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THE RCCN CRITERION OF SEPARABILITY FOR STATES IN
INFINITE-DIMENSIONAL QUANTUM SYSTEMS

YU GUO AND JINCHUAN HOU

AsstracT. In this paper, the realignment criterion and the RCCN ddteof separability for
states in infinite-dimensional bipartite quantum systeresestablished. Letla andHg be
complex Hilbert spaces with dia ® Hg = +c0. Letp be a state odp ® Hg and{dy} be
the Schmidt cofficients ofp as a vector in the Hilbert spack(Ha) ® C2(Hg). We introduce
the realignment operatigsR and the computable cross nofiilccy of p and show that, if
p is separable, theipR||r = llollcen = Zk]dk < 1. In particular, ifp is a pure state, themis

separable if and only ifoR|lt; = l|ollcen = %5k =1.

1. INTRODUCTION

The quantum entanglement is one of the most striking featnfréhe quantum mechanics
and it is used as a physical resource for communicationnmtion processing [1]. Conse-
guently, the detection of entanglement, that is, distigigmig separable and entangled states,
has been investigated extensively([2| B, 4,15,6,/ 7/ 8, 9, 1012, 13]. However, in spite
of the considerableffort, no necessary-fiicient criterion that is practically implementable
is known so far even though in finite-dimensional bipartiteigtum systems. The case of
infinite-dimensional systems can’'t be neglected since thegxist in the quantum world
[14,[15]. Therefore, how to recognize the separability afedt in infinite-dimensional sys-
tems is a more diicult problem that is of both fundamental and practical int@oce within
guantum mechanics and quantum information theory.

It is known that, a density operatpr(i.e., a positive trace-one operator) acting on a sep-
arable Hilbert spackl = Ha ® Hg describing the state of two quantum systems A and B, is
calledseparabléf it can be written as a convex combination

P=ZpiPiA®PiB, Zpi=1, pi >0 (1)
| |

or can be approximated in the trace norm by the states of theedorm [16/17], wherg?
andp? are (pure) states in the subsystems A and B which are deddnjitbe complex Hilbert
spaced andHg, respectively. Otherwise, is calledentangled Let S, be the set of all
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separable pure states. It is shownlin/[18] that, any sepasdateo admits a representation
of the Bochner integral

p= f (" ® p®)u(o © °), )
Ssp

wherey is a Borel probability measure a8 p, p* ® p® € Ss.pandy : Ssp > Sspis a
measurable function. Particularly, if diAdy ® Hg < +o0, then a state acting onHa ® Hg is
separable if and only j§ can be written as [16]

n
p=> pplep, 3)

i=1
wherep®* andp? are pure states in the subsystems A and B, respectively, bateyw > 0
n
with Z pi = 1 andn < (dimHA®Hg)?. In the infinite-dimensional case, there exists separable

state that can not be written in the fo@ pipl ® p? with Z pi = 1[18].

For the finite-dimensional blpartlte quantum systems KerCand L.-A. Wu proposed the
realignment criterion in_[2], which reads asyifs a separable state of the bipartite quantum
system, then the trace norm of the realignment matriyx & not larger than 1. A short
later, O.Rudolph proved in [11] that if is a state of the bipartite quantum system, then the
computable cross norm pfequals the trace norm of the realignment matrix.of his result,
combining the result inJ2], is called threalignment criterion or computable cross norm
criterion (or RCCN criterion briefly)[[2, 10, 11]. Then, a natural prein is arisen: whether
or not there is a counterpart result for the infinite-dimenai bipartite quantum systems?
We find that the answer is ‘yes’. The aim of the present papter éstablish the realignment
criterion and the RCCN criterion for the infinite-dimensabbipartite quantum systems.

The paper is organized as follows. In section 2, we summadhieestudies on the re-
alignment criterion and the RCCN criterion for finite-dinsganal bipartite quantum sys-
tems, which enlightens the way how to generalize the cormemtf realignment to the
infinite-dimensional case. Section 3 devotes to genenglihe notion of the realignment
operation to the infinite-dimensional systems, and présgihe realignment criterion and
the RCCN criterion for infinite-dimensional bipartite qtam systems. LeH, andHg be
Hilbert spaces. We introduce three equivalent definitidrith® realignment operation from
the Hilbert-Schmidt clasS,(Ha® Hg) into Co(Hg ® Hg, HA® Hp) and reveal that the realign-
ment operation

T TR 4)
is an isometry with respect to the Hilbert-Schmidt ndfith. Letp be a state oMs® Hg and

{0k} be the Schmidt cd&cients ofp regarded as a vector in the Hilbert spazéH,)C»(Hg).
We show that, ifp is separable, thelpR|it = llpllcen = . 6k < 1. In particular, ifp is a pure
k
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state, them is separable if and only ifoR|lr = llpllcen = . 6k = 1 (Criteria 3.3 and 3.7).
Thus ||l = llellcen = X6k > 1 signals the entanglekment pf The RCCN criterion
just provides a necessarykcondition for separability [H¢wever, the RCCN criterion can
detect many states with positive partial transpose (FRJ;)11], i.e., the so-called PPT states
(which are bound entangled states). Several examples aa tp illustrate the relations
between the RCCN criterion and the PPT criterion. They shawthe infinite-dimensional
RCCN criterion can also detect some PPT states as desie&xsenples 3.8-3.10). A final
conclusion is included in the last section.

