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Abstract

We consider a neutral dynamical model of biological diversity, where individuals live and repro-

duce independently. They have i.i.d. lifetime durations (which are not necessarily exponentially

distributed) and give birth (singly) at constant rate b. Such a genealogical tree is usually called

a splitting tree [8], and the population counting process (Nt; t ≥ 0) is a homogeneous, binary

Crump–Mode–Jagers process.

We assume that individuals independently experience mutations at constant rate θ during

their lifetimes, under the infinite-alleles assumption: each mutation instantaneously confers a

brand new type, called allele, to its carrier. We are interested in the allele frequency spectrum at

time t, i.e., the number A(t) of distinct alleles represented in the population at time t, and more

specifically, the numbers A(k, t) of alleles represented by k individuals at time t, k = 1, 2, . . . , Nt.

We mainly use two classes of tools: coalescent point processes, as defined in [14], and branching

processes counted by random characteristics, as defined in [10, 11]. We provide explicit formulae

for the expectation of A(k, t) conditional on population size in a coalescent point process, which

apply to the special case of splitting trees. We separately derive the a.s. limits of A(k, t)/Nt and

of A(t)/Nt thanks to random characteristics, in the same vein as in [18].

Last, we separately compute the expected homozygosity by applying a method introduced in

[13], characterizing the dynamics of the tree distribution as the origination time of the tree moves

back in time, in the spirit of backward Kolmogorov equations.
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1 Introduction

We consider a general branching population, where individuals reproduce independently of each

other, have i.i.d. lifetime durations, and give birth at constant rate during their lifetime. We also

assume that each birth gives rise to a single newborn. The genealogical tree associated with this

construction is known as a splitting tree [7, 8, 14]. The process (Nt; t ≥ 0) counting the population

size is a non-Markovian birth–death process belonging to the class of general branching processes,

or Crump–Mode–Jagers (CMJ) processes. Since births arrive singly and at constant rate, these

processes are sometimes called homogeneous, binary CMJ processes.

Next, individuals are given a type, called allele or haplotype. They inherit their type at birth

from their mother, and (their germ line) can change type throughout their lifetime, at the points

of independent Poisson point processes with rate θ, conditional on lifetimes (neutral mutations).

The type conferred by a mutation is each time an entirely new type, an assumption known as the

infinitely-many alleles model.

We are interested in the so-called allelic partition (partition into types) of the population alive at

time t. A convenient way of describing this partition without labelling types is to define the number

Aθ(k, t) of types carried by k individuals at time t. The sequence (Aθ(k, t); k ≥ 1) is called the

frequency spectrum of the allelic partition. We also denote by Aθ(t) the total number of distinct

types at time t. The most celebrated mathematical result in this setting is Ewens’ sampling formula,

which yields the distribution of the frequency spectrum for the Kingman coalescent tree with neutral

Poissonian mutations [6].

Credit is due to G. Yule [19] for the first study of a branching tree with mutations, but the

interest for the infinitely-many alleles model applied to branching trees has started with the work

of R.C. Griffiths and A.G. Pakes [9], where the tree under focus is a Galton–Watson tree and each

individual, with a fixed probability, is independently declared mutant. A fascinating monography

dedicated to general branching processes (also undergoing mutations at birth times) is due to Z.

Täıb [18]. An extensive use is done there of a.s. limit theorems for branching processes counted by

random characteristics, due to P. Jagers and O. Nerman [10, 11, 12, 15].

More recently, in a series of three companion papers, J. Bertoin [1, 2, 3] has set up a very general

framework for Galton–Watson processes with mutations, where he has considered the allelic partition

of the whole population from origination to extinction, and studied various scaling limits for large

initial population sizes and low mutation probabilities. Branching processes have also been used in

the study of multistage carcinogenesis. In this setting, the emphasis is put on the waiting time until

a target mutation occurs, see [5, 17] and the references therein.

In this paper, we study the part of the frequency spectrum corresponding to families with a

fixed number of carriers, that we call small families. We use three techniques: coalescent point

processes, branching processes counted by random characteristics, and Kolomogorov-type equations

as a function of the origination time of the tree. In a companion paper [4], we will discuss the part

of the frequency spectrum corresponding to the largest or/and oldest families (the age of a family

being that of their original mutation).
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2 Model and statement of main results

2.1 Model

In this work, we consider genealogical trees satisfying the branching property and called splitting

trees [7, 8]. Splitting trees are those random trees where individuals’ lifetime durations are i.i.d. with

an arbitrary distribution, but where birth events occur at Poisson times during each individual’s

lifetime. We call b this constant birth rate and we denote by V a r.v. distributed as the lifetime

duration. Then set Λ(dr) := bP(V ∈ dr) a finite measure on (0,∞] with total mass b called the

lifespan measure. We will always assume that a splitting tree is started with one unique progenitor

born at time 0.

The process (Nt; t ≥ 0) counting the number of alive individuals at time t is a homogeneous,

binary Crump–Mode–Jagers process, which is not Markovian unless Λ has an exponential density or

is the Dirac mass at {+∞}.

0 1 2 3 4 5 6 7 8 9 10 12 13 14 15

Figure 1: A coalescent point process for 16 individuals, hence 15 branches.

In [14], it is shown that the genealogy of a splitting tree conditioned to be extant at a fixed time

t is given by a coalescent point process, that is, a sequence of i.i.d. random variables Hi, i ≥ 1,

killed at its first value greater than t. In particular, conditional on Nt 6= 0, Nt follows a geometric

ditribution with parameter P(H < t). More specifically, for any 0 ≤ i ≤ Nt − 1, the coalescence

time between the i-th alive individual at time t and the j-th individual alive at time t (i.e., the time

elapsed since the common lineage to both individuals split into two distinct lineages) is the maximum

of Hi+1, . . . ,Hj . The graphical representation on Figure 1 is straightforward. The common law of

these so-called branch lengths is given by

P(H > s) =
1

W (s)
, (2.1)

where the nondecreasing function W is such that W (0) = 1 and is characterized by its Laplace

transform. More specifically, these branch lengths are the depths of the excursions of the jump
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contour process, say Y (t), of the splitting tree truncated below level t. They are i.i.d. because Y (t)

is a Markov process. Indeed, it is shown in [14] that Y (t) has the law of a Lévy process, say Y , with

no negative jumps, reflected below t and killed upon hitting 0. The function W is called the scale

function of Y , and is defined from the Laplace exponent ψ of Y :

ψ(x) = x−
∫

(0,+∞]

(
1− e−rx

)
Λ(dr) x ∈ R+. (2.2)

Let α denote the largest root of ψ. In the supercritical case (i.e.
∫
(0,∞] rΛ(dr) > 1), and in this

case only, α is positive and called the Malthusian parameter, because the population size grows

exponentially at rate α on the survival event. Then the function W is characterized by

∫ ∞

0
e−xrW (r) dr =

1

ψ(x)
x > α.

Actually, it is possible to show by path decompositions of the process Y that

W (x) = exp

(
b

∫ x

0
dtP(J > t)

)
,

where J is the maximum of the path of Y killed upon hitting 0 and started from a random initial

value, distributed as V . Note that since Y is also the contour process of a splitting tree, J has the

law of the extinction time of the CMJ process N started from one individual.

In the next section, we consider coalescent point processes without reference to a splitting tree.

The law of such a process is merely characterized by a random number N of i.i.d. r.v. (Hi)

independent of N , both with arbitrary distributions. In this setting, (2.1) conversely serves as a

definition of W , which is now an arbitrary nondecreasing function, whereas it was previously seen to

be differentiable in the special case of splitting trees. The population size N can be fixed (possibly

infinite) or truly random, e.g. following a geometric distribution. It will be written Nt when the law

of H is supported by [0, t]. In this latter case, any result obtained under the assumption that N

follows a geometric distribution can be applied to the case of splitting trees.

Throughout this work, we assume that individuals independently experience mutations at Poisson

times during their lifetime, that each new mutation event confers a brand new type (called haplotype,

or allele) to the individual, and that a newborn holds the same type as her mother at birth time.

The mutation rate is denoted by θ.

2.2 Outline and statement of main results

The main technique we use relies on the previously described representation of the genealogy of

a splitting tree by a sequence of i.i.d. r.v. (Hi)i≥1, called the coalescent point process (see also

[16] for the critical, exponential case). The common distribution of H1,H2, . . . is related to the

scale function W . We will also use the scale function Wθ associated with the lifetime of clonal

families (standard lifetime killed at its first mutation event). Section 3 is dedicated to some fine

computations in the general framework of coalescent point processes. For example, for a coalescent

point process (H0,H1, . . . ,HX) of age t, where X is an independent geometric r.v., Theorem 3.4
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gives the expectation of Aθ(k, t)u
X . Various corollaries are stated, giving the expectation, sometimes

conditional on the population size, of specific quantities of biological interest at the fixed time t. Those

statements extend results of [13] given under a doubly asymptotic regime (t, n→ ∞). For example,

Corollary 3.5 gives the expectation of the number of distinct alleles and of homozygosity (probability

of drawing two individuals carrying the same allele) and Corollary 3.11 gives the expectation of the

number Z0(y;n) among the n first individuals who carry the ancestral type of lineage 0 y units of

time in the past

EZ0(y;n) = e−θy
n∑

k=0

P(H ≤ y)k,

see Remark 3.12 for a simple interpretation of this formula.

