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Abstract

This paper presents a hybrid Godunov method for three-dimensional radiation hydro-
dynamics. The multidimensional technique outlined in this paper is an extension of
the one-dimensional method that was developed by Sekora & Stone 2009, 2010. The
earlier one-dimensional technique was shown to preserve certain asymptotic limits and
be uniformly well behaved from the photon free streaming (hyperbolic) limit through
the weak equilibrium diffusion (parabolic) limit and to the strong equilibrium diffusion
(hyperbolic) limit. This paper gives the algorithmic details for constructing a multidi-
mensional method. A future paper will present numerical tests that demonstrate the

robustness of the computational technique across a wide-range of parameter space.

1 Radiation Hydrodynamics

The purpose of this paper is to extend the ideas of Sekora & Stone 2010 to radiation hy-
drodynamical problems in multiple dimensions. Therefore, this paper is a continuation of
that earlier work, where the system of equations for radiation hydrodynamics were non-
dimensionalized with respect to the material flow scale [I0,[IT]. This scaling gives two
important parameters: C = c¢/a,, which measures relativistic effects and P = a,T2 /pooa?,
which measures how radiation affects material dynamics. Additionally, a, = 87°k*/15¢3h? =
7.57x 1071 erg em™3 K~* is a radiation constant, T, is a reference material temperature in

the absence of radiation, and p., is a reference material density in the absence of radiation.
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The full system of equations for radiation hydrodynamics in the mixed frame that is correct

to O(1/C) is:

%+v-(m):o, (1)

%—T+V- (mfm) +Vp=—P {—at (FF—UE%“'P') +aa%(T4—Er)}, (2)
AV (E+n2) =B o - B+ (-0 (B - P | )
%E; Y CV.-F,=C {aa(T‘*—ErH(aa—as)%- (F—%)] (4)

88]? +CV-P,=C [—at (F - “E%“'Pf) +aa%(T4 - Er)] : (5)

P, =fE, (closure relation), f = L ; Xr4 3X2_ 111 ® n. (6)

For the material quantities, p is density, m is momentum density, p = (7 — 1)e is pressure, £
is energy density, and T is temperature. For the radiation quantities, F, is energy density,
F, is flux, P, is pressure, f is the variable tensor Eddington factor that is used to close
the hierarchy of radiation transport moment equations, y is a parameter, and n is a unit
normal vector aligned with the radiative flux [6,9]. In the free streaming limit (optically
thin regime), x — 1 such that f — n ® n. Yet, in the equilibrium diffusion limit (optically
thick regime), x — 1/3 such that f — %I , where I is the identity matrix. In the above
modified Mihalas-Klein source terms, o, is the absorption cross section, o, is the scattering

cross section, and o, = 0, + 05 is the total cross section [T0HI2].

The numerical approach of the hybrid Godunov method rests on understanding the balance

law form of the above system of equations, where:

oU | OF(U) | 9GWU)  9H(U)

EjL Ox dy 0z =5(0), (7)
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$ = o0 By = Sy mafoy b mgfy ) o ST B D
ry e\ zfzy yJyy 2J 2y 5T r);
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ne = o\ VD yJyz 2J 2z T r);

My E,
SE = g, (T* - E) 4+ (04 — US)pTC (Fr,x — pTC(mx + My fop + My fyo + mzfzm)> (13)

m E,
+ (Ua - Us)_y <Fr,y - pTC(my + m:cfxy + myfyy + mzfzy))

z Er
+ (Ua - Us)m_ (Fr,z - pTC(mz + mx.f:cz + my.fyz + mz.fzz)) .

The quasi-linear form of this system of hyperbolic balance laws is:

L
z

wr B rm = S(U), (14)
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Here, v = my,/p, v = m,/p, and w = m,/p are the velocities in the z, y, and z directions,
respectively. V2 = u? + v? + w? and H = % — 77_1‘/2 is specific enthalpy. The Jacobians
A;, Ay, and A, have eigenvalues: A\, = {0,u,u =+ qa, :tf%zC}, Ay = {0,v,v £ q, :I:f;f(C},
and A\, = {0,w,w+ a, £ lez/zC}, respectively. However, one must account for how the stiff

momentum and energy source terms affect the hyperbolic structure.
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2 Overview of the Multidimensional Algorithm

In radiation hydrodynamics, there are three important dynamical scales: the speed of sound
(material flow), speed of light (radiation flow), and speed at which the source terms inter-
act. Given such variation, one desires a numerical technique that treats the material flow

explicitly, radiation flow implicitly, and source terms semi-implicitly.

