = Di ⊗ D̄i. This

motivates the possibility of generalizing Eq.(7) to infinite-dimensional cases.

To do this, notice thatS(HA ⊗ HB) ⊂ T (HA ⊗ HB) ⊂ C2(HA ⊗ HB) = C2(HA) ⊗ C2(HB). So

each stateρ can be regarded as a “vector” of the Hilbert spaceC2(HA)⊗C2(HB). Considering

the Fourier representation ofT ∈ C2(HA)⊗C2(HB) with respect to a product basis ofC2(HA)⊗
C2(HB), we see thatT can be written in the form

T =
∑

k

Ak ⊗ Bk, (30)

where{Ak} ⊂ C2(HA), {Bk} ⊂ C2(HB) and the series converges in the Hilbert-Schmidt norm.

Proposition 3.4. Let T ∈ C2(HA ⊗ HB). Write T =
∑

k
Ak ⊗ Bk as in Eq.(30). Then, with

respect to given bases{|m〉} and{|µ〉} of HA and HB, respectively, we have

TR =
∑

k

|Ak〉〈Bk|, (31)

where the series converges in Hilbert-Schmidt norm onC2(HB ⊗ HB,HA ⊗ HA), |Ak〉 =
∑

m,n
a(k)

mn|m〉|n〉 if Ak =
∑

m,n
a(k)

mn|m〉〈n|, |Bk〉 =
∑

µ,ν

b(k)
µν |µ〉|ν〉 if Bk =

∑

µ,ν

b(k)
µν |µ〉〈ν| and 〈Bk| denotes

the transpose of|Bk〉, k = 1, 2, . . . .

Proof. WriteR′(T) =
∑

k
|Ak〉〈Bk| wheneverT =

∑

k
Ak ⊗ Bk as in Eq.(30). We show that

R′(T) = R(T) = TR (32)

holds for allT ∈ C2(HA⊗HB). It is easy to check that, ifT =
∑

k
Ak⊗ Bk = (tmµ,nν), thenTR′ =

∑

k
|Ak〉〈Bk| = (t̃mn,µν) with t̃mn,µν = tmµ,nν. Thus,TR′ = TR is well defined. It remains to show

that the series
∑

k
|Ak〉〈Bk| converges toT in the Hilbert-Schmidt norm. LetTn =

n
∑

k=1
Ak ⊗ Bk

andTR
n =

n
∑

k=1
|Ak〉〈Bk|; then‖TR − TR

n ‖2 = ‖
∞
∑

k=n+1
|Ak〉〈Bk|‖2 = ‖

∞
∑

k=n+1
Ak ⊗ Bk‖2→ 0 (n→ +∞)

since‖T − Tn‖2→ 0 (n→ +∞). �
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By now, for any stateρ ∈ S(HA ⊗ HB), we have three equivalent definitions of the realign-

ment operator of it.

Inspired by Eq.(30) and an idea in [11], we generalize the notion of “computable cross

norm” to the infinite-dimensional case.

Definition 3.5. The computable cross norm‖T‖CCN of an arbitrary element T∈ C2(HA ⊗
HB) is defined by

‖T‖CCN := inf {
∑

k

‖Ak‖2‖Bk‖2 : T =
∑

k

Ak ⊗ Bk}, (33)

where the infimum runs over all decompositions of T into elementary tensors as that in

Eq.(30).

It is evident that‖ · ‖CCN is a cross norm onC2(HA ⊗ HB) since‖A⊗ B‖CCN = ‖A‖2‖B‖2 for

all A ∈ C2(HA), B ∈ C2(HB). Also, we may have‖T‖CCN = +∞ for someT.

Noticing that, every vector in the tensor product Hilbert space of two Hilbert spaces has a

so-called Schmidt decomposition [3]. Together with the fact C2(HA⊗HB) = C2(HA)⊗C2(HB),

we can derive that, for any stateρ on HA ⊗ HB, ρ has a Schmidt decomposition as a vector in

C2(HA) ⊗ C2(HB), i.e.,

ρ =

Nρ
∑

k=1

δkEk ⊗ Fk, (34)

whereEk ∈ C2(HA), Fk ∈ C2(HB) satisfying Tr(E†kEl) = δkl and Tr(F†kFl) = δkl, k, l = 1,

2, . . . ,Nρ, the positive scalarsδ1 ≥ δ2 ≥ · · · are uniquely determined by the corresponding

vectorρ, and they are the so-called Schmidt coefficients ofρ [3], while Nρ (may be+∞) is

called the Schmidt number ofρ. Since Tr(ρ2) = 〈ρ|ρ〉 = ∑
k
δ2

k, we have
∑

k
δ2

k = 1 ⇔ ρ is a

pure state and
∑

k
δ2

k < 1⇔ ρ is a mixed state.