In Section 4, some of the previous results are specified to the case of splitting trees. In particular,

Proposition 4.1 yields the expectation of Aθ(k, t)u
Nt , as well as of Z0(t)u

Nt , where Z0(t) denotes the

number of alive individuals at time t carrying the ancestral allele. The result for Aθ(k, t) can even be

detailed to the case of haplotypes of a given age. As previously, various corollaries are provided for

some quantities such as the homozygosity. Ruling out the information on the population size (i.e.,

taking u = 1) and on the age of the mutation, Corollary 4.3 reads

E
⋆Aθ(k, t) =W (t)

∫ t

0
dx θ e−θx 1

Wθ(x)2

(
1− 1

Wθ(x)

)k−1

,

and

P
⋆ (Z0(t) = k) =W (t)

e−θt

Wθ(t)2

(
1− 1

Wθ(t)

)k−1

,

where P
⋆ is the conditional probability on survival up until time t. Note also that Subsection 4.2

provides the reader with a more explanatory proof of the previous formulae.

The theory of random characteristics [10, 11, 12, 15, 18], which is the second main technique

we use, is displayed in Section 5. There, the random characteristic of individual i, say, can be for

example the number χk
i (t) of mutations that i has experienced during her lifetime and which are

carried by k alive individuals, t units of time after her birth (χi(t) = 0 if t < 0). Then the total

number of haplotypes carried by k individuals at time t (except possibly the ancestral type) is the

sum over all individuals i (dead or alive) of χi(t − σi), where σi is the birth time of individual i.

Now according to limit theorems by P. Jagers and O. Nerman [10, 11, 12, 15], these sums converge

a.s. on the survival event in the supercritical case. Exploiting those limit theorems, we are able to

independently derive the following a.s. convergences in the supercritical case (see Proposition 5.1).

On the survival event,

lim
t→∞

Aθ(k, t)

Aθ(t)
=
Uk

U
a.s.

and

lim
t→∞

Aθ(t)

Nt
= U a.s.,

where

Uk :=

∫ ∞

0
dx θ e−θx 1

Wθ(x)2

(
1− 1

Wθ(x)

)k−1

,
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and

U :=
∑

k≥1

Uk =

∫ ∞

0
dx θ e−θx 1

Wθ(x)
.

In the final section (Section 6), we consider Gθ(t) := Z0(t)(Z0(t) − 1)/2 +
∑

k≥1 k(k − 1)Aθ(k, t)/2,

that we term absolute homozygosity, in reference to standard homozygosity, which is defined as

Ḡθ(t) = 2Gθ(t)/Nt(Nt − 1). Homozygosity is a well-known measure of diversity, that can be seen

as the probability that two randomly sampled distinct individuals (or sequences) share the same

allele. In the spirit of backward Kolmogorov equations, we derive the dynamics of the expectation

of Gθ(t)u
Nt as the origination time of the tree moves back in time. Then the expected standard and

absolute homozygosity can be computed. In passing, we recover formulae obtained in Section 4 by

totally different methods. Specifically, we get E⋆Gθ(t) =W (t)(W2θ(t)− 1).

3 Expected haplotype frequencies for coalescent point processes

In this section, unless otherwise specified, we assume that the lineage of individual 0, sometimes

called lineage 0, is infinite, and that all other branch lengths are i.i.d., distributed as some r.v. H. To

each Hi corresponds an individual, that we call individual i. We also assume that mutations occur

according to a Poisson point process on edge lengths with parameter θ.

3.1 The next branch with no extra mutation

We let Eθ denote the set of individuals who carry no more mutations (but possibly less) than

individual 0 (some of and at most exactly the mutations carried by 0, but no other mutation). We

call such individuals (0, ·)-type individuals (same type as some point on lineage 0 at some time in

the past).

Set Kθ
0 := 0 and for i ≥ 1, define Kθ

i as the label of the i-th individual in Eθ. In addition, set

Hθ
i := max{Hj : K

θ
i < j ≤ Kθ

i+1}

and

Bθ
i := Kθ

i −Kθ
i−1.

See Figure 2 for a graphical representation of these quantities on a typical coalescent point process

with mutations.

We write (Bθ,Hθ) in lieu of (Bθ
1 ,H

θ
1 ) and we define Wθ(x; γ) by

Wθ(x; γ) :=
1

1− E
(
γBθ ,Hθ ≤ x

) x ≥ 0, γ ∈ (0, 1].

We will also need the following notation

W (x; γ) :=
1

1− γP(H ≤ x)
x ≥ 0, γ ∈ (0, 1].
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same as some point on lineage 0 anywhere in the past, so that 8 ∈ Eθ and Bθ
1 = 8. The maximum

Hθ
1 of the first Bθ

1 branch lengths is shown. Also note that 10 ∈ Eθ and Bθ
2 = 2.

Theorem 3.1 The bivariate sequence ((Bθ
i ,H

θ
i ); i ≥ 1) is a sequence of i.i.d. random pairs. In

addition, the following formula holds for all x ≥ 0 and γ ∈ (0, 1]

Wθ(x; γ) = e−θxW (x; γ) + θ

∫ x

0
W (y; γ) e−θy dy.

Remark 3.2 Differentiating both sides of the previous equation w.r.t. the first variable yields

dWθ(x; γ) = e−θx dW (x; γ).

Remark 3.3 The formula in the previous statement was shown in [13] in the special case γ = 1.

Proof. First observe that the pair (Kθ
1 ,H

θ
1 ) does not depend on the haplotype of individual 0, and

that the i-th (0, ·)-type individual is also the next individual after Kθ
i−1 with no mutation other than

those carried by individual Kθ
i−1. This ensures that (K

θ
i −Kθ

i−1,H
θ
i ) has the same law as (Kθ

1 ,H
θ
1 ),

and the independence between (Kθ
i − Kθ

i−1,H
θ
i ) and previous pairs is due to the independence of

branch lengths and the fact that new mutations can only occur on branches with labels strictly

greater than Kθ
i−1.

As for the formula relating W θ and W , we consider the renewal process S defined by S0 = 0 and

Sn =
∑n

i=1B
θ
i . Next, for any integer k ≥ 0, let Fk denote the event

Fk := {∃n ≥ 0 : Sn = k, Mn ≤ x},
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where Mn := max{Hθ
i : 1 ≤ i ≤ n}. Let Tk denote the time elapsed since the lineages of individual

0 and individual k have split up, that is, Tk = max{Hi : 1 ≤ i ≤ k}. Notice that by definition of Hθ
i ,

Tk =Mn on the event {Sn = k}, so that

Fk = {∃n ≥ 0 : Sn = k, Tk ≤ x}.

So Fk is the event that the lineage of individual k has had no mutation between time −Tk and present

time 0 (i.e., no mutation on the part of its lineage not common with individual 0), and Tk ≤ x. By

standard properties of Poisson processes, we get

P(Fk) = E

(
e−θTk , Tk ≤ x

)

= P(H ≤ x)ke−θx + θ

∫ x

0
P(H ≤ y)k e−θy dy. (3.1)

Note that the r.h.s. of this equation is obtained using the integration by parts formula for càdlàg

functions (i.e. functions continuous on the right and admitting left limits at each points of the space,

like P(H ≤ x) ): if f is continuously differentiable and g is càdlàg with bounded variation,

f(x)g(x) = f(0)g(0) +

∫ x

0
f ′(y)g(y)dy +

∫

(0,x]
f(y)dg(y). (3.2)

Equation (3.1) yields

∑

k≥0

γkP(Fk) = e−θxW (x; γ) + θ

∫ x

0
W (y; γ) e−θy dy.

On the other hand,
∑

k≥0

γkP(Fk) =
∑

k≥0

γk
∑

n≥0

P(Sn = k,Mn ≤ x)

=
∑

n≥0

E
(
γSn ,Mn ≤ x

)

=
∑

n≥0

E

(
γ
∑n

i=1 B
θ
i ,Hθ

1 ≤ x, . . . ,Hθ
n ≤ x

)

=
∑

n≥0

(
E

(
γB

θ

,Hθ ≤ x
))n

=
1

1− E
(
γBθ ,Hθ ≤ x

) ,

which yields the desired result. 2

3.2 Expected haplotype frequencies for geometrically distributed population sizes

Let X denote some independent geometric random variable with parameter γ, that is, P(X ≥ n) = γn

for any n ≥ 0.

In the infinite-allele model, each haplotype is characterized by its most recent mutation. We

denote by Aθ(k, y; γ) the number of haplotypes whose most recent mutation occurred between time

−y and present time 0 and which are carried by k individuals among {0, 1, . . . ,X}.
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Theorem 3.4 For all k ≥ 1, y > 0, γ ∈ (0, 1], u ∈ [0, 1],

E
(
uXAθ(k, y; γ)

)
=

1− γ

(1− uγ)2

∫ y

0
dx θ e−θx 1

Wθ(x;uγ)2

(
1− 1

Wθ(x;uγ)

)k−1

.

Let I ′θ(y; γ) (resp. I
′
θ(y;n)) denote the number of individuals among {0, 1, . . . ,X} (resp. {0, 1, . . . , n})

whose most recent mutation appeared between time −y and present time 0.

Let Aθ(y; γ) (resp. Aθ(y;n)) denote the number of distinct haplotypes represented in {0, 1, . . . ,X}
(resp. {0, 1, . . . , n}) whose most recent mutation appeared between time −y and present time 0.

Let Ḡθ(y;n) denote the probability that two distinct individuals randomly drawn from {0, 1, · · · , n}
share the same haplotype and that the most recent mutation of this common haplotype appeared

between time −y and present time 0.