We fix some notations. Throughout the paper we use the Disgisbols. R, C and
N stand for the set of all real numbers, the set of all compleximers and the set of all
nonnegative integers, respectively. The bra-ket notatiphstands for the inner product in
the given Hilbert spaces, i.dds ® Hg, Ha, Or Hg. The set of all bounded linear operators on
some Hilbert spackl is denoted byB(H), the set of trace class operatorstéiis denoted by
7" (H) and the set of all Hilbert-Schmidt class operatord-bis denoted by’,(H). A € B(H)
is self-adjoint if A" = A (A" stands for the adjoint operator 8J; A is said to be positive,
denoted byA > 0, if AT = Aand(y|Aly) > 0 for all |y) € H. AT stands for the transpose of
the operatoA, || - ||t denotes the trace norm afel|, denotes the Hilbert-Schmidt norm, i.e.,
Al = Tr((ATA)?) and||All, = (Tr(A'A))z. By S(Hp), S(Hg) andS(Ha ® Hg) we denote
the sets of states oia, Hg andHa ® Hg, respectively. BySse, we denote the set of all
separable states ifi(Ha ® Hg). A statep is called a pure state if Tsf) = 1 and is called
a mixed state if Ti?) < 1 as usual. We also call a unit vectgp € Ha ® Hg a pure state
which is corresponding to the density operatct |y)(y|. We fix in the ‘local Hilbert space’
Ha, Hg orthonormal basegm)}4, and{|y>}/'f§1, whereN, = dimHa andNg = dimHpg,
respectively (note that we use Latin indices for the sulesygt and the Greek indices for the
subsystem B. AlsdN, andNg may be+w0). Then, a vectojy) € Hy ® Hg can be written as
W) = Xmy QM) € Ha® Hp. Let Dy, = (dm,) (0r [dm,]) be the coéicient operator ofy).
Remark thaD, = (dy,) can be regarded as an operator freiginto Ha and it is a Hilbert-
Schmidt class operator with the Hilbert-Schmidt ndii|l. = |lly)ll. We writeD = (d;w),
whered;\u is the complex conjugation af,,,. The partial transpose pfe S(Ha ® Hg) with
respect to the subsystem B (resp. A) is denotegBy(resp. p™), that is,p™ = (1 @ T)p
(resp. p™ = (T ® l)p), whereT is the map of taking transpose with respect to the given
orthonormal basis.

2. THE RCCN CRITERION FOR FINITE-DIMENSIONAL SYSTEMS

To find a way of generalizing the notion of the realignment bf@ck matrix to that of an
operator matrix acting on an infinite-dimensional Hilbgrase, in this section, we summarize
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some known facts about the realignment criterion and tleeelRCCN criterion for finite-
dimensional bipartite quantum systems in references [21%9120, 21] and discuss them
briefly. Assume that ditd, = N and dinHg = Ng are finite throughout this section.

Firstly, we recall the definition of the realignment opewatfor theNaNg x NaANg matrices,
i.e., theNaxNa block matrices with each block is of sidig xNg. Recalling that, for 8NaxNa
block matrixT = (Bjj)n.xn, With each blockB;; of the sizeNg x Ng, 1 < i,j < N,, the row
realignment matrix R of T is defined as

TR = [(VeC(Bll))T, cees (VEC(B]_NA))T, ceey
(VeC(BNAl))T’ KRR} (VeC(BNANA))T]T,

which is aN3 x N2 matrix, where for a giveiX = [x;] with 1 <i < sand 1< j <'t, vecX)
is defined by

()

Vec(><):[Xll"‘~’Xlt’x21’---,X2t,...,Xsl,...,xsd.

For example, in the case of a two-qubit system, let

P11 P12 | P13 P14
_( B Blz]_ P21 P22 | P23 P24
"\ Ba Bi) | par px2|p3 pas
P41 P42 | P43 P44

where Bjjs are operators on the space associated with the secondnhsy3teen the row
realignment matrix op (ref. [20]) is

P11 P12 P21 P22
R P13 P14 P23 P24
P31 P32 P41 P42
P33 P34 P43 Pas

It is clear that the realignment operatidn+— TR is a linear map, that isao{l + BS)R =
aTR+BSR a,B€C.

The so-called realignment criterion due to Chen and Wu [#jesfollowing

The realignment criterion for finite-dimensional bipartit e systems. Assume that K
and Hs are of finite-dimensions and € S(Ha ® Hp) is a state. Ifp is separable, then
ol < 1.

The realignment criterion presents a quite strong necgssadition for separability which
is easily performed and independent to the well-known PR&ran. However, the above
definition of the realignment operation cannot be genegdlito the infinite-dimensional
cases. Fortunately, there are severéledent definitions of the realignment operation that
are equivalent to each other. This allows us to find ways okeg#izing the realignment
operation to infinite-dimensional cases.
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With respect to a fixed product bagisw|u)} of Hya ® Hg = CM @ CNs, every operator
A € B(Ha®Hg) can be written in the form = [ay, n,], where the entry, n, = (MKulAIN)|v),
the double indicesfu) « (m-1)Ng +u and fv) « (n— 1)Ng + v refer respectively to rows
and columns of matriA. Then we have [20]

AR = [annuv]’ émrwv = Qmu,mvs (6)

where the double indices) < (m—-1)Na+nand (uv) « (u—1)Ng + v refer respectively to
rows and columns of matriAR. For the above examp}ein the case of a two-qubit system,
using the double indices, we may write

P1111 P1112 P1121 P1122
P1211 P1212 P1221 P1222

P P2111 P2112 P2121 P2122
P2211 P2212 P2221 2222
and then
/511,11 /51112 /511,21 /511,22 P1111 P1112 P1211 P1212
R_ P1211 P1212 P1221 P1222 | P1121 P1122 P1221 P1222
P /521,11 /52112 /521,21 /521,22 P2111 P2112 P2211 P2212
/522,11 /52212 /522,21 /522,22 P2121 P2122 P2221 P2222