2.1 Effective CFL Condition

Our primary interest when solving radiation hydrodynamical problems is higher-order reso-
lution of material quantities while advancing the overall algorithm according to an effective
CFL condition. This temporal advancement is associated with an effective CTU (corner
transport upwind) scheme [I]:

At = v (18)

|u(ingk) |+ aeg(ingk)  |v(ig,k) | +ae(ingk)  |w(ing,k)|+aea(igk) |’
max; ; k { Axe ) Aye ) Aze

where At is the time step and v € [0,1] is the CFL number. Az = (Zmax — Tmin)/ Ny,
AY = (Ymax — Ymin)/N2y and Az = (Zmax — Zmin) /N7, are the spatial resolutions for

a given number of computational grid cells in the x, y, and z directions, respectively.
max; j, {|u(i, 7, k)| + ae(?, j, k), |v(4, j, k)| + aer (i, J, k), |w (3, j, k)| + aes(?, 7, k) } is the maxi-
mum material wave speed over all grid cells. Furthermore, a.g is an estimate of the radiation
modified sound speed which is obtained by carrying out an effective eigen-analysis of the
material Jacobian. This analysis is presented in a later section. One chooses a CTU-type
time step over other alternatives (e.g., donor-cell time step) because of how one couples
transport in the corners of the computational grid cells. For the duration of this paper, one

assumes that the grid cells are cubic (Azx = Ay = Az).

2.2  Algorithmic Steps
After defining At, the algorithm loops over the following steps:

1. Backward Euler Upwinding Scheme - implicitly advances the radiation quantities from

time ¢,, to time ¢,41:

(E:/’Fn F o pn ) N (E:/-i-l’Fn-i-l Fn+1 Fn-‘,—l)

T Ty T orz rr YT ry Ttz

2. Modified Godunov Predictor Scheme - couples stiff source term effects to the hyperbolic

structure of the balance laws for the material quantities and uses effective piecewise
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linear extrapolation to spatially reconstruct material quantities at the left /right sides
of cell interfaces in the z, y, and z directions {¢ £1/2,7 £ 1/2,k £ 1/2}:

rmn+1/2 rmn+1/2 0—m,n+1/2
L/Ri+1/250  YL/Rij+1/2k  VL/Rijk+1/2

Flux Function - evaluates the passage of material across cell interfaces using the

left /right material states as well as an approximate Riemann solver to obtain:

FiTl/Zj,k = F(R(Ugj@'—l-l/zj',kv URm,i+1/2,j,k))
G:’ij-i-l/Zk = G(R(Uﬁ,ﬁm,ka Ugfz’,jﬂ/z,k))
Z},kﬂ/z = H(R(Uﬂ',g’,kﬂ/za Ug,z’,j,k—t—lﬂ))

CTU Correction - accounts for how the material quantities at the left/right sides of
cell interfaces in one spatial direction are affected by the fluxes in the other two spatial

directions:

~rmyn+1/2 mn+1/2
UL/R UL/R

Flux Function - evaluates the passage of material across cell interfaces using the cor-

rected left /right material states and the algorithmic machinery of Step 3 above

Modified Godunov Corrector Scheme - semi-implicitly advances the material quantities

from time t,, to time ¢, 1:

n n n n n n+1 n+1 n+1 n+1 n+1
(p,mw,my,ngE)_)(p y My, 7my , M, 7E )

Apply boundary conditions

Compute next time step At

In the above expressions, U, U", and U™ represent all of the conserved quantities, radi-

ation quantities (E,,F, ;. F.,,F,.), and material quantities (p,m,,m,, m,,E), respectively.