Corollary 3.5 For any integer n ≥ 1,

E I ′θ(y;n− 1) = n(1− exp(−θy)),

EAθ(y;n − 1) = n

∫ y

0
dx θ e−θx

P(Hθ > x) +

∫ y

0
dx θ e−θx

E

(
Bθ ∧ n,Hθ ≤ x

)
. (3.3)

and in the case where the law of H has no atom

E Ḡθ(y;n − 1) = 2

n−1∑

k=1

k(n − k)

n(n− 1)

∫ y

0
P(H ∈ dx)P(H ≤ x)k−1e−θx

(
e−θx − e−θy

)
.

Remark 3.6 The first expectation can readily be deduced from some exchangeability argument, since

each individual carries a mutation with age smaller than y with probability 1− exp(−θy) (there is no

edge effect since the ancestral lineage is infinite).

Remark 3.7 In [13], a pathwise result was shown for the number Aθ(∞, n) of distinct haplotypes

represented in {0, 1, · · · , n}, namely

lim
n→∞

n−1Aθ(∞, n) =

∫ ∞

0
dx θ e−θx

P(Hθ > x) a.s.

Remark 3.8 In the case where the law of H admits atoms, the computation of EḠθ(y;n−1) can be

done following the same line as in the proof below, using the fact that dW (x; γ) has an atomic part.

The computation gives

E Ḡθ(y;n− 1) = 2
n−1∑

k=1

(n− k)

n(n− 1)

{
k

∫ y

0
µn.a.H (dx)P(H ≤ x)k−1e−θx

(
e−θx − e−θy

)

+
∑

x∈[0,y]

(
P(H ≤ x)k−1 − P(H < x)k−1

)
e−θx

(
e−θx − e−θy

)


 ,

where µn.a.H is the non-atomic part of the law of H.
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Proof. For the first expectation, taking u = 1 in the theorem,

E I ′θ(y; γ) = E

∑

k≥1

kAθ(k, y; γ) =
1− e−θy

1− γ
,

using repeatedly Fubini–Tonelli theorem and
∑

k≥1 kx
k−1 = (1− x)−2 for any x ∈ [0, 1). The result

then follows from the inversion of the generating function using (1− γ)−1 =
∑

n≥0(n+ 1)(1− γ)γn.

For the second expectation,

EAθ(y; γ) = E

∑

k≥1

Aθ(k, y; γ) =
1

1− γ

∫ y

0
dx θ e−θx 1

Wθ(x; γ)
=

1

1− γ

∫ y

0
dx θ e−θx

(
1− E

(
γB

θ

,Hθ ≤ x
))

.

Next invert the generating function as follows

1

1− γ
E

(
γB

θ

,Hθ ≤ x
)
=
∑

n≥0

(n+ 1)(1 − γ)γn
∑

j≥0

P(Bθ = j,Hθ ≤ x)γj

=
∑

n≥0

(1− γ)γn
n∑

k=0

(n+ 1− k)P(Bθ = k,Hθ ≤ x)

=
∑

n≥0

(1− γ)γnE
(
n+ 1−Bθ, Bθ ≤ n,Hθ ≤ x

)
,

which entails

EAθ(y;n) =

∫ y

0
dx θ e−θx

(
n+ 1− E

(
n+ 1−Bθ, Bθ ≤ n,Hθ ≤ x

))

=

∫ y

0
dx θ e−θx

(
(n + 1)P(Hθ > x) + E

(
n+ 1− (n+ 1−Bθ)1{Bθ≤n},H

θ ≤ x
))

=

∫ y

0
dx θ e−θx

(
(n + 1)P(Hθ > x) + E

(
(n+ 1)1{Bθ>n} +Bθ1{Bθ≤n},H

θ ≤ x
))

,

which yields the result.

For the third expectation, we use the fact that the expected number of (unordered) pairs of

individuals sharing the same haplotype (younger than y) equals

∑

n≥0

(1− γ)γn
n(n+ 1)

2
Ḡθ(y;n) = E[Ḡθ(y; γ)],

where

Ḡθ(y; γ) :=
∑

k≥2

k(k − 1)

2
Aθ(k, y; γ).

Now since
∑

k≥2 k(k − 1)xk−1 = 2x(1− x)−3, we get

EḠθ(y; γ) =
1

1− γ

∫ y

0
dx θ e−θx(Wθ(x; γ)− 1)

=
1

1− γ

∫ y

0
dx θ e−θx

∫ x

0
e−θzdW (z; γ)

=
1

1− γ

∫ y

0
dW (z; γ) e−θz

(
e−θz − e−θy

)
,
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where differentiation of W is understood w.r.t. the first variable. Then we use the fact, when the

law of H has no atom,

dW (z; γ) =
γP(H ∈ dz)

(1− γP(H ≤ z))2
= P(H ∈ dz)

∑

n≥0

nγnP(H ≤ z)n−1.

The proof ends writing the product series between the last entire series and (1− γ)−2 =
∑

n≥0(n +

1)γn. 2

Before proving the theorem, we insert a paragraph in which we state and prove a preliminary

key result.

3.2.1 A key lemma

We denote by ℓi the time elapsed since the i-th most recent mutation on the lineage of individual 0,

also called lineage 0. Let Ni(y; γ) denote the number of (0, ·)-type individuals in {0, 1 . . . ,X} whose

most recent mutation time in its haplotype is ℓi if ℓi ≤ y, and Ni(y; γ) = 0 otherwise.

We also define (0, y)-type individuals as those individuals that have the same type as the point at

time −y on lineage 0. In other words, an individual is of (0, y)-type if the most recent mutation of its

haplotype is ℓi for the unique i such that ℓi−1 ≤ y < ℓi. In the same vein, (0, [0, y])-type individuals

are those individuals that have the same type as some point on lineage 0 at any time between time

−y and present time 0.

We denote by Z0(y; γ) the number of (0, y)-type individuals of {0, 1, . . . ,X}. Note that Z0(y; γ) =

Ni(y; γ) where i is such that ℓi−1 ≤ y < ℓi. Also set I0(y; γ) the number of (0, [0, y])-type individuals

of {0, 1, . . . ,X} and I ′0(y; γ) the number of (0, ·)-type individuals of {0, 1, . . . ,X} whose most recent

mutation appeared between time −y and present time 0. Otherwise said,

I0(y; γ) = I ′0(y; γ) + Z0(y; γ) and I ′0(y; γ) =
∑

i≥1

Ni(y; γ)

Lemma 3.9 For all k ≥ 1, y > 0, γ ∈ (0, 1], u ∈ [0, 1],

∑

i≥1

E
(
uX , Ni(y, γ) = k

)
=

1− γ

1− uγ

∫ y

0
dz θ e−θz W (z;uγ)

Wθ(z;uγ)2

(
1− 1

Wθ(z;uγ)

)k−1

and

E
(
uX , Z0(y; γ) = k

)
=

1− γ

1− uγ
e−θy W (y;uγ)

Wθ(y;uγ)2

(
1− 1

Wθ(y;uγ)

)k−1

.

Corollary 3.10 For all y > 0, γ ∈ (0, 1], u ∈ [0, 1],

E
(
uXI ′0(y; γ)

)
=

1− γ

1− uγ

∫ y

0
dz θ e−θzW (z;uγ) and E

(
uXZ0(y; γ)

)
=

1− γ

1− uγ
e−θyW (y;uγ).
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Proof. Use the formulae in Lemma 3.9 and Fubini–Tonelli theorem repeatedly, in particular to see

that

E I ′0(y; γ)u
X =

∑

i≥1

EuX Ni(y; γ) =
∑

i≥1

∑

k≥1

kEuX 1Ni(y;γ)=k =
∑

k≥1

k
∑

i≥1

EuX 1Ni(y;γ)=k.

The proof ends using
∑

k≥1 kx
k−1 = (1− x)−2 for all x ∈ [0, 1). 2

Let n be a non-negative integer. In the next corollary, Z0(y;n) denotes the number of (0, y)-type

individuals of {0, 1, . . . , n} and I ′0(y;n) the number of (0, ·)-type individuals of {0, 1, . . . , n} whose

most recent mutation appeared between time −y and present time 0.

Corollary 3.11 For all y > 0 and n ≥ 0,

E I ′0(y;n) =

∫ y

0
dz θ e−θz 1− P(H ≤ z)n+1

P(H > z)
and EZ0(y;n) = e−θy 1− P(H ≤ y)n+1

P(H > y)
.

Proof. We use (1− γ)−1 =
∑

k≥0 γ
k along with

W (z; γ) =
1

1− γP(H ≤ z)
=
∑

n≥0

γnP(H ≤ z)n.

Plugging these equalities into the first formula of the first corollary evaluated at u = 1 yields

E I ′0(y; γ) =

∫ y

0
dz θ e−θz 1

1− γ
W (z; γ) =

∫ y

0
dz θ e−θz

∑

n≥0

γn
n∑

k=0

P(H ≤ z)k.

Inverting the generating function yields the expression proposed for E I ′0(y;n). The very same line

of reasoning can be applied to get EZ0(y;n). 2

Remark 3.12 Keeping the expression in the proof of the theorem under the shape of a sum is more

informative. Indeed, differentiating each side of the equality, we then get

E I ′0(dy;n) = dy θ e−θy
n∑

k=0

P(H ≤ y)k,

where I ′0(dy;n) denotes the number of (0, ·)-type individuals of {0, 1, . . . , n} whose most recent muta-

tion is of age in (y, y+dy). The interpretation of this new expression goes as follows. The term θ dy

is the probability that a mutation occurred on lineage 0 in the time interval (y, y + dy) backwards in

time; the term P(H ≤ y)k is the probability that the lineage of individual k split off lineage 0 more

recently than y; the term e−θy is the probability that the lineage of individual k has undergone no

mutation in the last y units of time.

