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Abstract

We consider a general, neutral, dynamical model of biodiversity. Individuals have i.i.d.
lifetime durations, which are not necessarily exponentially distributed, and each individual
gives birth independently at constant rate λ. Thus, the population size is a homogeneous,
binary Crump–Mode–Jagers process (which is not necessarily a Markov process). We as-
sume that types are clonally inherited.

We consider two classes of speciation models in this setting. In the immigration model,
new individuals of an entirely new species singly enter the population at constant rate µ
(e.g., from the mainland into the island). In the mutation model, each individual indepen-
dently experiences point mutations in its germ line, at constant rate θ.

We are interested in the species abundance distribution, i.e., in the numbers, denoted
In(k) in the immigration model and An(k) in the mutation model, of species represented
by k individuals, k = 1, 2, . . . , n, when there are n individuals in the total population.

In the immigration model, we prove that the numbers (It(k); k ≥ 1) of species repre-
sented by k individuals at time t, are independent Poisson variables with parameters as in
Fisher’s log-series. When conditioning on the total size of the population to equal n, this
results in species abundance distributions given by Ewens’ sampling formula. In particular,
In(k) converges as n→ ∞ to a Poisson r.v. with mean γ/k, where γ := µ/λ.

In the mutation model, as n→ ∞, we obtain the almost sure convergence of n−1An(k)
to a nonrandom explicit constant. In the case of a critical, linear birth–death process,
this constant is given by Fisher’s log-series, namely n−1An(k) converges to αk/k, where
α := λ/(λ+ θ).

In both models, the abundances of the most abundant species are briefly discussed.

Running head. Neutral models of biodiversity with general lifetimes.
Key words and phrases. Species abundance distribution – Crump–Mode–Jagers process –
splitting tree – branching process – linear birth–death process – immigration – mutation –
infinitely-many alleles model – Fisher logarithmic series – Ewens sampling formula – coalescent
point process – scale function.
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1 Introduction

Our goal is to study two models of speciation in the vein of the neutral theory of biodiversity
[14], an immigration model and a mutation model, both in a same general birth/death dynam-
ical setting. A specific feature of our results is that no assumption is made on the distribution
of lifetime durations, contrasting with usual Markovian dynamics where this distribution is
exponential.

We assume that particles behave independently from one another, that each particle gives
birth at constant rate λ during its lifetime (interbirth durations are i.i.d. exponential ran-
dom variables with parameter λ), and that lifetime durations are i.i.d.. Then the process
(Nt; t ≥ 0) giving the number of extant individuals at time t, belongs to a wide class of branch-
ing processes called Crump–Mode–Jagers processes. Actually, the processes we consider are
homogeneous (constant birth rate) and binary (one birth at a time) but differ in generality
from classic birth–death processes in that the lifetimes durations may follow a general distri-
bution.

Now each individual bears some type (or, equivalently, belongs to some species), and we will
assume that, at each birth time t, the type of the mother at time t is passed on to their offspring
without modification. However, new species can arise in this population. These new types can
arise in two fashions, whence defining either speciation model.
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Figure 1: The immigration model. Time axis is vertical; horizontal axis shows filiation. Solid
dots show the arrival times of immigrants, who all have distinct types labelled by letters a, b, c.
The type of each extant individual is also shown.
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The immigration model is a generalization of Karlin and McGregor’s model [18] to general
lifetimes. It intends to model a population on an island receiving immigrants from the mainland,
as in the theory of island biogeography [23]. We assume that new propagules singly enter the
island population at the instants of a Poisson process with rate µ, called the immigration
rate, and behave from then on, as the other particles on the island. Each of these immigrating
particles is of an entirely new species, but their whole descendance is entirely clonal. See Figure
1.

In the mutation model, we assume that the germ line of each particle experiences mutations
during the whole lifetime of the particle. At the instants of a Poisson process with rate θ, the
type of the particle changes to an entirely new type, as in the infinitely-many alleles model [9].
See Figure 2.
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Figure 2: The mutation model. Time axis is vertical; horizontal axis shows filiation. Solid dots
show the mutation events. Each mutation yields a new type, labelled by letters a, b, c, d. The
type of each extant individual is also shown.