The operation of realignment can also be defined in anothemative way[[11]. For a
Na X Na matrix A = [amq € B(Ha) (resp. Ng x Ng matrix B = [b,,] € B(Hg)) in terms of
the basig|m)} (resp. {|u)} ), regardA (resp. B) as a vectofA) = 3, amJm)ny in CMA (resp.

mn

B) = b, [)l) in C%). If p = 3 Ac® By € S(Ha® Hg), then
J7R% k=1

PR = IAXBY, ()
k=1

where(By| denotes the transpose |&) (not the conjugate transpose as usuah, 1, 2,.. .,
s. In particular, for any pure stagg, = [y){y|, write ) = 3\, Ay, IM|uy andD = [dy, ], then
by [20],

p5:D®D. (8)

t t
It follows that, for any mixed state = > pioi, wherep; > 0, > pi = 1 andp; are pure states
i=1 i=1

of the bipartite system,= 1, 2,..., t, p® can be defined to be
t t
PR=ZPiPiR=ZPiDi®Di, 9)

wherep; = i)yl with [y7) = 3 d8Im)|u) andD; = [dl)] is the coeficient matrix of|y;)
[20].
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Similarly, the column realignment matrix pf denoted by®’, was defined in[2]. For the
two-qubit statep mentioned above, we have

P11 P21 P12 P22
R P31 P41 P32 P42

p =
P13 P23 P14 P24
P33 P43 P34 P44
It is easy to check that,
pRc = [f)vy,nm]T’ ﬁvy,nm = pmu,nv; (10)

if p= ¥ Ac® B with Ac = ¥ alfim)(n| andBy = 3 billu)(v], then
k mn wy
s ~ ~
PR = > 1A, (11)
k=1

- o _ t
wherelA = 3 amimim) and|Bg = 3 b2, k=1,2,..., s if p = % pipi, then
mn 1=

J7RY
t t -

p¥=> ppf =) pD @D/, (12)
i=1 i=1

wherep;, pi andD; defined as in Eq.(9). For instance, using the double indtbesgolumn
realignment matrix of the examptementioned above is
T

P1111 P1112 P1121 P1122 P1111 P1211 P1112 P1212
R P1211 P1212 P1221 P1222 _ | P2111 P2211 P2112 P2212
p 02111 P2112 P2121 P2122 L1121 P1221 P1122 P1222
P2211 P2212 P2221 P2222 P2121 P2221 P2122 P2222

N
The singular values gif andp® are equall[21]. In fact, | = f Imy(n| ® [n){m| and
mn=1

N
Fg= ZB [y (vI®|v)ul; thenF A (resp.Fg) is a unitary matrix of sizé&lZ x N2 (resp.N3 x N3).
uy=1
Fa andFg are the so-called swap operators or the flip operators [2B] elsily checked that

FAAD = |A) andFg|B) = |By), k=1, 2,.... It turns out that
p" = Fap™Fe. (13)

Therefore, we need to consider the row realignment only.

In the following, the realignment of a matrix always refessttie row realignment of the
matrix unless specified.

Note that, for any state € S(Ha ® Hg), one has

o8Iz = llpll2 < lipllr = 1. (14)
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For anyC € B(Ha ® Hg), thecomputable cross norwf C, ||Cl|ccn, is defined by:
IClleen = infl %, IAIB2 : C = % Ac® By
A¢ € B(Hp), Bk € B(Hg)},

where the infimum is taken over all finite decomposition€ahto a finite sum of simple

(15)

tensorsl([11].
Notice that the linear spad&H,®Hg) can be considered as a Hilbert space if itis equipped
with the (complex) Hilbert-Schmidt scalar product:

(AIB) := Tr(A'B), A, B € B(Ha ® Hg),
the Hilbert-Schmidt norm| - ||», reads as
Al := (Tr(ATA)Y2.

Then, everyp € S(Ha ® Hg) can be regarded as a ‘vector’ in the Hilbert sp&i{él, ®
Hg) equipped with the Hilbert-Schmidt inner product. It falle that there is a Schmidt
decomposition op:

r
p= ), 5E® Fi.
k=1

where the coféicients{dx} are positive {E,}, {F¢} are orthonormal sets of Hilbert spaces
B(Ha), B(Hg), respectively, andis the Schmidt number @f. The set of the positive numbers
{6k} is uniquely determined by the corresponding vegtoand they are called the Schmidt
codficients ofp [21]].

It is showed in[[11], 20, 21] that

r
llolloen = llo%he = > 6 (16)
k=1

wheredy is the Schmidt ca@cients ofp. From this point of view, this cross norfjp|iccn Of
p is called computable cross norm@fand the following criterion is callethe realignment
or computable cross norm criterigithe RCCN criterion for short) due to [11,]19,/20].

The RCCN criterion for finite-dimensional bipartite quantu m systemsLet Hy and H
be finite-dimensional Hilbert spaces ap& S(Ha ® Hg) be a state. Lep = Zr] oxEx ® F be
the Schmidt decomposition@fs a vector 0€,(Ha) ® Co(Hpg). If pis sepairzlble, then

r
llollcen = llo%i = > 6k < 1. (17)
k=1

In particular, if p is a pure state, thep is separable if and only if

r
llolloen = llo%ie = > 6k = 1. (18)
k=1
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It is known that the RCCN criterion is neither weaker nor sgrer than the PPT criterion
[11]. Namely, there exist PPT entangled states which careteeted by the RCCN criterion,
while there are non-PPT entangled states which can not leetddtby the RCCN criterion
(for instance, certaid x d Werner states, refi. [10, 11, 116]).