Fii125k: Gijr1/2.k, and H; ;119 are fluxes directed across cell faces in the z, y, and z direc-

tions, where R represents the solution of a Riemann problem. The tilde that is above some of

the left /right material states and fluxes designates quantities that have not yet been adjusted
by the CTU correction. Cell centers are defined by three indices (i, j, k), such that i £ 1/2,
j£1/2, and k £ 1/2 represent the location of a cell interface to the right/left of 7, j, and

k, respectively. n designates the time discretization. Details about each step are explained

in later sections. Lastly, the one-dimensional hybrid Godunov method of [I8] was shown to
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be consistent, stable, and accurate as well as coarsely gridded, well-balanced, and having
some asymptotic preserving properties. For reasons cited in [I§], these numerical properties
should be able to be extended to the multidimensional algorithm. However, future tests will

justify these claims.

3 Backward Euler Upwinding Scheme

This section presents the implicit scheme that advances the radiation quantities U" according
to the material flow scale. The stability of explicit schemes (e.g., Godunov-type methods) is
governed by the CFL condition which restricts the allowable time step according to the fastest
characteristic speed. However, if a hyperbolic system consists of multiscale waves (e.g.,
radiation hydrodynamics where c¢/as ~ 10°), then explicit schemes can become inefficient.
For these types of problems, implicit methods are useful. Following [4.[7], one can construct
implicit flux functions to approximate integrals at cell interfaces. In this context, a HLLE

framework was implemented.

3.1 HLLE Framework

The HLLE scheme is based on estimating the minimum and maximum wave speeds (Smin, Smax)-
These quantities are uniquely defined for each Riemann problem that is associated with each
interface of a computational grid cell. The numerical flux in one direction is calculated using

the following formula:

L1+ %) (FUL) = swnl) + (1= C°) (F(UR) — $uxUr)) - (19)

FHLLE(R(UL, UR)) — 5

where C* = (Smax+Smin)/ (Smax — Smin)- Defining the left /right states of the Riemann problem
according to a first-order accurate (piecewise constant) reconstruction, forces the HLLE flux

function to take the following form in each of the spatial directions:

Fii1/2j6(R(UpLis1/2,5k, Uriis1/2,56)) — EIJ{FII%EJ s (RWUi ik Uis1jk)), (20)
Gijr1/2k(RWULijiryam Urigajan) = Gyt w(R(Uijk Uijark)), (21)
H; jre12(RWULijarrjo Urigisrs2)) = HEE o(R(Uije Ui jrsr))s (22)

A first-order accurate, backward Euler-type algorithm was used because of total variation
diminishing (TVD) conditions. These issues were explored by [4,[I§]. One makes the above

explicit HLLE scheme implicit by defining the variables in the flux and source terms to be
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at time ¢, such that the exact integral formulation of the conservative differencing is:

Uit = Ul — A ( e (RS USRS B)) = Bty (RO UR))) - (23)
— R (G, (R(UZEL UIFA)) - GIMAE, RV, UZE)
R (MR SRUZE, USEL) — HEE o(RUZE USE)
+ AS(U” f;i)
FEL = (140 ) (FUL — sl (24)
+ %(1 Czs-i-xl/2]k) (FUIS ) — StmaxUithiie) »
A= 5 (14 Cn) (U — shali) (25)
b5 (1 o) (L) — st U
B = (14 C) (HUL — siaaUEf) (26)
b5 (1= ) (UL — st

3.2 Applying the Backward Euler HLLE Scheme

If one considers only the radiation part of the equations for radiation hydrodynamics (Equa-

tions Ml and []) [17,[18], then the variables, fluxes, and source terms are:

E,« (CFr,m (CFTvZ/
Frw (C x;pEfr (C T Err
v=| e | a2 | SR ey = | Pl e
Fr,y C.fyxEr C.fnyr
Fr,z szxEr szyEr
CF,. Cs®
Cf..E, CSF=
wwy=| EE L sy = | 00 (28)
Cf,.E, CSH
Cf..E, CS*-

where the eigenvalues of the radiation subsystem in the free streaming limit (o, 0, ~ O(€))
are A\, = {0, :tfl/zC} Ay, = {0, £ 1/2(C} and A\, = {0, :tfl/z(C} for each of the spatial
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directions. Given that the HLLE scheme uses minimum and maximum wave speeds to

compute fluxes at cell interfaces, one defines the following equations:

anin = )‘;,L(iv.jv k) = _fmﬂ(iv.jv k)l/zcv anax = )\;_,R(Z + 17.j7 k) = fww(z + 17j7 ]{7)1/2(C,