Another way of seeing the model is to replace the word particle with the word colony, and
the word population with the word metapopulation. Then in our model, all individuals of
a colony are of the same species, lifetimes are extinction times of colonies, and birth events
correspond to propagules sent out by a colony to found a brand new colony. Immigration
events correspond to propagules immigrating from the mainland and founding simultaneously
a brand new colony. Mutation events correspond to mutants appearing in a colony and getting
to fixation instantaneously. This way of modeling speciation is more satisfactory, but we stick
to the first terminology not to obscure reading.
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2 Statements of results and Fisher’s logarithmic series

In [10, 11], R.A. Fisher and his coauthors suggested a simple model of species count where the
probability of observing k individuals of a given species is cαk/k for some constant α ∈ (0, 1).
Following this, a number of authors proposed dynamical models where this so-called log-series
not only gives the distribution of the number of individuals of a single species, but also the
multivariate species abundance distribution of a community, in the sense that the number
of species represented by k individuals follows independently a Poisson distribution with pa-
rameter cαk/k. For example, Karlin and McGregor [18] studied various dynamical models of
structured populations, including a critical birth–death process with immigration which is a
particular case of our immigration model (i.e., where the lifespan is exponentially distributed),
satisfying the previously described property. See also [19, 20], and [28] for a very nice and
comprehensive account on these models and on their associated multivariate distributions.

Let us fix some time t. In the immigration model (resp. in the mutation model), we let
It(k) (resp. At(k)) denote the number of species represented by k individuals at time t. When
conditioning on the total number of individuals being n at this fixed time t, we will write
It(k) instead of In(k) and At(k) instead of An(k). The vectors (I.(k))k and (A.(k))k are called
frequency spectra.

In the immigration model, we actually provide a rather accurate result (Theorem 4.1) on
the spectrum at any time t, without conditioning on the number of individuals, stating that
the random variables (It(k))k are independent Poisson variables with parameters as in Fisher’s
log-series, with a parameter α depending on time t. In Corollary 4.2, we prove that the
random vector (In(1), . . . , In(n)) has the same law as a vector of independent Poisson variables
(Y1, . . . , Yn) conditioned on

∑n
k=1 kYk = n, where Yk follows the Poisson distribution with

parameter γ/k, γ being defined as the immigration-to-birth rate ratio µ/λ. These two results
are known in the case of a critical, linear birth–death process [18]. Notice that the conditioning
in the corollary not only removes the dependence upon the origination time t, but also on
the distribution of lifetime durations. This spectrum is exactly the one described by Ewens’
sampling formula [6, 8, 9]. The asymptotic behaviour of this spectrum is well-known (see for
example [5, 6]): for any fixed j,

lim
n→∞

(In(1), In(2), . . . , In(j))
L
= (Y1, Y2, . . . , Yj)

where the Yk’s are independent Poisson variables with parameter γ/k.

This result contrasts with the mutation model, where species with abundance k are shown
to accumulate linearly with population size, instead of stabilizing as previously. First, Theorem
5.1 gives the expected number of species with a fixed age and with abundance k. Then Theorem
5.3 gives exact formulae for the almost-sure asymptotic accumulation of species with given
abundances. In the case of a critical birth–death process with (birth/death rate λ and) mutation
rate θ, we get

lim
n→∞

n−1An(k) = c
αk

k
a.s.,

where α := λ/(λ + θ), and c = (1 − α)/α. We also have the a.s. convergence of the total
number of species An divided by n to −c ln(1− α).

4



Thus, species with k individuals tend to accumulate linearly with sample size in the mu-
tation model, while their cardinality converges to a finite random variable in the immigration
model. This has an important consequence for the species with a large number of individuals.
In the immigration model, it can be shown that the oldest j species on the island have a num-
ber of individuals of the order of n, as n grows [26]. In the mutation model, in contrast, the
proportion Bn(k) of individuals belonging to species with more than k individuals is

Bn(k) = 1− n−1
k−1
∑

j=1

jAn(j) −→ 1−

k−1
∑

j=1

cαj = 1− (1− α)

k−1
∑

j=1

αj−1 = αk−1.

As a consequence, for any ε > 0, there is an integer k such that lim supnBn(k) ≤ ε. Actually,
independent calculations [4] show that the most abundant species have abundances of the order
of nβ, with β = 1− θ/η, where η is the exponential growth rate of the total population, in the
case when the mutation rate θ is smaller than η. In the case when θ > η, these abundances
are of the order of log(n).