3. Tue RCCN CRITERION FOR INFINITE-DIMENSIONAL SYSTEMS

In this section, we will establish the realignment critariand the RCCN criterion for
infinite-dimensional bipartite quantum systems. Unles#jgally stated, we assume that at
least one oH, andHg is of infinite dimension throughout this section.

In [3], we proposed a so-called realignment operation foivargpure state in infinite-
dimensional bipartite quantum systems. For a given fixedyrbbasig|m)|u)} of Hy ® Hg,
every unit vectoffy) can be written ify) = 3, dy,lm)u). Write D = (dny,) andD = (d;w).

mu
Then the realignment operator of the pure stgte: [)(y| is defined to be
p5 =D®D. (19)

Itis straightforward thaffof! Il = ID®DI|> = [IDIl2-IDllz = 1,pf € C2(He®Hg, Ha®Ha). As
the realignment operation must be linear, we can define gn@aént operation for a mixed
statep = XX, pioi by R = 3K, pipR, wherep;s are pure stateg, € N ork = +co. This
definition obviously coincides with that for finite-dimeosal systems.

Like the case of finite-dimensions, for an arbitrarily fixedguct basig|my|w)}, p, can be
written in an infinite matrix of double indices

Py = Ohyn)s Pieny == (Miuloy M) (20)
and we have
P = D@D = Fhnyn): By = MO )1 (21)
It is easy to check that
Py = Pl (22)

Inspired by Eq.(22), we now give a definition of the realigmin@peration. As usual, we
denote byC»(H, K) (C2(H) if H = K) the set of all Hilbert-Schmidt operator from the Hilbert
spaceH into the Hilbert spac&. That is,C2(H, K) is a Hilbert space with respect to the
complex scalar producd|B) := Tr(A'B), A, B € C,(H, K). The Hilbert-Schmidt norm of
is [|Allz = (Tr(ATA))Y2.

Definition 3.1.Let T € Co(HA®Hg) and Ze C>(Hg ® Hg, HA® Hp). Let{im)} and{|u)} be
arbitrarily given orthonormal bases of Hand Hg, respectively. Then T and Z can be written
respectively in

T = (tmun)s Ty = MKuITNY|Y)
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and

Z = (Zmnwr)s Zongy = (MUNIZDIY).

Zmnuy = tmy,nw (23)

we say that Z is the realignment operator of T, denoted By, with respect to the given
bases.

The realignment operatioR : Co(Ha® Hg) — Ca(He ® Hg, Ha® Ha) defined byRT = TR
as in the Definition 3.1 is an isometry, nameR/js linear and|RT||, = |[TR|l, = ||T|l» for
everyT. Particularly, for any € S(Ha ® Hg), we have

o8Iz = llpll2 < lipllr = 1. (24)

By Egs.(20)-(22) and Definition 3.1, it follows that, for amjixed statep = . pili }{¥il
|
whereZ pi =1, p = 0,pi = [¥i)Xyil are pure states, we have
|

pR=> pDieD =pF, (25)
i

where the series converges in Hilbert-Schmidt norn@gilg @ Hg, HA®H,), andD; = (dﬁ&

whenevety;) = Y dﬂzﬂlm)lm. Thus the realignment operation defined in Definition 3.h€oi
mu

cides with that introduced in [3]. It is also clear th&tis independent on the decomposition
of p, that is, ifp = Z il )¢l is another decomposition pfinto an infinite convex combi-

nation, thenz pi D ® D; = Z q;D)® D’ WhereD’ = (d,%’,) whenevelg;) = Z d(‘#|m>|,u>

Remark 3 2.(1) Itis clear that the realignment operation in Deflnltlofl B an infinite-
dimensional generalization of the row realignment of a irddr finite-dimensional case as
discussed in section 2.

(2) The trace norm and the Hilbert-Schmidt norm of the reatignt operator of a state is
independent on the choice of the basesigiandHg.

(3) Similarly, we can define the column realignment operefio~ TR by Eq.(10). Then,
if o = X pili)wil, we haveo® = ¥ pDf ® D", where pi, D; are the same as the ones
mentioned above. Le&ts = X, IMINXNKm andFg = X, [w)v){v[{ul. It turns out that
FA/B = FaB, FA/BFA/B |a/s @andp® = FpoRFg, wherel s g is the identity operator oH /.

It follows that||oR|l = l|o%|I+r. Thus, it is stficient to discuss the row realignment operation
only.

In what follows, we will show that the set of the realignmepeacators of the separable
states are trace class operators figpg Hg into Hy ® Ha. In fact, we have
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Criterion 3.3. (The realignment criterion for infinite-dimensional bipart ite quantum

system$ If p € S(HA ® Hp) is separable, then
ol < L. (26)

In particular, if p is a pure state, thep is separable if and only if

ol = 1. (27)

Proof. The last assertion was already proved_ in [3], that is, forctee thap is a pure
statep is separable if and only [foR|l+ = 1.