The following lemma highlights the relations among the trace norm of the realignment

operator, the computable cross norm and the sum of the Schmidt coefficients of a state. As

one might expect, the result is the same as that for the finite-dimensional case.

Lemma 3.6. Letρ be a state inS(HA ⊗ HB) and{δk} be the Schmidt coefficients ofρ as a

vector inC2(HA) ⊗ C2(HB). Then we have

‖ρR‖Tr = ‖ρ‖CCN =
∑

k

δk. (35)

Proof. Let ρ =
∑

k
Ak⊗Bk as in Eq.(30) andρ =

∑

k
δkEk⊗Fk be the Schmidt decomposition

of ρ as a vector inC2(HA)⊗C2(HB), where the series converges in Hilbert-Schmidt norm. Then

ρR =
∑

k
|Ak〉〈Bk|, and

‖ρR‖Tr =
∑

k

δk (36)
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since one can regardρR =
∑

k
δk|Ek〉〈Fk| as the singular value decomposition ofρR. Next, we

show that

‖ρR‖Tr = inf {
∑

k

‖|Ak〉‖ · ‖|Bk〉‖ : ρ =
∑

k

Ak ⊗ Bk}. (37)

On the one hand, we have‖ρR‖Tr ≤
∑ ‖|Ak〉〈Bk|‖Tr =

∑

k
‖|Ak〉‖ · ‖|Bk〉‖. On the other hand,

‖ρR‖Tr =
∑

k
δk‖|Ek〉‖ · ‖|Fk〉‖ =

∑

k
δk since‖|Ek〉‖ = ‖Ek‖2 = ‖|Fk〉‖ = ‖Fk‖2 = 1. Namely, the

infimum is attained at the singular value decomposition ofρ. Now, we arrive at

‖ρR‖Tr = inf{∑
k
‖|Ak〉‖ · ‖|Bk〉‖ : ρ =

∑

k
Ak ⊗ Bk}

= inf{∑
k
‖Ak‖2‖Bk‖2 : ρ =

∑

k
Ak ⊗ Bk}

= ‖ρ‖CCN,

(38)

which completes the proof. �

For a pure stateρψ ∈ S(HA ⊗ HB), let |ψ〉 = ∑
k
λk|mk〉|µk〉 be the Schmidt decomposition of

|ψ〉 ∈ H ⊗ K, then it is straightforward that

‖ρψ‖CCN = (
∑

k

λk)
2. (39)

From this it is obvious that a pure stateρ is separable if and only if‖ρR‖Tr = ‖ρψ‖CCN = 1.

Further more, combining Criterion 3.3 and Lemma 3.6, we establish the RCCN criterion for

the infinite-dimensional systems, that is, the criterion below is the main result of this paper.

Criterion 3.7. (The RCCN criterion for infinite-dimensional bipartite quan tum sys-

tems) Let ρ ∈ S(HA ⊗ HB) and {δk} be the Schmidt coefficients ofρ as a vector inC2(HA) ⊗
C2(HB). If ρ is separable, then

‖ρR‖Tr = ‖ρ‖CCN =
∑

k

δk ≤ 1. (40)

In particular, assume thatρ is a pure state, thenρ is separable if and only if

‖ρR‖Tr = ‖ρ‖CCN =
∑

k

δk = 1. (41)

In what follows, we give some examples to illustrate that there exist PPT entangled states

that can be detected by the RCCN criterion, there exist PPT entangled states that can not be

detected by the realignment criterion and there exist non-PPT entangled state that can not be

detected by the RCCN criterion. These examples imply that the RCCN criterion is neither

‘weaker’ nor ‘stronger’ than the PPT criterion. There also exist entangled states which can

not be detected by any one of these two criteria. However, we can show that, for the so-called

‘symmetric sates’, the PPT criterion is equivalent to the RCCN criterion, namely, a symmetric

stateρ satisfying‖ρR‖Tr ≤ 1 if and only if it is a PPT state (see in Proposition 3.13).
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Example 3.8. Let HA andHB be complex Hilbert spaces with orthonormal bases{|0〉, |1〉,
. . . } and{|0′〉, |1′〉, . . . }, respectively. Let