12



Proof of Lemma 3.9. Set D1 := 1 and for i ≥ 2,

Di := min{j ≥ 1 : Hθ
j > ℓi−1}.

Also recall the renewal process Sn =
∑n

i=1B
θ
i . Then we have for all i ≥ 1

Ni(y; γ) = 1li≤y


1i=1 +

Di+1−1∑

j=Di

1Sj≤X


 ,

the indicator function of i = 1 being due to the count of individual 0 in that case. First, we

work conditionally on the values vi of the ages ℓi of mutations of lineage 0. Using repeatedly the

lack-of-memory property of X, we get for all i ≥ 2 and k ≥ 1

E
(
uX , Ni(y; γ) = k | ℓj = vj, j ≥ 1

)
= · · ·

· · ·1vi≤y E
(
uSDi−1 ,X ≥ SDi−1

)
E

(
uB

θ

, Bθ ≤ X,Hθ ≤ vi | Hθ > vi−1

)
× · · ·

· · · × E

(
uB

θ

, Bθ ≤ X,Hθ ≤ vi

)k−1 (
E

(
uX , Bθ > X

)
+ E

(
uX , Bθ ≤ X,Hθ > vi

))
,

where the last multiplicative term equals

E

(
uX , Bθ > X

)
+ E

(
uX , Bθ ≤ X,Hθ > vi

)
= E

(
uX
)
− E

(
uX , Bθ ≤ X,Hθ ≤ vi

)

= E
(
uX
) (

1− E

(
uB

θ

, Bθ ≤ X,Hθ ≤ vi

))

=
1− γ

1− uγ

(
1− E

(
(uγ)B

θ

,Hθ ≤ vi

))

=
1− γ

(1− uγ)Wθ(vi;uγ)
.

Similarly for i = 1 and k ≥ 1,

E
(
uX , N1(y; γ

)
= k | ℓj = vj, j ≥ 1) = 1v1≤y E

(
uB

θ

, Bθ ≤ X,Hθ ≤ v1

)k−1
E
(
uX
)
× · · ·

· · · ×
(
1− E

(
uB

θ

, Bθ ≤ X,Hθ ≤ v1

))

= 1v1≤y E

(
(uγ)B

θ

,Hθ ≤ v1

)k−1 1− γ

(1− uγ)Wθ(v1;uγ)
.

Now elementary probabilistic reasoning shows that for i ≥ 2

E
(
uSDi−1 ,X ≥ SDi−1 | ℓj = vj , j ≥ 1

)

=
∑

k≥1

(
P(Hθ ≤ vi−1)

)k−1
P(Hθ > vi−1)E

(
uB

θ

, Bθ ≤ X | Hθ ≤ vi−1

)k−1

=
P(Hθ > vi−1)

1− E
(
(uγ)Bθ ,Hθ ≤ vi−1

) = P(Hθ > vi−1)Wθ(vi−1;uγ).

13



As a consequence, for all i ≥ 2,

E
(
uX , Ni(y; γ) = k | ℓj = vj, j ≥ 1

)
= · · ·

· · · 1vi≤y
1− γ

1− uγ

Wθ(vi−1;uγ)

Wθ(vi;uγ)

(
E

(
(uγ)B

θ

,Hθ ≤ vi

))k−1
E

(
(uγ)B

θ

, vi−1 < Hθ ≤ vi

)
,

whereas

E
(
uX , N1(y; γ) = k | ℓj = vj, j ≥ 1

)
= 1v1≤y

1− γ

1− uγ

1

Wθ(v1;uγ)

(
E

(
(uγ)B

θ

,Hθ ≤ v1

))k−1
.

It is well-known that for the Poisson point process of mutations,

P(ℓi−1 ∈ dx, ℓi ∈ dz) =
θixi−2

(i− 2)!
e−θz dx dz 0 < x < z, i ≥ 2,

so that

∑

i≥2

E
(
uX , Ni(y; γ) = k

)
=

1− γ

1− uγ

∑

i≥2

∫ y

0
dz

∫ z

0
dx

θixi−2

(i− 2)!
e−θz 1

Wθ(z;uγ)

(
1− 1

Wθ(z;uγ)

)k−1

Fθ(x, z;uγ),

where

Fθ(x, z;uγ) :=Wθ(x;uγ)E
(
(uγ)B

θ

, x < Hθ ≤ z
)
. (3.4)

Since

E
(
uX , N1(y; γ) = k

)
=

1− γ

1− uγ

∫ y

0
dz θ e−θz 1

Wθ(z;uγ)

(
1− 1

Wθ(z;uγ)

)k−1

,

we get

∑

i≥1

E
(
uX , Ni(y; γ) = k

)
=

1− γ

1− uγ

∫ y

0
dz θ e−θz 1

Wθ(z;uγ)

(
1− 1

Wθ(z;uγ)

)k−1 [
1 + θ

∫ z

0
dx eθxFθ(x, z;uγ)

]
.

Now observe that

Fθ(x, z;uγ) =Wθ(x;uγ)
(
E

(
(uγ)B

θ

,Hθ ≤ z
)
− E

(
(uγ)B

θ

,Hθ ≤ x
))

=Wθ(x;uγ)

(
1

Wθ(x;uγ)
− 1

Wθ(z;uγ)

)

= 1− Wθ(x;uγ)

Wθ(z;uγ)
,

so that the integration by parts formula (3.2) yields

1 + θ

∫ z

0
dx eθxFθ(x, z;uγ) = 1 +

[
eθx
(
1− Wθ(x;uγ)

Wθ(z;uγ)

)]z

0

+

∫ z

0

eθx

Wθ(z;uγ)
dWθ(x;uγ),

where differentiation ofW is understood w.r.t. the first variable. Since by Theorem 3.1, dWθ(x;uγ) =

e−θxdW (x;uγ), we get

1 + θ

∫ z

0
dx eθxFθ(x, z;uγ) =

W (z;uγ)

Wθ(z;uγ)
, (3.5)
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which ends the proof for the first formula. Let us turn to Z0(y; γ). The same kind of reasoning as

previously shows that

E
(
uX , Z0(y; γ) = k | ℓj = vj, j ≥ 1

)
= · · ·

· · ·
∑

i≥1

1vi−1<y<viE
(
uSDi−1 ,X ≥ SDi−1

) (
E

(
uB

θ

, Bθ ≤ X,Hθ ≤ y | Hθ > vi−1

)1i≥2 + 1i=1

)
× · · ·

· · · × E

(
uB

θ

, Bθ ≤ X,Hθ ≤ y
)k−1 (

E

(
uX , Bθ > X

)
+ E

(
uX , Bθ ≤ X,Hθ > y

))
.

Referring to the calculations above, we easily get

E
(
uX , Z0(y; γ) = k | ℓj = vj, j ≥ 1

)
=

1− γ

1− uγ

∑

i≥1

1vi−1<y<vi

1

Wθ(y;uγ)
× · · ·

· · · ×
(
1− 1

Wθ(y;uγ)

)k−1 [1i=1 + 1i≥2Wθ(vi−1;uγ)E
(
(uγ)B

θ

, vi−1 < Hθ ≤ y
)]
.

Integrating over the law of the Poisson point process of mutations yields

E
(
uX , Z0(y; γ) = k

)
=

1− γ

1− uγ
e−θy 1

Wθ(y;uγ)

(
1− 1

Wθ(y;uγ)

)k−1

+
1− γ

1− uγ

∑

i≥2

∫ ∞

y

dz

∫ y

0
dx

θixi−2

(i− 2)!
e−θz 1

Wθ(y;uγ)

(
1− 1

Wθ(y;uγ)

)k−1

Fθ(x, y;uγ),

where Fθ was defined in (3.4). Thanks to equation (3.5), we get

E
(
uX , Z0(y; γ) = k

)
=

1− γ

1− uγ
e−θy 1

Wθ(y;uγ)

(
1− 1

Wθ(y;uγ)

)k−1 [
1 + θ

∫ y

0
dx eθxF (x, y;uγ)

]

=
1− γ

1− uγ
e−θy W (y;uγ)

Wθ(y;uγ)2

(
1− 1

Wθ(y;uγ)

)k−1

,

which is the desired formula. 2

3.2.2 Proof of Theorem 3.4

LetMn(k, y; γ) denote the number of haplotypes whose most recent mutation occurred between time

−y and present time on the n-th branch (with i.i.d. lengths Hn, except H0 = +∞), and which are

carried by k individuals among {0, 1, . . . ,X} (hence among {n, n+ 1, . . . ,X}). In particular,

Aθ(k, y; γ) =
∑

n≥0

Mn(k, y; γ).

First,

M0(k, y; γ) =
∑

i≥1

1Ni(y,γ)=k,

so thanks to Lemma 3.9,

E
(
uXM0(k, y; γ)

)
=

∫ y

0
dz F (k, z;uγ),
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where we have used the following definition

F (k, z;uγ) :=
1− γ

1− uγ
θ e−θz W (z;uγ)

Wθ(z;uγ)2

(
1− 1

Wθ(z;uγ)

)k−1

.

Second, for all n ≥ 1, by the lack-of-memory property of the geometric variable X,

E
(
uXMn(k, y; γ)

)
= unP(X ≥ n)

[∫ y

0
P(Hn ∈ dx)E

(
uXM0(k, x; γ)

)
+ P(Hn ≥ y)E

(
uXM0(k, y; γ)

)]

= (uγ)n
[∫ y

0
P(H ∈ dx)

∫ x

0
dz F (k, z;uγ) + P(H ≥ y)

∫ y

0
dz F (k, z;uγ)

]

= (uγ)n
∫ y

0
dz F (k, z;uγ)P(H ≥ z).