If pis a separable mixed state, then by Eq.(2), there exist a Baybability measure
onSs , and a measurable functign: Ss., — Ss_p such thap has a representation of the
Bochner integral

p= [ et prestess, (28)
Sep

It is known that, from the definition of the Bochner integtthlere exists a sequence of step
functions{en} such that

¢(p" ®p°) = lim gn(p” ® p°)
with respect to the trace norm, where
ko
0" ® 0% = > xe (" @p®)pl @ pP,
i=1

xg (+) is the characteristic function &; and{Ei}:“:“l is a partition ofSs_p. Thus

Kn
p = lim Zl:u(Ei)piA ®pp
i=

with respect to the trace norm, as well as with respect to iheeH-Schmidt norm. Because
the realignment operation is continuous, we have

PR = Iim 3 €Nt @ o)
= lim [0 (nlol @ P du(o” @ p) (29)
= 5. (o @ pP))*du(o” © pP)
with respect to the Hilbert-Schmidt norm. Therefore,
Rl <[5, o0 ® p®) 0o  pB)
= fSH 1du(p” ® pB) = 1

as||(¢(0” ® p®))R|Itr = 1 by Eq.(27). This completes the proof. O
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Let Sgep= {07 : p € Ssep. The previous criterion shows th&8f,, c 71(Hs®Hg, Ha®Ha),
where71(Hg ® Hg, Ha ® Hp) denotes the set of all trace-class operators fly® Hg into
Ha ® Ha with the trace-norm not greater than 1.

Next we will show that, there is another alternative way tdqgren realignment operation
for all states which is equivalent to the operation propaseh Definition 3.1.

Let A € B(Ha), B € B(Hg). For given basefm)} and{|u)} of Hy andHg, respectivelyA
andB can be written in the formh = Z amalMy(n| andB = Z b.,lu){vl. RegardA as a vector
|AY = Z amnM|n) in the Hilbert spacé)z(HA) andB aslB) = 2 b |)lv) in the Hilbert space
Cz(HB) respectively. LetB| denote the transpose (B). Letp be a separable state with
p = 2 pipl ® p?, wherep; > 0, Z pi = 1, pf andp? are pure states i§(Ha) and S(Hg),
respectlvely It is easy to see thﬁt 2 piD;®D; = Z pilo) (Bl aslpf)pf| = Di® D;. This
motivates the possibility of generallzmg Eq.(7) to mfmﬂhmensmnal cases.

To do this, notice thaf(Ha ® Hg) € 7 (Ha ® Hg) € Co(Ha ® Hg) = C2(Ha) ® C2(Hg). So
each state can be regarded as a “vector” of the Hilbert sp&gH,) ® C2(Hg). Considering
the Fourier representation dfe C,(Ha) ® C2(Hg) with respect to a product basis@(Ha) ®
C2(Hg), we see thal can be written in the form

T=> A®B, (30)
k

where{A} c Co(Hp), {Bx} € Co(Hg) and the series converges in the Hilbert-Schmidt norm.
Proposition 3.4. Let T € Co(Ha ® Hg). Write T = 3} Ac ® By as in Eq.(30). Then, with
k

respect to given basgn)} and{|u)} of Hy and Hs, respectively, we have
= > IAXB, (31)
k

where the series converges in Hilbert-Schmidt normGa(Hg ® Hg, Ha ® Hp), |A) =
2 anminy if Ac = 3 amimnl, [Bo = T binloly) if Be = 3 bl and (B denotes
the transpose dBy), k=1, 2,.... " "

Proof. Write R'(T) = %lAk>(Bk| wheneveiT = %Ak ® By as in Eq.(30). We show that

R(T) =R(T) =TR (32)

holds for allT € C,(Ha® Hg). Itis easy to check that, i 2 A ® By = (toyny), thenTR =

2 IANB = (Emnge) With rny = tryn Thus, TR = TRis WeII defined. It remains to show
k

n
that the serie§ |A)(By| converges td in the Hilbert-Schmidt norm. Let, = Z A ® By

andTg = Z IAO(B; then|I TR — T, = || S IAXBlz =1l 3 Ac®Bylz = 0 (0 — +00)

k=n+1 k=n+1

sincel||T — Tn||2 — 0 (n > +). O
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By now, for any state € S(Ha ® Hg), we have three equivalent definitions of the realign-
ment operator of it.

Inspired by Eq.(30) and an idea in [11], we generalize théonodf “computable cross
nornt to the infinite-dimensional case.

Definition 3.5. The computable cross norifii ||ccn Of an arbitrary element Te Co(Ha ®
Hg) is defined by

Mlleen = infO> IAIB - T = > Ace By, (33)
k k

where the infimum runs over all decompositions of T into eteamg tensors as that in
Eq.(30).

It is evident that| - ||ccn IS @ cross norm o8,(Ha ® Hg) sincel|A® Bllcen = [|Allo]|Bll2 for
all A€ Cy(Ha), B € C2(Hg). Also, we may haviiT||ccy = +oo for someT.

Noticing that, every vector in the tensor product Hilbersp of two Hilbert spaces has a
so-called Schmidt decomposition [3]. Together with the 3€¢HA®HEg) = Co(Ha)®C2(Hg),
we can derive that, for any stgteon Ha ® Hg, p has a Schmidt decomposition as a vector in
C2(Hp) ® Co(Hg), i.€.,

p=> 6kEx®Fy, (34)

whereEy € Cx(Ha), Fx € Ca(Hs) satisfying TrE E) = dw and TrEF) = du, Kk, | = 1,
2,...,N,, the positive scalar§, > 6, > --- are uniquely determined by the corresponding
vectorp, and they are the so-called Schmidt fimgents ofp [3], while N, (may be+c) is
called the Schmidt number of Since Trp?) = (plo) = 3,62, we have} 62 = 1 & pis a
pure state aan] §2 < 1 & pis a mixed state. ‘ ‘

The following lemma highlights the relations among the éraorm of the realignment
operator, the computable cross norm and the sum of the Sthkogdicients of a state. As
one might expect, the result is the same as that for the filtensional case.

