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Abstract: In this paper, the stability problem of inviscid parallel flow between two parallel walls 

is studied. Firstly, it is obtained that the base flow for this classical problem is a uniform flow. 

Secondly, it is shown that the solution of the disturbance equation is c=U, i.e., the propagation 

speed of the disturbance equals the flow velocity. The disturbance in this flow is neutral. Finally, 

it is suggested that the classical Rayleigh Theorem on inflectional velocity instability is incorrect 

which states that the necessary condition for instability of inviscid flow is the existence of an 

inflection point on the velocity profile.  
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PACS numbers:  
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1. Introduction 

Stability of parallel flows is the basis of modern flow stability theory. The Rayleigh 

theorem on inflectional instability is a fundamental theorem on inviscid stability theory. This 

theorem is found in many text books and employed in the scientific community since Rayleigh 

published his classical work in 1880.  However, this theorem is still facing challenge today as it 

contradicts to some observations.  

In the classical theory for flow instability, Rayleigh (1880) first developed a general 

linear stability theory for inviscid parallel shear flows, and showed that a necessary condition for 

instability is that the velocity profile has a point of inflection [1]. Heisenberg (1924) showed that 

if a velocity distribution allows an inviscid neutral disturbance with finite wave-length and non-

vanishing phase velocity, the disturbance with the same wave-length is unstable in the real fluid 

when the Reynolds number is sufficiently large [2]. Later, Tollmien (1935) succeeded in showing 

that Rayleigh’s criterion also constitutes a sufficient condition for the amplification of 
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disturbances for velocity distributions of the symmetrical type or of the boundary-layer type [3]. 

Lin (1944) mentioned that he has shown where a point of inflexion exists in the velocity curve, 

but a neutral disturbance does not exist [4]. In other word, Rayleigh’s criterion is not a sufficient 

condition for instability (the reason was further clarified by Fjrtoft (1950)).  About the dual roles 

of viscosity, Lin was able to demonstrate the different influences of viscosity on the disturbance 

amplification at low Re and high Re. His conclusions are as follows. For small viscosity, the 

effect of viscosity is essentially destabilizing and an increase of Re gives more stability. For large 

viscosity (low Re), viscosity plays a stabilizing role by the dissipation of energy.  Fjrtoft (1950) 

gave a further necessary condition for inviscid instability, that there is a maximum of vorticity for 

instability; he also gave the second further necessary condition for inviscid instability, 

0)(''  IPUUU  (see Fig.1) [5]. Therefore, it is well known that inviscid flow with inflectional 

velocity profile is unstable, while inviscid flow with no inflectional velocity profile is stable [6-

10].  However, when compared with experiments, contradictory results were obtained [6-10]. The 

associated analysis showed that the effect of viscosity is far more complex, and it may play dual 

roles to the flow instability for some type of flows [6]. The linear stability theory of small 

disturbances with Orr-Sommerfeld equation has been confirmed by the famous experiment of 

Schubauer and Skramstad [11], which proved that there exists a 2D wave under low noised 

environment and this wave was named as Tollmien-Schlichting (T-S) wave [6-10]. 

Recently, we proposed a new theory, named as energy gradient theory, to explain the 

flow instability and transition to turbulence [12-17]. The critical condition calculated at turbulent 

transition determined by experiments obtains consistent agreement with the available 

experimental data for parallel flows and Taylor-Couette flows [14]. When the theory is 

considered for both parallel and curved shear flows, three important theorems have been deduced 

[16]. These theorems are: (1) Potential flow (inviscid and irrotational) is stable; (2) Inviscid 

rotational (inviscid and nonzero vorticity) flow is unstable; (3) Velocity profile with an 

inflectional point is unstable when there is no work input or output to the system, for both 

inviscid and viscous flows. From the theorem (3), it is demonstrated that the existence of an 

inflection point on velocity profile is a sufficient condition for pressure driven flows, for both the 

inviscid and viscous flows.  As a necessary condition, the existence of an inflection point on 

velocity profile for pressure driven flows, this has been proved when considering the effect of 

disturbance [17]. Following these results, it is suggested that the classical Rayleigh theorem is not 

quite truly correct which states that a necessary condition for inviscid  flow instability is the 

existence of an inflection point on the velocity profile.   
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In present study, the stability problem of inviscid parallel flow between two parallel walls 

is studied. Finally, it is shown that the classical Rayleigh Theorem on inflectional velocity 

instability is incorrect. 

 

2. Rayleigh Equation 

 

 It should be distinguished between the base flow and the mean flow. However, for linear 

disturbance, since the perturbation is infinitesmall, the mean flow is the same as the base flow, 

but, the concept is different. 

Let the base flow, which may be regarded as steady, be described by its Cartesian 

velocity components U,V,W and its pressure P, the corresponding quantities for the disturbance 

will be denoted by u’, v’, w’ (u’ in streamwise, v’ in transverse, and w’ in spanwise directions) 

and p’, respectively. Hence, in the resultant motion the velocity components and the pressure are  

'uUu  , 'vVv  , 'wWw  , 'pPp  .     (1) 

Substituting the above expressions into the Euler equation for inviscid flow and substracting the 

equation for the base flow, the linearized equation of disturbance can be obtained [1, 6-10]. 