ρα =
2
7
|w〉〈w| + α

7
σ+ +

5− α
7

σ−,

where|w〉 = 1√
3
(|0〉|0′〉 + |1〉|1′〉 + |2〉|2′〉), σ+ = 1

3(|0〉|1′〉〈0|〈1′| + |1〉|2′〉〈1|〈2′| + |2〉|0′〉〈2|〈0′|),
σ− =

1
3(|1〉|0′〉〈1|〈0′| + |2〉|1′〉〈2|〈1′| + |0〉|2′〉〈0|〈2′|) and 2≤ α ≤ 5. A straightforward calcula-

tion shows that

‖ρR
α‖Tr =

19
21
+

2
21

√
19− 15α + 3α2.

It is easy to check that‖ρR
α‖Tr ≤ 1 if and only if 2 ≤ α ≤ 3. Thus, by the RCCN criterion,

3 < α ≤ 5 impliesρα is entangled.

Define

σ =

+∞
∑

i=3

pi |i〉〈i| ⊗ |i′〉〈i′|, pi ≥ 0,
∞
∑

i=3

pi = 1.

Thenσ is a separable state and‖σR‖Tr = 1. Let

ρt,α = tρα + (1− t)σ, 0 < t ≤ 1, 3 < α ≤ 4. (42)

By [11, 23], it is easily checked thatρt,α is a PPT state whenever 3< α ≤ 4 sinceρTB
α ≥ 0

whenever 3< α ≤ 4. On the other hand,

‖ρR
t,α‖Tr = ‖tρR

α + (1− t)σR‖Tr = t‖ρR
α‖Tr + (1− t)‖σR‖Tr.

It follows that‖ρR
t,α‖Tr > 1 for all 0≤ t < 1 as‖σR‖Tr = 1 and‖ρR

α‖ > 1 whenever 3< α ≤ 4.

So, there are PPT entangled states that can be detected by theRCCN criterion.

The example below is discussed in [24] and it illustrates particularly that there exist non-

PPT states as well as entangled PPT states that con not be recognized by the RCCN criterion.

Example 3.9.Let HA andHB be complex Hilbert spaces of dimension≥ 4 with orthonor-

mal bases{|0〉, |1〉, |2〉, . . . } and{|0′〉, |1′〉, |2′〉, . . . }, respectively. Let|ω〉 = 1√
4
(|0〉|0′〉+|1〉|1′〉+

|2〉|2′〉 + |3〉|3′〉). Define ρ1 = |ω〉〈ω|, ρ2 =
1
4(|0〉|1′〉〈0|〈1′| + |1〉|2′〉〈1|〈2′| + |2〉|3′〉〈2|〈3′| +

|3〉|0′〉〈3|〈0′|), ρ3 =
1
4(|0〉|2′〉〈0|〈2′| + |1〉|3′〉〈1|〈3′| + |2〉|0′〉〈2|〈0′| + |3〉|1′〉〈3|〈1′|) and ρ4 =

1
4(|0〉|3′〉〈0|〈3′| + |1〉|0′〉〈1|〈0′| + |2〉|1′〉〈2|〈1′| + |3〉|2′〉〈3|〈2′|). Let

ρ =

4
∑

i=1

qiρi and ρt = (1− t)ρ + tρ0, (43)

whereqi ≥ 0 for i = 1, 2, 3, 4 with q1 + q2 + q3 + q4 = 1, t ∈ [0, 1], andρ0 is a state on

HA ⊗ HB. It was shown in [23] that, for sufficiently smallt, or for ρ0 with |i〉|µ′〉〈 j|〈ν′|ρ0 =

ρ0|i〉|µ′〉〈 j|〈ν′| = 0 for anyi, j, µ, ν ∈ {0, 1, 2, 3}, the following statements are true.

(1) If qi < q1 for somei = 2, 3, 4, thenρt is entangled.
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(2) Let ρ0 be PPT. Thenρt is PPT if and only ifq2q4 ≥ q2
1 andq3 ≥ q1. Thus, if 0< qi <

q1 <
1
4, 1

4 ≤ q j < 1 with qiq j ≥ q2
1 and 0< q1 ≤ q3 < 1, wherei, j ∈ {2, 4} andi , j, thenρt is

PPT entangled.