Lemma 3.6. Letp be a state inS(H, ® Hg) and{dy} be the Schmidt cgcients ofo as a
vector inC,(Ha) ® Co(Hg). Then we have

ol = liollcen = | b (35)
k

Proof. Letp = 2 A®Byasin Eq.(30) ang = Z oxEx® Fi be the Schmidt decomposition

of p as a vector |r¢‘2(HA)®Cg(HB) where the serles converges in Hilbert-Schmidt norm. Then
PR = % |A(Bx, and

Rl = > 6 (36)
k
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since one can regayef = 3 6, |Ex)(Fy| as the singular value decompositionsf Next, we
k
show that

1%l = inf{ > A BN o = > Ace Byl (37)
k k

On the one hand, we hayieRli < X IIAXBlIl = 2 A - [IIBwll. On the other hand,
k

0%l = %(MIIEk)II RN = %5k sincelll[Exll = IEdll2 = lIFoll = lIFll2 = 1. Namely, the

infimum is attained at the singular value decompositiop.dflow, we arrive at

0%l = inf{ik) A - B = p = %Ak@’ By}
= inf{% IAIIBllz o = %Ak® B} (38)
= llollcens
which completes the proof. O

For a pure statp, € S(Ha ® Hg), let|y) = > Adm)luk) be the Schmidt decomposition of
k
) € H® K, then it is straightforward that

lloulicen = () 4% (39)
k

From this it is obvious that a pure statds separable if and only ifoll = lloyllcen = 1.
Further more, combining Criterion 3.3 and Lemma 3.6, weldistathe RCCN criterion for
the infinite-dimensional systems, that is, the criteriololyas the main result of this paper.

Criterion 3.7. (The RCCN criterion for infinite-dimensional bipartite quan tum sys-
tems) Letp € S(Ha ® Hg) and{dx} be the Schmidt cgecients ofp as a vector inC,(Ha) ®
C>(Hp). If p is separable, then

ol = lipllcon = ) 6k < 1. (40)
k

In particular, assume thai is a pure state, thep is separable if and only if

Rl = llpllcon = ) 6k =1 (41)
k

In what follows, we give some examples to illustrate thatehexist PPT entangled states
that can be detected by the RCCN criterion, there exist PRangted states that can not be
detected by the realignment criterion and there exist i@h-€htangled state that can not be
detected by the RCCN criterion. These examples imply tr@RECN criterion is neither
‘weaker’ nor ‘stronger’ than the PPT criterion. There algtseentangled states which can
not be detected by any one of these two criteria. Howeveraneshow that, for the so-called
‘symmetric sates’, the PPT criterion is equivalent to thedRriterion, namely, a symmetric
statep satisfying||oR||r; < 1 if and only if it is a PPT state (see in Proposition 3.13).
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Example 3.8. Let Hy andHg be complex Hilbert spaces with orthonormal bajg@s |1),
...}and{|0), |1y, ...}, respectively. Let

2 a 5-a
Pa = 7|W><W| + S04+ o,

7 7

where|w) = %(I0>IO’> + DI +12)12)), o = (0L NOKL| + |12 )(L2'| + [2)]0")(2(0)),
o_ = §(|1>|0’><1|<0’| + 12)|1')2|{1'| + |0)|2')¢0|(2'|) and 2< a < 5. A straightforward calcula-
tion shows that

19 2
Rl — 24 = _ 2
loglie = 53 + 21\/19 15 + 3a2.
It is easy to check thalpRlr, < 1if and only if 2 < @ < 3. Thus, by the RCCN criterion,

3 < a < 5impliesp, is entangled.
Define

+00 e
o= pliXileli i, p=0, Y p=1
i=3 i=3
Theno is a separable state af||, = 1. Let
Pra =lpp+(1-t)o, 0<t<l3<a<4d (42)

By [11,23], it is easily checked that, is a PPT state whenever3a < 4 sincep,? > 0
whenever X a < 4. On the other hand,

lloullre = lltog + (L = Yo = tliogline + (L = Bllo .

It follows that||pf, Il > 1 for all 0 < t < 1 as|lo™|lr, = 1 and||pf|| > 1 whenever < « < 4.
So, there are PPT entangled states that can be detected RZ @i criterion.

The example below is discussed in[24] and it illustratesi@alarly that there exist non-
PPT states as well as entangled PPT states that con not lgmizzb by the RCCN criterion.

Example 3.9.Let Hy andHg be complex Hilbert spaces of dimensiei with orthonor-
mal baseg$|0), [1), |2), ...} and{|0'),|1"), |2'), ...}, respectively. Lefw) = %1(|O>|0’>+|1>|1’>+
2)[2) + 13)3)). Definepy = |w)wl, p2 = 2(10)2)OKL| + I11)I2')(L2| + 123 K23 +
IBNON3KON), p3 = ZUOI2NOK2'| + DI NI + [210)(2(0| + L)L) and ps =
(0303 + [DIOHAKO| + 1211 )(2L'| + 13)[2)(3)(2']). Let

4
p= Z gpei and pp = (1-1t)p + too, (43)

i=1
whereq > Ofori = 1,23, 4withqg; + o + gz + g4 = 1,t € [0,1], andpg iS a state on
Ha ® Hp. It was shown in[[23] that, for gficiently smallt, or for po with [i)u’ ) jI{V |0 =
polD Y jI¢V'| = 0 for anyi, j,u, v € {0, 1, 2, 3}, the following statements are true.