3 Splitting trees and coalescent point processes

The genealogical trees that we consider here are usually called splitting trees [12]. Splitting
trees are those random trees where individuals give birth at constant rate λ during a lifetime
with general distribution π(·)/λ, to i.i.d. copies of themselves, where π is a positive measure
on (0,∞] with total mass λ called the lifespan measure. We assume that they are started with
one unique progenitor born at time 0. We denote by P their law, and the subscript s in Ps

means conditioning on the lifetime of the progenitor being s. Of course if P bears no subscript,
this means that the lifetime of the progenitor follows the usual distribution π(·)/λ.

In [22], we have considered the so-called jumping chronological contour process (JCCP) of
the splitting tree truncated up to height (time) t, which starts at min(s, t), where s is the death
time of the progenitor, visits all existence times (smaller than t) of all individuals exactly once
and terminates at 0. We have shown [22, Theorem 4.3] that the JCCP is a Markov process,
more specifically, it is a compound Poisson process X with jump measure π, compensated at
rate −1, reflected below t, and killed upon hitting 0. We denote the law of X by P , to make
the difference with the law P of the CMJ process. As seen previously, we record the lifetime
duration, say s, of the progenitor, by writing Ps for its conditional law on X0 = s.

Let us be a little more specific about the JCCP. Recall that this process visits all existence
times of all individuals of the truncated tree. For any individual of the tree, we denote by α its
birth time and by ω its death time. When the visit of an individual v with lifespan (α(v), ω(v)]
begins, the value of the JCCP is ω(v). The JCCP then visits all the existence times of v’s
lifespan at constant speed −1. If v has no child, then this visit lasts exactly the lifespan of
v; if v has at least one child, then the visit is interrupted each time a birth time of one of v’s
daughters, say w, is encountered (youngest child first since the visit started at the death level).
At this point, the JCCP jumps from α(w) to ω(w) ∧ t and starts the visit of the existence
times of w. Since the tree has finite length, the visit of v has to terminate: it does so at the
chronological level α(v) and continues the exploration of the existence times of v’s mother, at
the height (time) where it had been interrupted. This procedure then goes on recursively as
soon as 0 is encountered (birth time of the progenitor). See Figure 3 for an example.
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Figure 3: a) A realization of a splitting tree with finite extinction time. Horizontal axis has no
interpretation, but horizontal arrows indicate filiation; vertical axis indicates real time; b) The
associated jumping chronological contour process with jumps in solid line.

Since the JCCP is Markovian (as seen earlier, it is a reflected, killed Lévy process), its
excursions between consecutive visits of points at height t are i.i.d. excursions of X. Observe
in particular that the number of visits of t by X is exactly the number Nt of individuals alive
at time t, where N is the aforementioned homogeneous, binary Crump–Mode–Jagers process.
See Figure 4.

This property has two consequences, the first of which will be exploited in the immigration
model, and the second one in the mutation model.

The first consequence is the computation of the one-dimensional marginals of N . Let TA
denote the first hitting time of the set A by X. Conditional on the initial progenitor to have
lived s units of time, we have

Ps(Nt = 0) = Ps(T0 < T(t,+∞)), (1)

and, applying recursively the strong Markov property,

Ps(Nt = k | Nt 6= 0) = Pt(T(t,+∞) < T0)
k−1Pt(T0 < T(t,+∞)). (2)

Note that the subscript s in the last display is useless.
The second consequence is that because X is (strongly) Markovian, the depths of the

excursions ofX away from t are i.i.d., distributed as some random variableH := t−inf0≤s≤T Xs,
where X is started at t and T denotes the first hitting time T0∧T(t,+∞) of {0}∪ (t,+∞) by X.
We record this by letting Hi denote the depth of the excursion between the i-th visit of t and
its (i + 1)-th visit, and stating that the variables H1,H2, . . . form a sequence of i.i.d. random
variables distributed as H and killed at its first value greater than t.
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Figure 4: Illustration of a splitting tree showing the durations H1,H2,H3 elapsed since co-
alescence for each of the three consecutive pairs (x1, x2), (x2, x3) and (x3, x4) of the Nt = 4
individuals alive at time t.