Now since Aθ(k, y; γ) =
∑

n≥0Mn(k, y; γ), we get

E
(
uXAθ(k, y; γ)

)
=

∫ y

0
dz F (k, z;uγ) +

∑

n≥1

(uγ)n
∫ y

0
dz F (k, z;uγ)P(H ≥ z)

=

∫ y

0
dz F (k, z;uγ)

[
1 +

uγ

1− uγ
P(H ≥ z)

]

=

∫ y

0
dz F (k, z;uγ) [(1− uγ)W (z;uγ)]−1 ,

hence the result, recalling the definition of F . 2

4 Splitting trees: Expected haplotype frequencies at fixed time

4.1 Joint expected haplotype frequencies with population size distribution

In this subsection, we apply the results of the previous section to a splitting tree started at time −t
from one single individual and conditioned to be extant at present time 0. Then the population at

present time is {0, 1, . . . , Nt − 1}, where Nt is the population size and Nt − 1 follows the geometric

distribution with parameter

γt := P(H ≤ t) t > 0,

that is, P⋆(Nt − 1 ≥ n) = γnt for any integer n ≥ 0, where P
⋆ denotes the probability conditional on

the population being extant at time 0. We recall that, in the case of splitting trees, the law of the

branch lengths H is always absolutely continuous w.r.t. Lebesgue’s measure.

The difference with the previous section is that the lengths of branches are (still i.i.d. but) distributed

as H conditional on H ≤ t. As a consequence, everything we have done in the previous section holds

for the standing population of a splitting tree founded t units of time ago and conditioned upon

survival up to t, replacing γ with γt and W with (from Theorem 3.1)

W (t)(x;α) :=
1

1− αP(H ≤ x | H ≤ t)
x ∈ [0, t], α ∈ (0, 1].

16



In particular we now use W
(t)
θ instead of Wθ, with

W
(t)
θ (x;α) = e−θxW (t)(x;α) + θ

∫ x

0
dyW (t)(y;α) e−θy .

We call a derived haplotype a haplotype which is different from the ancestral haplotype. Noticing

that W (t)(x;uγt) = W (x;u), we also have W
(t)
θ (x;uγt) = Wθ(x;u), where we stick to the notation

from the previous section, namely,

W (x;u) =
1

1− uP(H ≤ x)
x ≥ 0, u ∈ (0, 1],

and (from Theorem 3.1 again)

Wθ(x;u) = e−θxW (x;u) + θ

∫ x

0
dyW (y;u) e−θy.

Then the following statement stems readily from Theorem 3.4 and Lemma 3.9. Recall that W (x) =

W (x; 1) and that Wθ(x) =Wθ(x; 1).

Proposition 4.1 Let Aθ(k, t) denote the number of derived haplotypes represented by k individuals

in the standing population of a splitting tree founded t units of time ago and Z0(t) the number of

individuals in the standing population carrying the ancestral haplotype. Then for all t ≥ 0 and

u ∈ (0, 1],

E
⋆
(
uNt−1Aθ(k, t)

)
=
W (t;u)2

W (t)

∫ t

0
dx θ e−θx 1

Wθ(x;u)2

(
1− 1

Wθ(x;u)

)k−1

.

and

E
⋆
(
uNt−1, Z0(t) = k

)
=
W (t;u)2

W (t)

e−θt

Wθ(t;u)2

(
1− 1

Wθ(t;u)

)k−1

.

Remark 4.2 Not to overload with notation, we have not considered the alleles of age less than y. If

Aθ(k, y, t) denotes the number of derived haplotypes of age less than y, represented by k individuals in

the standing population of a splitting tree founded t units of time ago, then we get the same formula

as in the previous statement, but where the upper bound of the integral has changed

E
⋆
(
uNt−1Aθ(k, y, t)

)
=
W (t;u)2

W (t)

∫ y∧t

0
dx θ e−θx 1

Wθ(x;u)2

(
1− 1

Wθ(x;u)

)k−1

.

The following corollary is obtained by taking u = 1 in the last statement. A more explanatory proof

is given in the next subsection.

Corollary 4.3 We have

E
⋆Aθ(k, t) =W (t)

∫ t

0
dx θ e−θx 1

Wθ(x)2

(
1− 1

Wθ(x)

)k−1

and

P
⋆ (Z0(t) = k) =W (t)

e−θt

Wθ(t)2

(
1− 1

Wθ(t)

)k−1

.
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The same kinds of calculations as those done for the corollaries of the previous section yield the

following statement, where the first equation could readily be deduced by exchangeability arguments.

Corollary 4.4 Recall that Z0(t) is the number of individuals in the standing population carrying the

ancestral type and set Aθ(t) the number of derived haplotypes represented in the standing population.

Then for any positive real number t and positive integer n,

E(Z0(t) | Nt = n) = n exp(−θt)
and

E(Aθ(t) | Nt = n) = n

∫ t

0
dx θ e−θx

E

(
1− P(H ≤ t)−Bθ1{Hθ≤x}

)

+

∫ y

0
dx θ e−θx

E

((
Bθ ∧ n

)
P(H ≤ t)−Bθ

,Hθ ≤ x
)
.

Proof. The first result is clear letting y go to +∞ in Corollary 3.11. In view of (3.3) in Corollary 3.5,

in order to prove the second result, we only need to check that

P̃(Hθ > x) = E

(
1− P(H ≤ t)−Bθ1{Hθ≤x}

)

and

Ẽ(Bθ ∧ n,Hθ ≤ x) = E

((
Bθ ∧ n

)
P(H ≤ t)−Bθ

,Hθ ≤ x
)
,

where P̃ is the law of the coalescent point process when the r.v. (Hi) are i.i.d. with common law

P(H ∈ · | H ≤ t). Now,

P̃(Hθ ≤ x) = P(Hθ ≤ x | ∀i ≤ Bθ, Hi ≤ t)

=
∑

k≥1

P(Bθ = k, Hθ ≤ x)P(H ≤ t)−k

= E

(
1− P(H ≤ t)−Bθ1{Hθ≤x}

)
.

The second equality, very similar, is left to the reader. 2

Recall that Gθ(t) denotes the (absolute) homozygosity in the standing population, that is,

Gθ(t) =
Z0(t)(Z0(t)− 1)

2
+
∑

k≥2

k(k − 1)

2
Aθ(k, t),

then we easily get

Proposition 4.5 For all t ≥ 0 and u ∈ (0, 1],

E
⋆
(
uNt−1Gθ(t)

)
=
W (t;u)2

W (t)
(W2θ(t;u) − 1).

Note that explicit formulas can also be obtained for the expectation of the standard homozygosity

Ḡθ(t) = 2Gθ(t)/Nt(Nt − 1), which is the probability that two randomly sampled individuals in the

population at time t have the same haplotype. Formulas are given in Section 6, where they are

obtained thanks to an alternative proof based on moment generating function computations.
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Proof. We use Proposition 4.1 and the fact that
∑

k≥2 k(k − 1)xk−2 = 2/(1− x)3. An integration

by parts yields

E
(
uNt−1Gθ(t)

)
=
W (t;u)2

W (t)
e−θt(Wθ(t;u)− 1) +

W (t;u)2

W (t)

∫ t

0
dx θ e−θx (Wθ(x;u)− 1)

=
W (t;u)2

W (t)
e−θt(Wθ(t;u)− 1) +

W (t;u)2

W (t)

([
− e−θx(Wθ(x;u)− 1)

]t
0
+

∫ t

0
dx e−θxW ′

θ(x;u)

)
,

where differentiation is understood w.r.t. the first variable. Recalling that W ′
θ(x;u) = e−θxW ′(x;u)

provides the announced formula. 2

4.2 An explanatory proof of Corollary 4.3

Consider the standing population at time t conditioned on being nonempty (probability measure

P
⋆). For any real number y ∈ (0, t), for any non-negative integer i, let Ci(y; dy), Di(y) and Ei(y)

denote the following events

Ci(y; dy) := {i ≤ Nt − 1, the i-th branch length has size Hi ≥ y

and carries a mutation with age in (y, y + dy)}

Di(y) := {the type carried by the lineage of the i-th individual at time t− y

has at least one alive representative}

Ei(k, y) := {the type carried by the lineage of the i-th individual at time t− y has k alive representatives}

Then define Aθ(k, t, y; dy) as the number of haplotypes of age in the interval (y, y+dy) represented by

exactly k alive individuals at time t. Hereafter, we compute the expectation under P⋆ of Aθ(k, t, y; dy).

The result will follow from the equality

Aθ(k, t) =

∫ t

0
Aθ(k, t, y; dy).

Now it is readily seen that

Aθ(k, t, y; dy) =
∑

i≥0

1Ci(y;dy)∩Ei(k,y)

so that

E
⋆Aθ(k, t, y; dy) =

∑

i≥0

P
⋆(Ci(y; dy) ∩ Ei(k, y)).