 It is assumed that the disturbance is two-dimensional (2D), then a stream function is 

introduced. The stream function representing a single oscillation of the disturbance is assumed to 

be of the form 

)()(),,( txieytyx   ,       (2) 

where   is a real quantity and   is a complex quantity, ir i  . Dividing   by  , a 

complex quantity c is obtained, ir iccc   / . Here, rc  is the speed of the wave 

propagating and ic  expresses the degree of damping or amplification of the disturbance ( ic =0, 

neutral disturbance; ic <0, the disturbance decays; ic >0, the disturbance amplified).  Thus, 

)()('' txiey
y

u  



 ,       (3) 

)()(' txieyi
x

v  



 .       (4) 

Introducing these values into the linearized equation of the disturbance, the following ordinary 

differential equation is obtained [1, 6-10],  

0'')'')(( 2   UcU ,       (5) 

which is known as the frictionless stability equation, or Rayleigh’s equation. 
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3. Rayleigh’s necessary condition for instability of inviscid flows 

 

Re-writing Eq.(5) as 

0
''

'' 2 


 
cU

U
.       (6) 

Next, we multiply Eq.(6) by its complex conjugate, then obtain [1, 6-10] 

0
''

''* **2 


 
cU

U
.      (7) 

Then, integrating the above equation by part over y, the imaginary part of the resulting equation is 

0
''

2
1 2

2




y
yi dy

cU

U
c


.        (8) 

If the disturbance is amplified, ic is larger than zero. It can be seen that for the equality to be 

valid ''U  has to change sign over the integration space. Thus, there should be at least one point 

over the distance between 1y  and 2y  at which ''U =0. In other words, it is necessary that there is 

an inflection point on the velocity profile for flow instability. This is the famous Rayleigh 

Theorem [1].  

 

4. Re-visiting: Solution of Rayleigh Equation 

 

In the solution of Eqs.(6) to (8), it has been assumed (or implicitly assumed) that the 

shape of the velocity profile of the base flow is curved (see Fig.1). This assumption is not 

consistent with the governing equation of inviscid flow, i.e., Euler equation.  

Firstly, before analyzing the stability of a linear disturbance, the base flow should be first 

solved. This can be done by the following.  Applying the Euler equation and the inviscid wall 

boundary condition (slip condition) to the given geometry, the solution of the inviscid base flow 

between two parallel walls is a uniform flow (see Fig.2), 

CU    (C is a constant).        (9) 

Thus, we obtain 0'';0'  UandU .     (10) 

Introducing 0'' U  into Eq.(5), we have 

0)'')(( 2  cU .         (11) 

There are two possible solutions for Eq.(11),  
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0)(  cU ,          (12) 

and  

0)''( 2   .          (13) 

For Eq.(12), we have the solution  

CUc   (C is a constant).       (14) 

For Eq.(13),  2''  ,  the general solution to this differential equation is then 

yy eBeBy   11)(     ( 1B  and 2B  are constants).     (15) 

Apply the boundary condition, y=0, 0 ; y=2h, 0 (see Fig.2); then, it is found that Eq.(15) 

has no solution except 0)( y . Thus, it is concluded that Eq.(13) has no solution under the 

given boundary conditions. 

Therefore, the linear perturbation equation of inviscid flow between two parallel walls 

has only one solution CUc  . There is no information on the variation of the amplitude of 

the disturbance. This means that the amplitude of the disturbance is kept constant in the uniform 

flow, and it is neutral.  

As a result, since the base flow is CU   in the whole domain, Eq.(6) can not be 

obtained for inviscid parallel flows. Thus, the Rayleigh criterion may not exist. As such, the 

Rayleigh theorem on the inflectional instability of inviscid parallel flow is incorrect. 

When one analyzes the flow stability, the base profile should be given first in terms of the 

governing equation. Then, the corresponding perturbation equation should be studied at the 

appropriate boundary conditions to observe the amplification or decay of the imposed disturbance 

[9].  If the flow between the two parallel walls is inviscid, the base flow is only a uniform flow. If 

the shape of the velocity profile is curved as shown in Fig.1, then there must be variation of 

pressure along y direction, 0/  yp . This would violate the Rayleigh equation which is based 

on the assumption of parallel flows. Only the viscous flow which is governed by Navier-Stokes 

equation can produce the velocity profile with curvature as shown in Fig.1.  In viscous parallel 

flows, the variation of velocity along y direction is balanced by the viscous friction force in the 

Navier-Stokes equation. In inviscid parallel flows, the variation of velocity along y direction must 

be balanced by pressure in the Euler equation.  

In the derivation of the Rayleigh theorem [1-10], the base flow is assumed a viscous 

profile, while the linear disturbance equation employs inviscid linear equation. This is obviously 

contradictable. 
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 Strictly, the existence of inflection point on the velocity profile is the necessary and 

sufficient condition for turbulent transition, for pressure driven flows [17]. For shear driven flows, 

this is neither a necessary condition, nor a sufficient condition for turbulent transition [17].  

 

5. Conclusions 

The base flow of inviscid flow between two parallel walls is the uniform flow. The first 

and second derivatives are both zero everywhere. The solution of the linear perturbed equation 

(Rayleigh equation) is c=U. That is, the propagating speed of disturbance is same as U. The 

disturbance is neutral. As a result, it is suggested that the classical Rayleigh theorem is incorrect.  

The key problem should be pointed out that when one analyzes the flow stability, the 

profile of the base flow and the disturbance should be governed by the same basic equation, i.e., 

Euler, or Navier-Stokes equation. 
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Fig.1 Four candidate inviscid velocity profiles evaluated from Rayleigh Theorem (1880) 
and Fjrtoft Theorem (1950) (adapted from White, 1991; and Drazin and Reid, 2004). 
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Fig.2  Inviscid parallel flow between two parallel walls; the base flow is a uniform flow. 
 
 