(3) The trace norm of the realignment operator ofρ is

‖ρR‖Tr =
3
4

√

∑4
i=1 q2

i − q1q2 − q2q3 − q3q4 − q1q4

+1
4

√

∑4
i=1 q2

i + 3(q1q2 + q2q3 + q3q4 + q1q4) + 3q1.

Thus, ifρ0 is PPT, and ifq1 ≥ 1
6, qi =

1
2q1, q j =

1
2 andq3 =

1
2−3qi, wherei, j ∈ {2, 4} andi , j,

thenρt is PPT entangled with‖ρR‖Tr > 1 for sufficient smallt, that is,ρt is PPT entangled that

can be detected by the RCCN criterion; ifq1 ≤ 1
7, qi =

1
2q1, q j =

1
2 andq3 =

1
2 − 3qi, where

i, j ∈ {2, 4} andi , j, then, for sufficient smallt, ‖ρR‖Tr < 1 andρt is PPT entangled but can

not be detected by the RCCN criterion.

The following illustrates that how to find suitableρt so that‖ρR
t ‖Tr < 1 butρt is not PPT.

If ρ0 is not PPT, we chooseq1 ≤ 1
7, qi =

1
2q1, q j =

1
2 andq3 =

1
2−3qi, wherei, j ∈ {2, 4} and

i , j. Then, as mentioned above we have‖ρR‖Tr < 1. Thus, for sufficient smallt, ‖ρR
t ‖Tr < 1.

This means thatρt is not PPT but can not be recognized by the RCCN criterion.

If ρ0 is PPT, we chooseq2 =
1
2 −

3
2q1, q3 =

1
2q1 andq4 =

1
2. A computation shows that

‖ρR‖Tr < 1 for q1 ≤ 1
7. For instance,‖ρR‖Tr = 0.9866 if q1 =

1
7; ‖ρR‖Tr = 0.9496 if q1 =

1
8;

‖ρR‖Tr = 0.7264 if q1 =
1

100. Sinceq3 < q1, ρ is not PPT and thusρt is not PPT. However,

‖ρR
t ‖Tr < 1 for sufficient smallt.

Example 3.10.Let HA = HB be complex Hilbert spaces with orthonormal bases{|0〉, |1〉,
. . . }. Fixing a positive number 3≤ m ∈ N. Define

ρm,c :=
1

m3 −m
((m− c)Pm + (mc− 1)Fm),

wherePm :=
m−1
∑

i=0

m−1
∑

j=0
|i〉〈i| ⊗ | j〉〈 j| andFm :=

m−1
∑

i=0

m−1
∑

j=0
|i〉〈 j| ⊗ | j〉〈i|. It is easy to check that

‖ρR
m,c‖Tr =















2
m − c : if − 1 ≤ c ≤ 1

m,

c : if 1 ≥ c ≥ 1
m.

If dim HA = m, thenρm,c = ρc is the so-called Werner state [16]. It is shown in [16] that

ρc is separable⇔ ρTB ≥ 0⇔ 0 ≤ c ≤ 1.

We can derive that

ρm,c is separable⇔ ρTB ≥ 0⇔ 0 ≤ c ≤ 1.

Consequently, if2
m − 1 ≤ c < 0, thenρm,c is a non-PPT entangled state which satisfies

‖(ρm,c)R‖ ≤ 1, that is,ρm,c can not be recognized by the RCCN criterion.
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Let

̺ =

+∞
∑

i=m

pi |i〉〈i| ⊗ |i〉〈i|, pi ≥ 0,
+∞
∑

i=m

pi = 1,

then̺ is separable. Let

ρε,c = ε̺ + (1− ε)ρm,c, 0 ≤ ε < 1,
2
m
− 1 ≤ c < 0. (44)

It is straightforward thatρε,c is a state acting onHA ⊗ HB andρTB
ε,c is not positive. Now, we

can conclude that for any2m − 1 ≤ c < 0 and 0≤ ε < 1, ρε,c is a non-PPT entangled state

satisfying‖ρR
ε,c‖Tr ≤ 1 since‖̺R‖Tr = 1 and‖ρR

m,c‖Tr ≤ 1.

Now let us turn to another related topic. In [22], several entanglement criteria for the so-

called ‘symmetric states’ in the finite-dimensional bipartite quantum systems are presented.