Next observe that Ei(k, y) ⊆ Di(y), so that

P
⋆(Ci(y; dy) ∩ Ei(k, y)) = P

⋆(Ci(y; dy))P
⋆(Di(y) | Ci(y; dy))P

⋆(Ei(k, y) | Di(y) ∩Ci(y; dy))

= P
⋆(Ci(y; dy))P

⋆(D0(y))P
⋆(E0(k, y) | D0(y)).
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Thus, we record that

E
⋆Aθ(k, t, y; dy) = P

⋆(D0(y))P
⋆(E0(y) | D0(y))

∑

i≥0

P
⋆(Ci(y; dy)). (4.1)

We will now prove the three following equalities

∑

i≥0

P
⋆(Ci(y; dy)) = θ dy

W (t)

W (y)
, (4.2)

P
⋆(D0(y)) =

W (y) e−θy

Wθ(y)
, (4.3)

P
⋆(E0(k, y) | D0(y)) =

1

Wθ(y)

(
1− 1

Wθ(y)

)k−1

. (4.4)

These three equalities, along with (4.1), yield the expected expression

E
⋆Aθ(k, t, y; dy) = θ dyW (t)

e−θy

Wθ(y)2

(
1− 1

Wθ(y)

)k−1

, (4.5)

which now sheds light on the meaning of each of the terms in the formula given in Corollary 4.3. Let

us now prove equations (4.2), (4.3) and (4.4). First,

P
⋆(Ci(y; dy)) = P

⋆(Nt − 1 ≥ i) θ dy (1i=0 + 1i≥1P(H ≥ y | H < t))

=

(
1− 1

W (t)

)i

θ dy

(1i=0 + 1i≥1

1
W (y) − 1

W (t)

1− 1
W (t)

)

= θ dy

[1i=0 + 1i≥1

(
1− 1

W (t)

)i−1( 1

W (y)
− 1

W (t)

)]
,

so we get (4.2).

Second, let L denote an independent exponential r.v. with parameter θ, so that (y − L)+ is the

age of the oldest mutation on lineage 0 with age smaller than y, with the convention that this age

is zero when there is no such mutation. Then either L ≥ y, and D0(y) is realized because lineage 0

has carried the same type since time t− y, or L < y and D0(y) is realized iff the next branch with

no extra mutation than 0 for which the maximum of past branch lengths exceeds t−L satisfies that

this maximum does not exceed y (see Subsection 3.1). Conditional on L = x, this last event occurs

with probability P(Hθ ≤ y | Hθ > y − x). As a consequence, we get

P
⋆(D0(y)) = e−θy +

∫ y

0
dx θ e−θx

(
1− Wθ(y − x)

Wθ(y)

)

= 1− 1

Wθ(y)

∫ y

0
dx θ e−θxWθ(y − x)

= 1− e−θy

Wθ(y)

∫ y

0
du θ eθuWθ(u),

and an integration by parts using the relationship between W and Wθ (see Remark 3.2) yields (4.3).

Finally, (4.4) stems from the definition of Wθ (see again Subsection 3.1).

20



5 Splitting trees: A.s. convergence of haplotype frequencies

In this section, we rely on the theory of random characteristics introduced in the seminal papers

[10, 15] and further developed in [11, 12] and especially in [18], where the emphasis, as here, is

on branching populations experiencing mutations (but there the mutation scheme is different, since

mutation events occur simultaneously with births).

We will assume that the splitting tree starts at time 0 with one individual. Then recall from the

last subsection that Nt denotes the number of individuals alive at time t, Aθ(t) denotes the number

of derived haplotypes carried by alive individuals at time t, Aθ(k, t) denotes the number of derived

haplotypes carried by k alive individuals at time t, and Z0(t) denotes the number of alive individuals

at time t carrying the ancestral haplotype.

For any individual i, in the population, we let χi(t) (resp. χk
i (t)) be the number of mutations

that i has experienced during her lifetime that are carried by alive individuals (resp. by k alive

individuals) t units of time after her birth (χi(t) = 0 if t < 0). Then χ and the χk are individual

random characteristics, in the sense given in the previously cited papers. In particular,

Aθ(t) + Z0(t) =
∑

i

χi(t− σi),

and

Aθ(k, t) + 1Z0(t)=k =
∑

i

χk
i (t− σi),

where σi denotes the birth time of i and the sum is taken over all individuals, dead or alive at time t,

in the population. This allows us to make use of limit theorems for individuals counted by random

characteristics proved in [10, 11, 12, 15], using the formulation of [18, Appendix A].

Recall that b is the birth rate of our homogeneous Crump–Mode–Jagers process, that V denotes

a random lifetime duration, and that α denotes the Malthusian parameter, which satisfies ψ(α) = 0,

where ψ is defined in (2.2).

Let us restate the results in [18, Appendix A] in our setting. Set

β :=

∫

(0,∞]
u e−αudµ(u),

where the last integral is a Stieltjes integral w.r.t. the nondecreasing function

µ(t) = E(# offspring born on (0, t]) = bE(t ∧ V ) =

∫

(0,+∞]
(r ∧ t)Λ(dr).

Also for any individual random characteristic, say χ, define χ̂(α) as its Laplace transform at α

χ̂(α) :=

∫

(0,+∞)
dt e−αtχ(t),

where it is implicit that χ is the characteristic of the progenitor (born at time 0). Hereafter, we

apply Theorems 1 and 5 of [18, Appendix A]. These theorems need some technical assumptions to

hold, which we verify at the end of the proof of the next statement. These theorems ensure first that

lim
t→∞

e−αt
EAθ(k, t) =

Eχ̂k(α)

β
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and second that, on the survival event,

lim
t→∞

Aθ(k, t)

Aθ(t)
=

Eχ̂k(α)

Eχ̂(α)
a.s.

In addition to verifying the validity of the aforementioned technical assumptions, it remains to

compute the quantities β, Eχ̂(α) and Eχ̂k(α). With the following definitions,

Uk :=

∫ ∞

0
dx θ e−θx 1

Wθ(x)2

(
1− 1

Wθ(x)

)k−1

,

and

U :=
∑

k≥1

Uk =

∫ ∞

0
dx θ e−θx 1

Wθ(x)
,

we have β = ψ′(α)/α, Eχ̂k(α) = Uk/b and of course Eχ̂(α) = U/b. This can be recorded in the

following proposition.

Proposition 5.1 In the supercritical case,

lim
t→∞

e−αt
EAθ(k, t) =

αUk

bψ′(α)
(5.1)

and

lim
t→∞

e−αt
EAθ(t) =

αU

bψ′(α)
. (5.2)

And on the survival event,

lim
t→∞

Aθ(k, t)

Aθ(t)
=
Uk

U
a.s.

Remark 5.2 Note that it can be shown similarly that

lim
t→∞

e−αt
ENt =

α

bψ′(α)
,

and that, for example,

lim
t→∞

Aθ(t)

Nt
= U a.s.

This is reminiscent of Theorem 3.2 in [13] where the same limit is obtained after conditioning on the

population size to equal n and letting n → ∞. This a.s. convergence is made possible by embedding

all populations of fixed size on the same space thanks to an infinite coalescent point process: the

population of size n is that generated by the first n values of the coalescent point process.

Remark 5.3 In [14], it is proved in the supercritical case (α > 0) that the survival probability is

α/b and that the scale function W has the following asymptotic behaviour

lim
t→∞

W (t)e−αt =
1

ψ′(α)
.

One could have used these two facts and the monotone convergence theorem to recover (5.1) and (5.2)

from Corollary 4.3. In the following proof, we prefer to show the agreement with Corollary 4.3 by

computing directly β, Eχ̂(α) and Eχ̂k(α).
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Proof. Let us first prove that β = ψ′(α)/α. Recalling the definition of β, we get

β = bE

∫ ∞

0
duue−αu1{u<V }

=

∫

(0,+∞]
Λ(dr)

∫ r

0
duue−αu

=
1

α2

∫

(0,+∞]
Λ(dr)

(
1− e−αr − αre−αr

)

=
1

α2
(α− ψ(α)) − 1

α
(1− ψ′(α))

=
ψ′(α)

α
.

Next let us compute Eχ̂k(α). Denote by R
(a,b)
t the number of individuals alive at time t descending

clonally from the time interval (a, b). More specifically, for a progenitor individual alive on the

time interval (a, b) and experiencing no mutation between times a and b, R
(a,b)
t is the number of

individuals alive at t (including possibly this progenitor) descending from those daughters of the

progenitor who were born during the time interval (a, b), and that still carry the same type that the

progenitor carried at time a. In particular, since Wθ is the scale function associated with the clonal

reproduction process

P

(
R

(a,b)
t = k

)
= P(N θ

t−a = k | ζ = b− a)

= P(N θ
t−a 6= 0 | ζ = b− a)P(N θ

t−a = k | N θ
t−a 6= 0)

=

(
1− 1t>b

Wθ(t− b)

Wθ(t− a)

)(
1− 1

Wθ(t− a)

)k−1 1

Wθ(t− a)
, (5.3)

whereN θ is the population size process of a clonal splitting tree and ζ is the lifetime of the progenitor.