But in the splitting tree, Hi is also the coalescence time (or divergence time) between
individual i and individual i+1, that is, the time elapsed since the lineages of individual i and
i + 1 have diverged. Further, it can actually be shown [22] that the coalescence time Ci,i+k

between individual i and individual i+ k is given by

Ci,i+k = max{Hi+1, . . . ,Hi+k}, (3)

so that the genealogical structure of the alive population of a splitting tree is entirely given
by the knowledge of a sequence of independent random variables H1,H2, . . . that we will call
branch lengths, all distributed as H. We call the whole sequence the coalescent point process.

Here, exact formulae can be deduced for (1) and (2) from the fact that the JCCP is a
Lévy process with no negative jumps. In particular, it can be convenient to handle its Laplace
exponent ψ instead of its jump measure π, that is,

ψ(a) := a−

∫ ∞

0
π(dx)(1 − e−ax) a ≥ 0. (4)

We know [22] that the process is subcritical, critical or supercritical, according to whether
m :=

∫

(0,∞] rπ(dr) < 1, = 1 or > 1. In the latter case, the rate η at which (Nt; t ≥ 0)
grows exponentially on the event of non-extinction, called the Malthusian parameter, is the
only nonzero root of the convex function ψ. Furthermore, the probability of exit of an interval
(from the bottom or from the top) by X has a simple expression (see e.g. [2]), in the form

Ps(T0 < T(t,+∞)) =
W (t− s)

W (t)
, (5)

where the so-called scale function W is the nonnegative, nondecreasing, differentiable function
such that W (0) = 1, characterized by its Laplace transform

∫ ∞

0
dx e−axW (x) =

1

ψ(a)
a > η. (6)
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As a consequence, the typical branch length H between two consecutive individuals alive at
time t has the following distribution (conditional on there being at least two extant individuals
at time t)

P(H < s) = Pt(T(t,+∞) < Ts | T(t,+∞) < T0) =
1− 1

W (s)

1− 1
W (t)

0 ≤ s ≤ t. (7)

Let us stress that in some examples, (6) can be inverted. When π has an exponential density,
(Nt; t ≥ 0) is a linear birth–death process with (birth rate λ and) death rate, say ρ. If λ 6= ρ,
then (see [22] for example)

W (x) =
ρ− λe(λ−ρ)x

ρ− λ
x ≥ 0,

whereas if λ = ρ,
W (x) = 1 + λx x ≥ 0.

When π is a point mass at ∞, (Nt; t ≥ 0) is a pure-birth process, called Yule process, with
birth rate λ. Then (let ρ→ 0)

W (x) = eλx x ≥ 0.

In the case when λ 6= ρ 6= 0, it had already been noticed by B. Rannala [25] that the coalescence
times of a population whose genealogy is given by a (linear) birth–death process started (singly)
t units of time ago and whose size is conditioned to be n, are identical to those of the order
statistics of n i.i.d. random variables with density

f(s) =
(1− p0(s))(ρ− λp0(s))

p0(t)
0 < s < t,

where ρ is the death rate and

p0(t) :=
ρ
(

ert − 1
)

λert − ρ
,

where r := λ− ρ. Now (7) applied to the expression of the scale function given previously for
the birth–death case (λ 6= ρ) agrees with the findings of B. Rannala under the form

f(s) ds = P(H ∈ ds) =
r2 ers

(λers − ρ)2
·
λert − ρ

ert − 1
ds 0 < s < t.

It is remarkable that in this case, exchanging λ and ρ leaves the distribution of H unchanged.
No extension of this fact is known in the general case.

We end this section by the following lemma.

Lemma 3.1 The one-dimensional marginal of Nt when the lifespan of the progenitor is random
with law π(·)/λ, is given by

P(Nt 6= 0) =
W ′(t)

λW (t)
t ≥ 0

and

P(Nt = k) =

(

1−
1

W (t)

)k−1 W ′(t)

λW (t)2
t ≥ 0.

8



Proof. From (1) and (5), we get

Ps(Nt = 0) =
W (t− s)

W (t)

and from (2) and (5), we get

Ps(Nt = k | Nt 6= 0) =

(

1−
1

W (t)

)k−1 1

W (t)
.