Recall that, a stateρ on a finite dimensional bipartite systemHA ⊗ HB is called a symmetric

state if dimHA = dimHB = N andρ = Fρ = ρF, whereF is the flip operator, namely,F

satisfiesF |ψA〉|ψB〉 = |ψB〉|ψA〉 for any |ψA〉 ∈ HA and |ψB〉 ∈ HB. It is showed that, for a

symmetric stateρ in a finite-dimensional bipartite quantum system,‖ρR‖Tr ≤ 1 if and only if

ρ is a PPT state. Inspired by [22], we can generalize the conception of the symmetric states

to the infinite-dimensional case with the same spirit.

Definition 3.11.Let HA and HB be Hilbert spaces withdimHA = dimHB = +∞. Let {|m〉}
and{|µ〉} be orthonormal bases respectively of HA and HB. A stateρ ∈ S(HA ⊗ HB) is said to

be symmetric if

ρ = Fρ = ρF, (45)

where F=
∑

m,µ
|m〉|µ〉〈µ|〈m|.

The operatorF in the definition is called the flip operator. It is clear thatF |ψA〉|ψB〉 =
|ψB〉|ψA〉 for any |ψA〉 ∈ HA, |ψB〉 ∈ HB.

Write ρ = (ρmµ,nν), whereρmµ,nν = 〈m|〈µ|ρ|n〉|ν〉, one can obtain

Lemma 3.12.If ρ ∈ S(HA ⊗ HB) is a symmetric state, then

ρmµ,nν = ρµm,nν = ρmµ,νn = ρµm,νn. (46)

Moreover,

FρR = ρTA. (47)

Proof. Write ρR = (ρ̂mµ,nν), FρR = (ρ̌mµ,nν). It turns out that ˆρmµ,nν = ρmn,µν, ρ̌mµ,nν = ρ̂µm,nν,

and thus ˇρmµ,nν = ρ̂µm,nν = ρµn,mν. On the other hand, writingρTA = (ρ̃mµ,nν), we have ˜ρmµ,nν =

ρnµ,mν. Therefore,ρTA = FρR sinceρµn,mν = ρnµ,mν. �

As F is unitary, by Lemma 3.12, the singular values ofρR is equal to the singular values

of ρTA. Since Tr(ρTA) = 1, it follows thatρTA is not positive if and only ifρTA has at least one
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negative eigenvalue. Therefore,ρ is not PPT implies that‖ρR‖Tr = ‖ρTA‖Tr > 1 and vice versa.

Thus we have proved the following

Proposition 3.13.If ρ ∈ S(HA ⊗ HB) is symmetric, thenρ is a PPT state if and only if

‖ρR‖Tr ≤ 1.

4. Conclusion

In conclusion, we generalize the row realignment operation, the Computable Cross Norm

to the states of infinite-dimensional bipartite quantum systems. The realignment operators of

the states are Hilbert-Schmidt operators fromHB ⊗ HB into HA ⊗ HA, and moreover, the row

realignment operationT 7→ TR is an isometric linear map fromC2(HA ⊗ HB) into C2(HB ⊗
HB,HA ⊗ HA). Similar to that in the finite-dimensional bipartite quantum systems, there are

two kinds of realignment operations, namely, the row realignment operation and the column

realignment operation. These two realignment operations are equivalent up to the trace norm.

So, it suffices to discuss the row realignment operation.

In fact, three equivalent definitions of the realignment operation are introduced. This allow

us to establish the realignment criterion and the RCCN criterion of separability for states

in infinite-dimensional bipartite systems. Thus, for both finite-dimensional and infinite-

dimensional systems, if a stateρ ∈ S(HA⊗HB) is separable, then‖ρR‖Tr = ‖ρ‖CCN =
∑

k δk ≤ 1,

where‖ρ‖CCN is the computable cross norm ofρ and{δk} are the Schmidt coefficients ofρ as

a vector in the Hilbert spaceC2(HA)⊗C2(HB). For the case thatρ is pure,ρ is separable if and

only if ‖ρR‖Tr = ‖ρ‖CCN =
∑

k δk = 1. Like the case of finite-dimension, the RCCN criterion

and the PPT criterion are independent as illustrated by examples, and these two criteria are

equivalent for the symmetric states.
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[21] K. Życzkowski, I. Bengtsson, Open Sys. Information Dyn.11,3-42(2004).
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