0571‘ — fEI(Z+17.]7 k)1/2_fmm(i7j7 k)1/2
HH/20k fww(z + 17j7 k)1/2 + fww(zvjv k)1/27

Sg’lin = )‘;L(ivjv k) = _fyy(ivjv k>l/2cv Stnax = )‘;—,R(ivj +1,k) = fyy(ivj +1, k>l/2(cv

Cs,y — fyy(ivj + 17 k)l/Z - fyy(iv.jv k>1/2
i7j+1/2’k fyy(iaj _'_ 17 k>1/2 + fyy(iujv k)1/2’

Stim = Ao (i, 5, k) = = foa(i,3,K)VPC, ko = AL p(i, g,k + 1) = f..(i, 5,k + 1)/°C,

ooe L=l kD)2 =[G G k)
R L (i gk DY (i R

Here, fiz, fyy, and f,, arise from the closure relation P, = f£, and is either a user defined

quantity or obtained by solving the radiation transport equation. If f varies spatially, then
Cs* C%Y, and C** are non-zero. Defining or computing f(x,t) precedes the backward
Euler update of U”. However, if f is assumed to be spatially and temporally constant, then
Ccs* . C%Y C* = (0. Future work will update f(x,¢) at each iteration by solving the radiation

transport equation.

3.3 Matrix Equation for the Radiation Components

Inputting U™t Fr(u~+t), Gr(u~t), H"(U"") and ST(U™", U™"*!) into Equations
23H26] gives the following four implicit difference equations:
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+ o+ o+ o+ o+

+

o+ o+ o+ o+

EP P ik = 1) [—di (14 C% Ly ) foa(ind k= DV?]

575

! +C i34,k 71/2)]

)
1+ G 1y, k) fyy (i3 — 1, k)l/ﬂ
)

]
1405 1I1/2,J, )f
)

S e ) fea @ Y2 b dy (1= 007, 0 faa Gy, k)2

P 1/2 B P 1/2
+dy (L+C0Y ) fun a2 dr (L= C0V ) ) Fyy oo )Y

itk -1 -
E"Jrlzgfl,k:)[
+1 s,y
Foln (1,371,1@)[ d (L+C0Y 0
EPYN G- 1,50 [~
Uit G— 1.k -

EML(i, 4, k) [1 +dy (1 + s

. R . oN1/2
+dy (L4 CF iy yn) Foa g Y2 b dy (1= 07 ) ) F2( 3 )P 4 daoa

d - a o
M (ma: + ma:fﬂ:.’t(i:jv k) + myfya:(ivj:k) + mzfzz('h]v k?))

pzcz
d - m L A
+ WQTCU;MI (my + s Fay (i, 3, k) + my Fyy (i3, 8) + ma Fay (i, 3, k)
p
d. — m .
% (mz + M faz (i 4y k) + my Fyz (6,5, k) + mzfzz('h]vk))]
p
do(0q —0s)myg
1 5
R [ (14 €1 ) = (1= O ) - TR
do(0q — 0s)my
1
FIE G, 5,k) {dl (1 +CPY Ly k) —dy (1 o, k) - T]
do(0q —os)m2
1 5
FEN G5,k [dl (O i)~ (1= yn) — o ]
EP P 4 1,00 [—di (1= O3 g 4) fea (it 1,0,
EEE G100 [ (1= 08 05 0]
BP0 [ (1= C00 s ) Fuy (g + 1,001
EES G+ 1R [ (1= g )]
BN k1) [—di (1= CP7 ) foalindi b4+ )Y
ERENGo gk + 1) [dl (1 ,J,k+1/2)] = EJ'(i,4, k) + daoa T,