Let us compute the unconditional law of Nt by integrating over s. First,

P(Nt = 0) =

∫ t

0
λ−1π(ds)

W (t− s)

W (t)
=

F (t)

λW (t)
,

where

F (t) :=

∫ t

0
π(ds)W (t− s) t ≥ 0.

Now by Fubini–Tonelli,

∫ ∞

0
dt F (t)e−at =

∫ ∞

0
π(ds)

∫ ∞

s

dte−atW (t− s) =
1

ψ(a)

∫ ∞

0
π(ds)e−as,

referring to (6), where we recall from (4) that

ψ(a) = a−

∫ ∞

0
π(dx)(1 − e−ax) = a− λ+

∫ ∞

0
π(dx)e−ax a ≥ 0.

This yields
∫ ∞

0
dt F (t)e−at = 1 +

λ− a

ψ(a)
.

This Laplace transform can be inverted as follows

F (t) = λW (t)−W ′(t) t ≥ 0.

Thus, we get the announced expression for Nt. 2

4 The immigration model

Assume that we start at time 0 on the island with no individual at all. Let It denote the
total number of extant individuals at time t. Let It(k) denote the number of species (each
corresponding to a single progenitor immigrant) with k representative individuals at time t. In
particular,

It =
∑

k≥1

kIt(k).

We allow k to equal 0, It(0) corresponding to the number of effective immigrants having 0
descendance at time t. Recall from the Preliminaries the scale function W .
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Theorem 4.1 The random variables (It(0), It(1), . . .) are independent Poisson random vari-
ables. For any k 6= 0, the r.v. It(k) is a Poisson r.v. with parameter

γ

k

(

1−
1

W (t)

)k

,

where γ := µ/λ is the immigration-to-birth ratio. The Poisson r.v. It(0) has parameter

µt− γ lnW (t).

Thanks to a standard result on independent Poisson random variables Xk with respective
means cαk/k, conditioning on

∑

kXk removes the dependence in α (see e.g. [28, p.220]). It is
then remarkable that conditioning the frequency spectrum on the total number of individuals
removes the dependence in t. In the case of exponential lifetimes, this property has been re-
discovered various times, see for example [24]. Here, the conditioning does not only remove the
dependence in t, but also in λ, W or π, that is, in the whole dynamical scheme distribution.

Corollary 4.2 Let Y1, Y2, . . . be independent random variables, where Yk follows the Pois-
son distribution with parameter γ/k. Conditional on the total number It of species at time t
equalling n, the random vector (It(1), . . . , It(n)), then also denoted (In(1), . . . , In(n)), has the
same law as (Y1, . . . , Yn) conditioned by

∑n
k=1 kYk = n.

Remark 1 This conditional spectrum is exactly the same one as that obtained in the King-
man coalescent with mutations at rate γ in the infinite-alleles model (i.e., the spectrum given
by Ewens’ sampling formula). In the case of exponential lifetimes, this coincidence between
the binary branching process with immigration and the Moran process with mutations can be
explained thanks to Hoppe’s urn model (see [6]). This observation has been recast in the neutral
theory of biodiversity literature as a possible relaxation of the ‘zero-sum assumption’ [7, 13].

Remark 2 Theorem 4.1 is concerned with species with fixed abundances k = 1, 2, . . ., i.e., the
‘small’ families. It is also possible to get results for the abundances P1, P2, . . . of the imm-
migrant surviving families ranked by decreasing order of ages, i.e., the ‘large’ families, either
as the population size n → ∞ or as time t → ∞ in the supercritical case (mean number of
offspring m > 1). M. Richard [26] obtains that the vector (P1, P2, · · · ) rescaled by population
size converges a.s. to the GEM distribution with parameter γ.

Let us now prove the theorem. Let Mt be the number of immigrants having reached the island
up until time t, and T1 < · · · < TMt

< t the times of arrival of these immigrants. For any
integer n, let σn denote an independent, random (uniform) permutation on {1, . . . , n}. Then
Mt is a Poisson r.v. with parameter µt, and conditional on Mt = n, the random variables

(Tσn(1), . . . , Tσn(n)) are i.i.d., uniformly distributed on [0, t]. Then we call Z
(i)
t the number of

descendants at time t of the particle having immigrated at time Tσn(i). The random variables

(Z
(i)
t , i = 1, . . . , n) are i.i.d. distributed as some r.v. Zt which is the value of the Crump–

Mode–Jagers process Nt started at a uniform time on [0, t]

P(Z
(i)
t = k) =

1

t

∫ t

0
duP(Nu = k),

where it will always be understood that N0 = 1. The following statement is the key result to
the theorem.