(1) If g < g, for somei = 2, 3,4, thenp, is entangled.
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(2) Letpo be PPT. Themy is PPT if and only ifop0s > o2 andgs > g;. Thus, if 0< ¢ <
01 < 7, 7 <0 < 1withgg; > gf and 0< q; < gz < 1, wherei, j € {2,4} andi # j, thenp; is
PPT entangled.

(3) The trace norm of the realignment operatop as

oSl = 3 \/ Tita Of — G102 — G2Gs — Gss — GaCle
+%, \/Zi4=1 O + 3(002 + 0203 + Oz + O10la) + 304.

Thus, ifpois PPT, and ity > £, o = 301, 0 = 3 andos = 3—3q;, wherel, j € {2, 4} andi # ],
thenp; is PPT entangled withpR||r, > 1 for suficient smalk, that is,p; is PPT entangled that
can be detected by the RCCN criteriongjif < 2 20 = 2q1, g = % andgs = % — 3q;, where
i,j € {2 4)andi # j, then, for stficient small, ||pR||t, < 1 andp; is PPT entangled but can
not be detected by the RCCN criterion.

The following illustrates that how to find suitalpyeso that|ol|lr < 1 butp, is not PPT.

If po is not PPT, we choos®g < 1, g = 30y, gj = 3 andgs = 3 —3q;, wherei, j € {2,4} and
i # j. Then, as mentioned above we hjp8|;, < 1 Thus, for sdiicient smalt, [[of|l+; < 1.
This means that, is not PPT but can not be recognized by the RCCN criterion.

If po is PPT, we choose, = 3 — 204, gs = 301 andgs = 3. A computation shows that
lloR|lre < 1 for gu < 1. For instancelpRly = 0.9866 ifay = 3; [|oR|lr, = 0.9496 if g, = &;
ol = 0.7264 if oy = 755 Sinceds < o, p is not PPT and thug; is not PPT. However,
oIl < 1 for suficient smallt.

Example 3.10.Let Hy = Hg be complex Hilbert spaces with orthonormal bages |1),

.. }. Fixing a positive number 3 m e N. Define

(M= P + (- DF ),

Pme = 3T
m-1m-1 m-1m-1
whereP,, = 2 iXil®|j)jlandFy:= X > liXjl®]jXil|. Itis easy to check that
i=0 j=0 i=0 j=0
2_¢c: if —1<c<i,
lopcllr =4 ™ . L
(o3 if 1>c> =

If dim Ha = m, thenpnc = p. is the so-called Werner state [16]. It is shown(in/[16] that
pcis separables p'™® >0 0<c< 1.

We can derive that

PmeiS separables p’™®* >0 0<c< 1

Consequently, ifn% -1 < ¢ < 0, thenpn is a non-PPT entangled state which satisfies
llemc)RIl < 1, that is o can not be recognized by the RCCN criterion.
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Let
o= plixilelixi p=0, Y p=1
i=m i=m
thenp is separable. Let
2
p&c:8Q+(1—8)pmc,0S8<l,r—n—1§C<O. (44)

It is straightforward thap, is a state acting ofla ® Hg andp.% is not positive. Now, we
can conclude that for anﬁ —-1<c<0andO0< ¢ < 1, p.cis anon-PPT entangled state
satisfying|[of I+ < 1 sincello®|lrr = 1 andllofllm < 1.

Now let us turn to another related topic. In[22], severahagtement criteria for the so-
called ‘symmetric states’ in the finite-dimensional bigarguantum systems are presented.
Recall that, a state on a finite dimensional bipartite systef) ® Hg is called a symmetric
state if dimH, = dimHg = N andp = Fp = pF, whereF is the flip operator, namely
satisfiesF|ya)lwe) = lyedlwa) for any sy € Ha and|yg) € Hg. It is showed that, for a
symmetric statg in a finite-dimensional bipartite quantum systejpf||r, < 1 if and only if
p is a PPT state. Inspired by [22], we can generalize the cdiocepf the symmetric states
to the infinite-dimensional case with the same spirit.

Definition 3.11.Let Hy and Hg be Hilbert spaces witdimH, = dimHg = +c0. Let{|m)}
and{|u)} be orthonormal bases respectively of &hd Hs. A statepo € S(Ha ® Hp) is said to
be symmetric if

p =Fp=pF, (45)
where F= 3. [my|u){ul(m.

mu
The operatof~ in the definition is called the flip operator. It is clear thdia)|yg) =

le)wa) for anylya) € Ha, [¥e) € He.
Write p = (Omu,nv), Wherepn, n, = (miulpln)lv), one can obtain
Lemma 3.12.If p € S(Ha ® Hg) is a symmetric state, then

Prmyu,nv = Pumny = Prmuyn = Pumyn- (46)

Moreover,
FoR=p'A (47)

Proof. Write pR = (0myny), FOR = (Omuny)- It turns out thapm, ny = Pmngrs Py = Pumnys
and thuom,ny = Pumny = Punmy- ON the other hand, writing™ = (Omnv), We haveony, n, =
Premy- Thereforep™ = FpR sincepunm = Prym- |

As F is unitary, by Lemma 3.12, the singular valuesoBfis equal to the singular values
of p™. Since Trp™) = 1, it follows thatp™ is not positive if and only ip™ has at least one
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negative eigenvalue. Therefogeis not PPT implies thaloR||r = o™l > 1 and vice versa.
Thus we have proved the following

Proposition 3.13.I1f p € S(Ha ® Hg) is symmetric, thep is a PPT state if and only if
IR < 1.