M D Sekora
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EPtY gk = 1) [—di (14 C07 ) fazlindik — 1) (30)
+ FE gk =) [—di (14 CF Ly ) faa(idik = DY)
+ BTN -1k [—d (V4 CPY ) Fay (G - 1,R)]
+ BRIP4k [ (L PV ) Fay i — LRV
+ EMYNG -1,k [ (1 +C’1/2]k)fm(zflayk)]
+ BN =100 [ (14T, ) Feali— 15 0)Y ]
+ BTG [ di (V4 O5Y g ) fea (g k) —di (1= CF ) Faa iy dy )
+ dq (1 +O0Y L, k) fay(ir g, k) — d1 (1 -l k) Fay (3,3, K)
+dy (1457 i n) Fozidi k) —di (1= C5F o) Faz(ini k)
- d;(‘c” (i + M foa (iy 3, K) + my fya (i, 5, k) + ms Fao (i, 4, B)) + %]
+  EENL Gk [1 +dy (L4 O ) faa (g )2 4 dy (1= 037y ) foaind, )2
di (T4 CY o) Fun (a2 (1= C02 ) FuyGod k)2
di (L4 CP7 ) Fox (60 Y2y (1= C7 o) £22(65, )2 + dooe
+ EMli+1,5,k) [dl (1- CH a w) Foali+1,5,0)]
+ PR 10,0 [~ (1= O ) Fea i 1,0, 007
+ BTG LR [ (1= CPY ) fay (i +1,R)]
+ EEN G LR [dy (1= O3 o) Fun g+ 1))
+ BNk 1) [dy (1= C07 ) fex ik + D)
+ BNk ) [~ (1= CF ) PG k4 D)V :F?z(z‘,j,kwd”“p%ﬂ,
BX gk = 1) [—di (V4 €07y ) fus(idk — D] (31)
+ FrPN g k- 1) [ d; (1 + cf;kfl/z) Foz(iy gy b — 1)1/2}
+ BTG =k [ (VO ) Fu i — 1R
+ BN =Lk [—d (VOO ) Fuw i = 1,0
+ EMMG -1,k )[ dl( szl/zjk)fyiz—lg,k)}
+ FrPN - 1,5,k) [ d; (1 +CP k) fow(i—1 J,k)l/z]
+ BTG5,k [ dy ( +C30 a0, k) Fyw (i 4, k) — dy (1 —CI s k) Fya (i 4, )
o (1 C0Y ) Fuy (g k) —da (1= 30 fyy (i, k)
+dy (L7 yn) Fuz G k) —di (1= CF ) 0) Fys(iydi k)
- digt (my + M Fay Gy Gy k) + 1y Fyy (ir 4y B) + s Fay (i 3, 0)) + dz“;%c’”y]
+ R k) [1 o (14 €30y 0) faa (i Y2 e dr (1= 057 ) faalin g )Y/
a1 (14 C5 0 ) Fuu g )2 ey (V= CE0 ) By G )
di (L4 C07 ) Fox(6d Y2y (1= C07 o) £22(6 5, )2 4 daoe
+ EMGi+1,5,k) [dl (1 1+1/2,j,k) FyxGi+ 1,7, k)}
+ FN LGk [—dn (1= C5 p k) Fea (i 1,0 )]
+ BTN nk) [di (1= 0V 0 ) Fuued + 1 R)]
+ BN ALk [mdn (1= 0y ) Fuw G+ 1,07
+ BTG k) [di (1= C0F ) Fus(iud k4 1)
+ BNk 1) [~ (1= CF Ly ) el k4 DY) = BTGl k) + 7‘12"“7””4,

pC
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EP gk = 1) [—di (14 CF Ly ) foa(ivd k= 1) (32)
+ FPPN gk =) [—di (14 CF Ly ) fax(id k= DY)
+ BTN -1k [—d (T C0Y ) Fey (g = 1,0)
+ BN Lk [ (L CPY ) Fay i — LRV
+ BTG =1k [—dn (14 O80T, ) Feal - 1,50)]
+ FTNG -1k [man (14 O30, ) feali— 1,50
+ BTG R [ a (14050, ) FeaGad k) —di (1 O3 ”1/2 o) Fza(inds k)
+a (14008 ) e k) —dy (L= O30y ) Fay (65 R)

tdi (14007 ) Feelidik) —di (1= C2F o) Faz(iydok)

doo doogm
25 (s fan (503, K) 4 1y Fya i3y K) + s foa (503, K)) + zpizl]

+ FLTN 5k [1 i (14 O o p0) Jor (0 02 4 dr (1= Oy ) Faw (o0 )
dy (1 + G5 v 2m) fuu (o ds WY (1 - cis,’f—l/z,k) Py s )2

)
dy (1 +c;7 k+1/2) frzli g, )2 4 dy (1 - Cis,,jz,k—l/Z) Fox(iod )2+ d2‘”]