10



Proposition 4.3 The law of Zt is given by the following two equations.

P(Zt = k) =
1

λkt

(

1−
1

W (t)

)k

for k 6= 0, whereas

P(Zt = 0) = 1−
1

λt
lnW (t).

Before proving the proposition, we remind the reader of an elementary lemma on multinomial
distributions with Poisson randomizing parameter. The theorem follows from this lemma and
the proposition.

Lemma 4.4 Let p := (p0, p1, . . .) be some probability distribution on the integers, let X1,X2, . . .
be i.i.d. r.v. with law p and let B be an independent Poisson r.v. with parameter β. Finally,
set

Bk := #{i = 1, . . . , B : Xi = k} k ≥ 0.

Then the random variables B0, B1, . . . are independent Poisson r.v., and Bk has parameter βpk.

Proof of the proposition. Thanks to Lemma 3.1, we have

P(Nt 6= 0) =
W ′(t)

λW (t)
t ≥ 0,

and

P(Nt = k) =

(

1−
1

W (t)

)k−1 W ′(t)

λW (t)2
t ≥ 0.

Let us now turn to Zt, which has the law of Nt with origination time uniform on [0, t]. First,

P(Zt 6= 0) =
1

t

∫ t

0
duP(Nu 6= 0) =

1

t

∫ t

0
du

W ′(u)

λW (u)
=

1

λt
lnW (t).

Second,

P(Zt = k) =
1

t

∫ t

0
duP(Nu = k) =

1

t

∫ t

0
du

(

1−
1

W (u)

)k−1 W ′(u)

λW (u)2
=

1

λkt

(

1−
1

W (t)

)k

,

which ends the proof of the proposition. 2

5 The mutation model

Recall from the section on splitting trees and coalescent point processes that the genealogy
at a fixed time t of the Nt extant individuals of the splitting tree, originating from a single
progenitor individual born at time 0, is characterized by the branch lengths Hi, i = 1, . . . Nt−1,
where Hi is the divergence time between individual i and individual i + 1. In addition, these
r.v. are i.i.d. with common distribution

P(H < s) =
1− 1

W (s)

1− 1
W (t)

0 ≤ s ≤ t,

11



where the so-called scale function W depends on the birth rate λ and on the lifespan measure
π, and is characterized by its Laplace transform.

In the critical or supercritical cases, where W is unbounded, we can define the long-lived
tree asymptotics, by letting t→ ∞. This leads to

P(H < s) = 1−
1

W (s)
s ≥ 0,

and the stationary genealogy is then given by an infinite sequence of branches with i.i.d. lengths,
with tail as in the last display. In the subcritical case, W has a finite limit equal to 1/(1−m)
(see [22]). Then conditioning on the population being still extant at time t and letting t→ ∞,
the quasi-stationary genealogy is given by a parameter m geometric number of branches with
i.i.d. lengths distributed as follows

P
⋆(H < s) = m−1

(

1−
1

W (s)

)

s ≥ 0,

where the star superscript serves to remind the conditioning.
In this section, individuals experience mutations at rate θ during their lifetime, and each

mutation yields a brand new type. This assumption corresponds to what is usually called the
infinitely-many alleles model. We now introduce the function Wθ, which is the scale function
associated to the so-called clonal process. More specifically, if one restricts the tree to points
bearing the same type (e.g., the same type as the progenitor’s type), then one retrieves a new
splitting tree, whose birth rate remains equal to λ and whose lifetime durations are distributed
as a r.v. V θ defined as the minimum of V and of an independent exponential variable with
parameter θ (i.e., the first mutation event). As in [21], we can then define Hθ as the diver-
gence time between consecutive individuals in the clonal splitting tree. In the (more general)
coalescent point process, Hθ is defined as the divergence time between individual 0 and the
first individual whose type satisfies the following property: it is one of the successive types that
appeared across time in the history of the lineage of individual 0. We have proved [21] that the
function Wθ (either defined as the scale function of the clonal splitting tree or equivalently, in
the coalescent point process, as the inverse of the tail of Hθ) satisfies

Wθ(x) = 1 +

∫ x

0
W ′(s)e−θs ds x ≥ 0. (8)

Now consider the standing population at time t conditioned on being nonempty, whose prob-
ability law we denote by P

⋆. For any real number y ∈ (0, t), define At(k; dy) as the number
of species originating in a point mutation having occurred during the time interval (y, y + dy)
and represented by exactly k alive individuals at time t. The following proposition gives the
expectation under P⋆ of At(k; dy) and is extracted from [3].