Now let us start with a progenitor with lifetime distributed as V and denote by ℓi the time of the

i-th point of a Poisson point process with intensity θ (the i-th mutation of the progenitor). Then

Eχ̂k(α) = E

∫ ∞

0
dt e−αt

∑

i≥1

1{ℓi<V ∧t} 1(R(ℓi,V ∧ℓi+1)
t = k

)

= E

∫ ∞

0
dt e−αt

∑

i≥1

∫ ∞

0
dz

∫ z

0
dy

θi+1yi−1

(i− 1)!
1{y<V ∧t} 1(R(y,V ∧z)

t = k
)

= E

∫ ∞

0
dt e−αt

∫ ∞

0
dzθ e−θz

∫ z∧V ∧t

0
dy θ eθy 1(R(y,V ∧z)

t = k
)

= E

∫ ∞

0
dt e−αt

∫ Vθ∧t

0
dy θ eθy 1(R(y,Vθ)

t = k
)
,
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where Vθ denotes the minimum of V and of an independent exponential r.v. with parameter θ. Then

Eχ̂k(α) =

∫ ∞

0
dt e−αt

∫

(0,∞)
P(Vθ ∈ du)

∫ t

0
dy 1{y<u} θ e

θy
P

(
R

(y,u)
t = k

)

=

∫ ∞

0
dt e−αt

∫

(0,∞)
P(Vθ ∈ du)

∫ t

0
dx1{t−x<u}θ e

θ(t−x)
P

(
R

(t−x,u)
t = k

)

=

∫ ∞

0
dx θ e−θx

∫

(0,∞)
P(Vθ ∈ du)

∫ u+x

x

dt e(θ−α)t
P

(
R

(t−x,u)
t = k

)
,

which, thanks to (5.3), yields

Eχ̂k(α) =

∫ ∞

0
dx

θ e−θx

Wθ(x)

(
1− 1

Wθ(x)

)k−1 ∫

(0,∞)
P(Vθ ∈ du)

∫ u+x

x

dt e(θ−α)t

(
1− 1t>u

Wθ(t− u)

Wθ(x)

)

=

∫ ∞

0
dx

θ e−θx

Wθ(x)

(
1− 1

Wθ(x)

)k−1(
F1(x)−

F2(x)

Wθ(x)

)
,

where

F1(x) :=

∫

(0,∞)
P(Vθ ∈ du)

∫ u+x

x

dt e(θ−α)t

and

F2(x) :=

∫

(0,∞)
P(Vθ ∈ du)

∫ u+x

x

dt e(θ−α)t1t>uWθ(t− u).

Let us compute F1 and F2. Set

ψθ(x) := x−
∫

(0,∞)

(
1− e−rx

)
bP(Vθ ∈ dr) x ≥ 0.

Then [13] ψθ(x) = xψ(x + θ)/(x + θ), and 1/ψθ is the Laplace transform of Wθ. Also recall that

ψ(α) = 0, so that ψθ(α−θ) = 0. First, if θ = α, then F1(x) =
∫
(0,∞) uP(Vθ ∈ du) = (1−ψ′

α(0+))/b =

1/b. Second, if θ 6= α, then

F1(x) =
e(θ−α)x

α− θ

∫

(0,∞)
P(Vθ ∈ du)

(
1− e−(α−θ)u

)
=

e(θ−α)x

b(α− θ)
(α− θ − ψθ(α− θ)),

so that whatever the respective values of α and θ,

F1(x) =
1

b
e(θ−α)x.
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We use Laplace transforms to compute F2. For any κ > 0,

∫ ∞

0
dxκ e−κxF2(x) =

∫

(0,∞)
P(Vθ ∈ du)

∫ ∞

u

dt e(θ−α)tWθ(t− u)

∫ t

t−u

dxκ e−κx

=

∫

(0,∞)
P(Vθ ∈ du) (eκu − 1)

∫ ∞

u

dt e(θ−α−κ)tWθ(t− u)

=

∫

(0,∞)
P(Vθ ∈ du) (eκu − 1) e(θ−α−κ)u

∫ ∞

0
ds e(θ−α−κ)sWθ(s)

=
1

b
(κ+ α− θ − ψθ(κ+ α− θ)− (α− θ − ψθ(α− θ)))

1

ψθ(κ+ α− θ)

=
κ

bψθ(κ+ α− θ)
− 1

b
,

so that

F2(x) =
1

b
e(θ−α)xWθ(x)−

1

b
,

and

F1(x)−
F2(x)

Wθ(x)
=

1

bWθ(x)
.

As a consequence, we get

Eχ̂k(α) =

∫ ∞

0
dx

θ e−θx

bWθ(x)2

(
1− 1

Wθ(x)

)k−1

,

which is the announced Uk/b.

Last, let us check the technical assumptions required for Theorems 1 and 5 in [18, Appendix A]

to hold. For the first theorem, we have to check the following two requirements

∑

n≥0

sup
[n,n+1]

e−αu
Eχ(u) <∞ (5.4)

t 7→ Eχ(t) is a.e. continuous. (5.5)

For the second theorem, we have to check the following two requirements

∃ 0 < η < α, E sup
t≥0

e−ηtχ(t) <∞ (5.6)

∃ 0 < η < α, µ̂(η) <∞. (5.7)

The following equality in distribution is easily seen

χ(t) =
∑

i≥1

1{Ti≤t∧V }1{∑j≥1
Nj(t−Sj)1{Ti<Sj<Ti+1∧t∧V }∈A},

where V is distributed as a lifetime, the (Ti) are the ranked atoms of an independent Poisson point

process with rate θ (mutation times), the (Si) are the ranked atoms of an independent Poisson point

process with rate b (birth times), the (Ni) form an independent sequence of i.i.d. homogeneous,
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binary CMJ processes (descendances of daughters), and A is taken equal to N, but can be taken

equal to {k} in the case of the random characteristic χk. In any case, χ is dominated by a Poisson

point process with rate θ, so that Eχ(t) ≤ θt. This ensures that (5.4) holds. As for (5.5), notice

from the last displayed equation that Eχ(t) =
∑

i≥1 Fi(t), where

Fi(t) :=

∫ t

0

∫ ∞

u

P(Ti ∈ du, Ti+1 ∈ ds)

∫

[u,∞)
P(V ∈ dr)P


∑

j≥1

Nj(t− Sj)1{u<Sj<s∧t∧r} ∈ A


 .

Because Ti has a density w.r.t. Lebesgue measure, each Fi is everywhere continuous on, say, [0, t0].

In addition, for any t ∈ [0, t0], Fi(t) ≤ P(Ti ≤ t) ≤ P(Ti ≤ t0) and
∑

i≥1 P(Ti ≤ t0) = θt0 <∞, so we

get continuity of t 7→ Eχ(t) on [0, t0] by dominated convergence. Because t0 is arbitrary, t 7→ Eχ(t)

is continuous everywhere.

Let us treat the last two requirements. The last requirement (5.7) merely stems from the obvious

inequality µ(t) ≤ bt. To prove (5.6), because χ is dominated by a Poisson point process, it suffices to

show that for any Poisson point process Y with rate 1, say, and for any η > 0, E supt≥0 e
−ηtYt <∞.

In fact, setting Mc(t) := e−ηt (Yt + c), we claim that for large enough c, M2
c is a supermartingale.

Then using the inequality P(supt M
2
c (t) ≥ z) ≤ c/z, we get

P(sup
t

Yt e
−ηt ≥ y) ≤ P(sup

t
(Yt + c) e−ηt ≥ y) = P(sup

t
M2

c (t) ≥ y2) ≤ c

y2
,

so that E(supt Yt e
−ηt) < ∞. The only thing left to show is that M2

c is a supermartingale. Writing

(Ft) for the natural filtration of Y and Ps for a Poisson random variable with parameter s independent

of Yt, we get

E(Mc(t+ s)2 | Ft) = e−2η(t+s)
E
(
(Yt + c+ Ps)

2
)
= e−2η(t+s)

(
(Yt + c+ s)2 + s

)
≤Mc(t)

2,

where the last inequality holds for any s, t ≥ 0 if there is some positive c (depending only on η) such

that

e−2ηs
(
(x+ s)2 + s

)
≤ x2 x ≥ c, s ≥ 0.

Then we study the function f : s 7→ x2e2ηs − (x + s)2 − s. Since f ′′(s) = 4η2x2e2ηs − 2, f ′ is

nondecreasing on [0,+∞) as soon as x2 ≥ 1/2η2. On the other hand, f ′(0) = 2ηx2 − 1− 2x. Let x⋆

be the largest root of x 7→ 2ηx2−1−2x. As soon as x ≥ x⋆, f ′(0) ≥ 0. Setting c := max(1/η
√
2, x⋆),

as soon as x ≥ c, f ′(0) ≥ 0 and f ′ is nondecreasing on [0,∞), so that f is nondecreasing on [0,∞).

Since f(0) = 0, we conclude that f is non-negative on [0,∞), so thatM2
c indeed is a supermartingale.

2

6 Expected homozygosities through moment generating functions

We consider again the coalescent point process of Section 3, constructed from H0 = +∞ and the

i.i.d. sequence of r.v. (Hi)i≥1, with common law P(H ∈ ·). Let us recall that, in the case of splitting

trees, the law of H has a density w.r.t. Lebesgue’s measure. We introduce the derivative of logW (t):

p(t)dt = P(H ≤ t+ dt | H > t) =W (t)P(H ∈ dt). (6.1)
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For any time t, we consider the splitting tree obtained from H0, . . . ,HNt−1, where Nt := inf{i ≥
1 : Hi > t}. We then define the (standard) homozygosity Ḡθ(t) as the probability that two distinct

randomly sampled individuals in the population at time t share the same haplotype, and the absolute

homozygosity Gθ(t) as the number of pairs of distinct individuals in the population at time t that

share the same haplotype. Note that both of these quantities are 0 on the event {Nt = 1}, and on

the complement event,

Ḡθ(t) =
2Gθ(t)

Nt(Nt − 1)
. (6.2)

The notation Gθ(t) coincides with that of Subsection 4.1. We also recall that Z0(t) denotes the

number of individuals sharing the ancestral haplotype, defined here as the haplotype of individual 0

at time −t.
Our goal in this section is to compute E

⋆(Gθ(t)) and E
⋆(Ḡθ(t)) using another method than in

Section 3. As in [13], we characterize the joint law of (Gθ(t), Nt, Z0(t)) as time increases in a similar

fashion as for branching processes, in order to obtain backward Kolmogorov equations for moment

generating functions involving these random variables. The result will then follow by solving these

equations.