1/2

+ EMi41,5,k) [dl (1= ¢33 n) Foit 1,5.R)]

+ PN 100) [~ (1= Ol g ) Feai 1,0, 007

+ BP0k [dn (1 ”H/H)fzy(i,jﬂ,k)]

+ ERTNG k) [—dn (1= OV ) Fuy G+ 1,01

+ EPPNagk+ 1) [d (1O ) Feelind k4 1)

+ gk 1) [md (1= C0F Ly 0) Fea G b+ DY) = B Gg k) + dagamsT?

pC

where d; = AtC/2Ax, dy = AtC. All of the material quantities (p, m,, my, m,, E) that
appear in the above equations have the spatial index (i, 7, k) and temporal index n. Ad-

ditionally, the material temperature enters the above equations via the following relation:

n 2
T = el Plin = (v=1) ( Lik l(Mi’j’kl ), where M? = m2 4+ m, + m?. To under-

pm k 2 (pnyj, )

stand how the multidimensional equations fit into the linear algebraic description Ax = b,
it is important to understand that the algorithm cycles through the indices (i,7,k) i
the following manner: for(k=1;N;k++){ for(j=1;N;j++) { for(i=1;N;i++) {...}}}
Furthermore, the algorithm cycles through the radiation quantities in the following order:
(B Fy 0, Fry F ). Assuming that N2, = NY, = NZ,, one expects the matrix A to have

dimensions dim(A) = 4N3 x 4N3. Moreover, the solution vector  will contain the following

sequence of entries:
= [BMUiLGk), Fr LG k), F L g k), FRF G, g, k), EXT i+ 1,4, k),

FIFY (NN k), EFFY 11,k + 1), ]
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If one assigns the character x as a placeholder for non-zero values, then one visualizes the
structure of A which results from the above difference equations as a block banded matrix:

0y 0,%,0,0, %, 4> O(N2 — N) <3, %,0, %,0, <> O(N — 1) <>, %, %,0,0, %, %, %, %, %, %, 0,0, <> O(N — 1) 3, %,0, %,0, <> 0(N2 — N) <+, %,0,0, %,0, ...
oy 0, %,%,0,0, 4> O(N2 — N) 43, %, %,0,0, <> O(N — 1) <>, %, %,0,0, %, %,0,0, %, %,0,0, > O(N — 1) <>, %, %,0,0, <> 0(N2 — N) <3, %,%,0,0,0, ...
00, %,0,%,0, <> O(N2 — N) <3, %,0,%,0, <> O(N — 1) <>, %, 0, %,0,%,0,%,0, ,0, %,0, <> O(N — 1) <+, %, 0, %,0, <> 0(N2 — N) <3, %,0,%,0,0, ...
0y 0,%,0,0, %, > O(N2 — N) <3, %,0,0, %, <> O(N — 1) <3, %,0,0, %, %,0,0, %, %, 0,0, %, <> O(N — 1) 4>, %,0,0, %, <> 0(N? — N) <>, ,0,0,%,0, ...

Since there are no nonlinearities in the radiation quantities for which root finding (e.g., New-
ton’s method) must be implemented, one casts these equations into a sparse matrix format
that can be solved with iteration techniques from linear algebra such as the Jacobi, Gauss-

Seidel, and multigrid methods as well as others because A exhibits diagonal dominance.

4 Modified Godunov Predictor Scheme

Given that the radiation quantities (E,,F} ,,F,,,F, ) are at time ¢,,;, one computes the
flux divergence ((V - F™)"T1/2 (V. Gm)n+Y2 (V. H™)"+1/2) for the material quantities
(p, my, my, m,, E) that are at time t,. Following the analysis of [I3,[I7-19], one applies
Duhamel’s principle to the quasi-linear system of balance laws in Equations [4HI7 for only
the material components. This technique defines the following system that locally includes

in space and time the effects of the stiff source terms on the hyperbolic structure:

DU oum oum oum
off _ 7 —A™ — A™ — A™ 4+ gm Um,n’Ur,n-‘rl ’ 33
ik = 2(o) (A T — AT — AT+ 5™ ). @)
where Z2UZ = U 4 00" 4 vagym + w2 is the total derivative. Z is a propagation
operator that projects the dynamics of the stiff source terms onto the hyperbolic structure.
vy = Ay —ul, A7, = AP —ol, and AT, = AT — wl are Jacobians associated with