Theorem 5.1 For any k ≥ 1, the expected number of species of age in dy and abundance k is

E
⋆At(k; dy) = θ dyW (t)

e−θy

Wθ(y)2

(

1−
1

Wθ(y)

)k−1

.

In [3], we provide arguments giving an intuition of this result. To be more specific, the last
expression can be seen as the product of the three following terms :

θ dy
W (t)

W (y)
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which is the sum over i = 1, 2 . . . of the probabilities that the i-th branch length has size Hi ≥ y
and (is the one that) carries a mutation with age in (y, y + dy), multiplied by

W (y) e−θy

Wθ(y)

which is the probability that the type carried by the lineage of the i-th individual at time t− y
has at least one alive representative, finally multiplied by

1

Wθ(y)

(

1−
1

Wθ(y)

)k−1

which is the probability that the type carried by the lineage of the i-th individual at time t− y
has exactly k alive representatives, conditional on having at least 1.

Recall that At denotes the number of species in the population at time t and that At(k)
denotes the number of species represented by exactly k extant individuals. We can record the
last theorem under its integral representation :

Proposition 5.2 For any k ≥ 1,

E
⋆At(k) =W (t)

∫ t

0
dy θ e−θy 1

Wθ(y)2

(

1−
1

Wθ(y)

)k−1

and

E
⋆At =W (t)

∫ t

0
dy θ e−θy 1

Wθ(y)
.

Furthermore, we got the following asymptotic result, extracted from [3] and [21]. Here, An(k)
denotes the number of species with k individuals in the coalescent point process with population
size n. Recall that coalescent point processes with different population sizes can be constructed
on the same space by merely adding new independent branches. This allows us to state pathwise
convergences for An as n→ ∞.

Theorem 5.3 For all k ≥ 1, the following convergence holds a.s., as n→ ∞ for the coalescent
point process, and as t → ∞ for the splitting tree in the supercritical case and on the event of
non-extinction :

lim
n→∞

n−1An(k) = lim
t→∞

N−1
t At(k) =

∫ ∞

0
dy θ e−θy 1

Wθ(y)2

(

1−
1

Wθ(y)

)k−1

and

lim
n→∞

n−1An = lim
n→∞

N−1
t At(k) =

∫ ∞

0
dy θ e−θy 1

Wθ(y)
.

Remark 3 The a.s. result for coalescent point processes relies on laws of large numbers (see
[21]). The a.s. result for splitting trees relies on the theory of random characteristics (see [3])
introduced in the seminal paper [15] and further developed in [16, 17] and especially in [27].
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Remark 4 As in the last section, one could ask about the behaviour of large families, as the
number n of individuals grows. In contrast to the immigration case, here there are no families
with abundances O(n). Preliminary calculations [4] show that there are two possible regimes,
depending on the respective positions of the mutation rate θ and of the Malthusian parameter
η (see section on splitting trees). In the case when θ < η the abundance of the largest family is
of order O(nβ), where β = 1− θ/η, otherwise it is of order O(log(n)).

As in the previous section, we have displayed results holding for a general lifespan measure
π. On the other hand, here the quantities displayed in the theorem can only be computed in
the case of critical birth–death processes, that is, when the death rate of individuals is constant,
equal to their birth rate λ, so that W (x) = 1 + λx. In that case, W ′

θ(x) = λe−θx, and we can
integrate the quantities in the theorem.

Corollary 5.4 In the case of a critical birth–death process with birth and death rate λ,

lim
n→∞

n−1An(k) = (α−1 − 1)
αk

k
a.s.,

where

α :=
λ

λ+ θ
.

In addition,
lim
n→∞

n−1An = −(α−1 − 1) ln(1− α) a.s.
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