4. CONCLUSION

In conclusion, we generalize the row realignment operatiom Computable Cross Norm
to the states of infinite-dimensional bipartite quantuniesys. The realignment operators of
the states are Hilbert-Schmidt operators frAg® Hg into Hy ® Ha, and moreover, the row
realignment operatiofi — TR is an isometric linear map fro@,(Ha ® Hg) into Co(Hg ®
Hg, Ha ® Ha). Similar to that in the finite-dimensional bipartite quamt systems, there are
two kinds of realignment operations, namely, the row reathgnt operation and the column
realignment operation. These two realignment operaticss@uivalent up to the trace norm.
So, it sufices to discuss the row realignment operation.

In fact, three equivalent definitions of the realignmentragien are introduced. This allow
us to establish the realignment criterion and the RCCN raoiteof separability for states
in infinite-dimensional bipartite systems. Thus, for bothité-dimensional and infinite-
dimensional systems, if a states S(Ha®H3g) is separable, theRir = ||ollcen = Skdk < 1,
where||pllccn is the computable cross norm@and{d,} are the Schmidt cdicients ofp as
a vector in the Hilbert spaa@,(Ha) ® C2(Hg). For the case thatis pure is separable if and
only if |lo8lr = llpllcen = Sk 0k = 1. Like the case of finite-dimension, the RCCN criterion
and the PPT criterion are independent as illustrated by pkesnand these two criteria are
equivalent for the symmetric states.

Acknowledgement. This work is partially supported by the National Natural e
Foundation of China (10771157) and the Research Fund ofxsf@nReturned Scholars
(2007-38).

REFERENCES

[1] M. A. Nielsen and I. L. ChuangQuantum Computatation and Quantum Informafi©ambridge Univer-
sity Press, Cambridge, 2000).

[2] K. Chen, L.-A.Wu, Quantum Inf. Compus, 193(2003).

[3] Y. Guo, X.-F. Qi, J.-C. Hou, Stlicient and necessary conditions of separability for bipagure states in
infinite-dimensional systems, Chinese Science Bull., fzeap

[4] O.Giihne, M.Mechier, T.T6th, P. Adam, Phys. Revi4010301(2006).

[5] M. Horodecki, P. Horodecki, R. Horodecki, Phys. Lett283 1(1996).

[6] P. Horodecki, Phys. Lett. 232 333-339(1997).

[7]1 J.-C. Hou, A characterization of positive linear mapsd ariteria for entangled quantum states, to appear.

[8] S. Mancini, S. Severini, The quantum separability peoblfor Gaussian states, arXiv/@603047v2.


http://arxiv.org/abs/cs/0603047

18 YU GUO AND JINCHUAN HOU

[9] A. Peres, Phys. Rev. Leff7, 1413(1996).

[10] O. Rudolph, Quantum Information Processiag219(2005).

[11] O. Rudolph, Letters in Mathematical Physig§, 57-64(2004).

[12] O. Rudolph, J. Phys. A: Math. Ge&3, 3951-3955(2000).

[13] C.-J.Zhang, Y.-S.Zhang, S.Zhang, G.-C.Guo, Entangle detection beyond the computable cross-norm
or realignment criterion, arXiv:0709.3766.

[14] X.-L. Su, X.-J. Jia, C.-D. Xie, K.-C. Peng, Sci China $Phys Mech Astror1(1),1-13(2008).

[15] G. Lenchs, E. S. PolzikQuantum information with continuous variables of atoms #ght(Emperial
College Press, London, 2007).

[16] P. Horodecki, R. Horodecki, Quantum Information comfl), 45-75(2001).

[17] R. F. Werner, Phys. Rev. AQ, 4277(1989).

[18] A. S. Holevo, M. E. Shirokov, R. F. Werner, Russian M&hrveys60, N2,(2005).

[19] P. Aniello, C. Lupo, On the relation between SchmidtfGcents and entanglement, arXiv:0812.4167v1.

[20] P. Aniello, C. Lupo, J. Phys. A: Math. Thedrl, 355303(2008).

[21] K. Zyczkowski, I. Bengtsson, Open Sys. Information Dg,3-42(2004).

[22] G. Toth, O. Guhne, Appl. Phys. B. DOI 10.108@00340-009-3839-7.

[23] X.-F. Qi, J.-C. Hou, Positive finite rank elementary ogters and characterizing entanglement of states,
arxiv:1008.3682v1.

[24] J.-C. Hou, X.-F. Qi, Phys. Rev. 81, 062351(2010), arXiv:1005.5530v2.

DEPARTMENT OF MATHEMATICS, SHANXI UNIVERSITY, Taryuan, 030006, @iNa; DEPARTMENT OF M ATHEMATICS,
Suanx1 DaronG UNiversiTy, Datong, 037009, GiNa.

E-mail addressguoyu3@yahoo. com.cn

DEPARTMENT OF M ATHEMATICS, TATYUAN UNIVERSITY OF TECHNOLOGY, TaryuaN 030024, P. R. @iNA; DEPARTMENT
OF M ATHEMATICS, SHANXT UNIVERSITY, TArYUaN, 030006, P. R. €ina

E-mail addressjinchuanhou@yahoo. com.cn


http://arxiv.org/abs/0709.3766
http://arxiv.org/abs/0812.4167
http://arxiv.org/abs/1008.3682
http://arxiv.org/abs/1005.5530

	1. Introduction
	2. The RCCN criterion for finite-dimensional systems
	3. The RCCN criterion for infinite-dimensional systems
	4. Conclusion
	References