Proposition 6.1 For all t ≥ 0, the expected absolute homozygosity is given by

E
⋆ (Gθ(t)) =W (t)(W2θ(t)− 1),

whereas the expected standard homozygosity is given by

E
⋆(Ḡθ(t)) =

e−2θt(W (t)− 1)

2W (t)
+ 2θ

∫ t

0
e−2θs W (s)− 1

W (t)−W (s)

[
logW (t)− logW (s)

W (t)−W (s)
− 1

W (t)

]
ds.

6.1 Joint dynamics of Gθ(t), Nt and Z0(t)

Consider two splitting trees of age t, with respective absolute homozygosity, population size, number

of ancestral individuals and height processes Gθ(t), Nt, Z0(t), (Hi)i≥0 and G′
θ(t), N

′
t , Z

′
0(t), (H

′
i)i≥0.

We call merger of these two splitting trees the splitting tree obtained from the sequence of heights

H0 = +∞,H1, . . . ,HNt−1,H
′′
0 ,H

′
1, . . . ,H

′
N ′

t−1, where H
′′
0 is obtained from the infinite branch H ′

0 by

cutting the part below −t. In addition, all the mutation times are kept unchanged on each branch

of the tree.

After this merger event, the new splitting tree has population size Nt + N ′
t , the new number of

ancestral individuals is Z0(t) + Z ′
0(t) and the new absolute homozigosity is, counting first the pairs

of ancestral individuals

(Z0(t) + Z ′
0(t))(Z0(t) + Z ′

0(t)− 1)

2
+Gθ(t)−

Z0(t)(Z0(t)− 1)

2
+G′

θ(t)−
Z ′
0(t)(Z

′
0(t)− 1)

2

= Gθ(t) +G′
θ(t) + Z0(t)Z

′
0(t).

Now, we have (Gθ(0), N0, Z0(0)) = (0, 1, 1) and, if the law of (Gθ(t), Nt, Z0(t)) is known for some

t ≥ 0, then, on the time interval [t, t+ dt],
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• either a mutation occurs on the ancestral branch, with probability θ dt, and

(Gθ(t+ dt), Nt+dt, Z0(t+ dt)) = (Gθ(t), Nt, 0),

• either HNt ∈ [t, t+ dt], with probability p(t)dt defined in (6.1), and

(Gθ(t+ dt), Nt+dt, Z0(t+ dt)) = (Gθ(t) +G′
θ(t) + Z0(t)Z

′
0(t), Nt +N ′

t , Z0(t) + Z ′
0(t)),

where (G′
θ(t), N

′
t , Z

′
0(t)) is an i.i.d. copy of (Gθ(t), Nt, Z0(t)),

• or nothing happens (the probability that two or more of the previous events occurs is o(dt)).

In other words, when the ancestral time t increases, the process (Gθ(t), Nt, Z0(t)) jumps to (Gθ(t), Nt, 0)

with rate θ and to (Gθ(t) +G′
θ(t) +Z0(t)Z

′
0(t), Nt +N ′

t , Z0(t) +Z ′
0(t)) with instantaneous rate p(t).

Of course, the previous argument is quite informal, but it could easily be made rigorous by

considering all the possible events that could occur in the time interval [t, t+ s], and letting s → 0.

In particular, the Kolmogorov equations of the following subsection can easily be justified this way.

6.2 Moment generating functions computations

We define the moment generating functions

L(t, u) = E
⋆(Gθ(t)u

Nt−2) (6.3)

M(t, u, v) = E
⋆(uNt−1vZ0(t)), (6.4)

for all u, v ∈ [−1, 1] and t ≥ 0. SinceGθ(t) = 0 if Nt ≤ 1 and the quantities inside the expectations are

bounded by N2
t , these functions have finite values. Our goal here is to compute explicit expressions

for these quantities.

Note that, for any i.i.d. triples of nonnegative r.v. (Gθ, N,Z0) and (G′
θ, N

′, Z ′
0),

E((Gθ +G′
θ + Z0Z

′
0)u

N+N ′−2) = 2E(Gθu
N−2)E(uN ) +

(
E(Z0u

N−1)
)2
.

Using this equation and the previous construction of the process, we can write the forward Kol-

mogorov equation for the moment generating functions L and M : for all u, v ∈ [−1, 1] and t ≥ 0,



∂tL(t, u) = −(θ + p(t))L(t, u) + θ L(t, u) + p(t)

[
2uL(t, u)M(t, u, 1) + (∂vM(t, u, 1))2

]

L(0, u) = 0,
(6.5)

and {
∂tM(t, u, v) = −(θ + p(t))M(t, u, v) + θM(t, u, 1) + p(t)u (M(t, u, v))2

M(0, u, v) = v.
(6.6)

The explicit computation of the solutions of these equations requires several steps. First, for

fixed u and v, the function M(t, u, v) is solution to an ODE known as Riccati’s equation. In the case

where v = 1, the function f(t) =M(t, u, 1) is solution to

ḟ = pf(uf − 1),

28



which is known as Bernoulli’s equation. It can be solved by making the change of unknown function

f̃ = 1/f , which makes the ODE linear. This yields

f(t) =M(t, u, 1) =

(
u+ (1− u) exp

∫ t

0
p(s)ds

)−1

=
W (t;u)

W (t)
, (6.7)

where we used that p is the derivative of the function logW (t).

Second, for all u, v ∈ [−1, 1], the functionM(t, u, 1) is a particular solution of (6.6) (with different

initial condition). Hence, the function g(t) = M(t, u, v) −M(t, u, 1) = M(t, u, v) − f(t) solves the

Bernoulli ODE

ġ = −(θ + p− 2upf)g + upg2,

for which the previous trick again works. This yields

M(t, u, v) = f(t) +
exp

(
−
∫ t

0 (θ + p(s)− 2up(s)f(s))ds
)

(v − 1)−1 − u
∫ t

0 p(s) exp
(
−
∫ s

0 (θ + p(τ)− 2up(τ)f(τ))dτ
)
ds
.

Since uW (s;u)P(H ∈ ds) is the derivative of logW (·;u), it follows from (6.7) that

∫ t

0
p(s)(1− 2uf(s))ds = logW (t)− 2 logW (t;u). (6.8)

Hence, we obtain

M(t, u, v) =
W (t;u)

W (t)

(
1 +

e−θtW (t;u)

(v − 1)−1 − u
∫ t

0 e
−θsW (s;u)2P(H ∈ ds)

)
.

Observing that uW (s;u)2P(H ∈ ds) is the derivative of W (·;u), an integration by parts and Theo-

rem 3.1 finally yield

M(t, u, v) =
W (t;u)

W (t)

(
1− e−θtW (t;u)

v
1−v

+Wθ(t;u)

)
.

We then compute

M(t, u, 1) =
W (t;u)

W (t)
= f(t) and ∂vM(t, u, 1) =

W (t;u)2 e−θt

W (t)
=: q(t).

Third, the linear equation (6.5) can be explicitly solved:

L(t, u) = exp

(
−
∫ t

0
p(s)(1− 2uf(s))ds

) ∫ t

0
p(s)q2(s) exp

(∫ s

0
p(τ)(1 − 2uf(τ))dτ

)
ds.

Using (6.8) again, we obtain

L(t, u) =
W (t;u)2

W (t)

∫ t

0
e−2θsW (s;u)2 P(H ∈ ds).
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Using integration by parts as above finally yields

L(t, u) =
W (t;u)2

W (t)

W2θ(t;u)− 1

u
, (6.9)

which is consistent with Proposition 4.5.

Fourth, using Theorem 3.1, we have

W2θ(t;u) − 1

u
= e−2θt W (t;u)− 1

u
+ 2θ

∫ t

0
e−2θs W (s;u)− 1

u
du.

This yields

L(t, u) =
W (t;u)2

W (t)

[
e−2θt

P(H ≤ t)W (t;u) + 2θ

∫ t

0
e−2θs

P(H ≤ s)W (s;u)ds

]
.

Writing the product series of (1−v)−1 =
∑

n≥0 v
n and (1−v)−2 =

∑
n≥0(n+1)vn and observing

that
n∑

k=0

(k + 1)akbn−k =
d

da

(
a

n∑

k=0

akbn−k

)
=

(n+ 1)an+2 − (n+ 2)an+1b+ bn+2

(a− b)2
,

we get

L(t, u) =
e−2θt

P(H ≤ t)

2W (t)

∑

n≥2

n(n− 1)(P(H ≤ t)u)n−2 +
2θ

W (t)

∫ t

0
dse−2θs

P(H ≤ s)×

∑

n≥0u2

(n+ 1)P(H ≤ t)n+2 − (n+ 2)P(H ≤ t)n+1
P(H ≤ s) + P(H ≤ s)n+2

P(s < H ≤ t)2
un. (6.10)

Finally, we compute the expected standard homozygosity as follows: by (6.2),

∂2u
(
E
(
Ḡθ(t)u

Nt
))

= L(t, u), or E(Ḡθ(t)) =

∫ 1

0
du

∫ u

0
dv L(t, v).

Integrating (6.10) twice and using the equation

(1− x) log(1− x) + x =
∑

n≥2

xn

n(n− 1)

yields

E
⋆[Ḡθ(t)] =

e−2θt(W (t)− 1)

2W (t)
+ 2θ

∫ t

0
ds e−2θs W (s)− 1

W (t)−W (s)


 log W (t)

W (s)

W (t)−W (s)
− 1

W (t)


 ,

which ends the proof of Proposition 6.1.
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