Lagrangian trajectories in the x, y, and z directions, respectively. Since the predictor scheme
is a first-order accurate step in a second-order accurate predictor-corrector method, one
chooses n = At/2 and the effective balance law becomes:

oum oum oum oum

—— + Al + AT g + Al g—— = Z(At/2)s™ (U™, U 34
ot + x,eff or + y,eff ay + z,eff Oz ( /) ( ) )a ( )

where A7 g = Z(At/2) AT, +ul, Aj g = T(At/2) A7, + vl and AT g = T(At/2) AT, +wl.
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4.1 Applying the Modified Godunov Predictor Scheme

If one considers only the material component in Equations [IH3, then the variables, fluxes,

and source terms are:

p Mo mmﬁ
Mg = +p W
U=] my [, FU)= e . GO = Tr+p |
m, % %
E (E+p)5 (E+p)7!
m. 0
mepns —PpSF
H(U) = maTmy , S™MU)=| —PS™
ot p —PS*
(E+p)== —PCS*

In order to compute Z, one first computes VymS™(U). Therefore:

0 0 0 0 0
—PSf PSSk —PSE: —PSE —PSE
VymS™U) = | —PS)»  —PSy:  —PSkr  —PSk  —PSk |, (35)

—PSH  —PSk: —PSE: —PSE —PSE
—-PCSF —PCSE -PCSE —PCSE. —PCSE

where the partial derivatives are presented in Appendix 1.

4.1.1 Simplifying Vy»S™(U)

In its current form, VymS™(U) in Equation B3l leads to a propagation operator Z that is
difficult to work with algebraically. By inspection, the material momentum source terms are
not the dominant factors defining the stiffness associated with the matter-radiation coupling,
such that —PS¥ < O(1) even in the strong equilibrium diffusion limit. Additionally, one
finds that the derivative of the material momentum source term with respect to the variables
U™ has the following magnitude —PSF,, < O(1). Therefore, —PSF can be included as a
body force (e.g., gravity).

It is the material energy source term —PCSP that defines the stiffness associated with the

problem. By inspection of the contributing terms, —PCS® < O(C) in the strong equilibrium
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diffusion limit. Additionally, one finds that the derivative of the material energy source term
with respect to the variables U™ has the following magnitude —PCS,. < O(C?). Therefore,
one only needs to use —PCS¥ to define VymS™(U), such that:

0 0 0 0 0
0 0 0 0 0

VynS™(U) = 0 0 0 0 0 (36)
0 0 0 0 0

~PCS? —PCSE, —PCSEZ —PCSZ —PCSE

VymS™(U) is further simplified by examining S f, Sﬁw Sﬁy, Sﬁz, and SZ in the equilibrium

diffusion limit and neglecting terms that have magnitudes of or less than O(C). Therefore:

S = 40,T° (v —1) <_p—f+]\j—;) (37)
SE = 4aaT3<v—1)(_:§x) (38)
58, = 407 (-1 (752 (39)
SE = 4o,T" (7—1)(_;752) (40)
s = 40 0-0 (1), (a)

It is important to note that these partial derivatives have the same stiff magnitude 40,7% (7 — 1).

This insight simplifies algebraic manipulation.

If VynS™(U) is diagonalizable, then Viym S™(U) = RDR™!. Here, D = diag(0,0,0,0, —PCSE)
and R is a matrix whose columns are the right eigenvectors. Below, one sees how the stiff

magnitudes cancel out:

0 0 0 1 0 0 0 0 1 0

R= 0 0 1 o o |, R'= 0 0 1 0 0 (42)
0 1 0 0 0 0 1 0 0 0
10 0 0 1 S¢Sk Smy Sm

Sg S Sk Sk
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4.1.2 Propagation Operator 7

Since one is considering a modified Godunov scheme with a predictor step of At/2 [13]:

At 1 a2
7 (_) _ / VoS (U) g (43)
0

2 At/2
1 0 0 0 0
0 1 0 0 0
= 0 0 1 0 0 (44)
0 0 0 1 0
(-1 (@-D% (@-D% 0-D% o
1 0 0 0 0
0 1 0 0 0
— 0 0 1 0 0|, (45
0 0 0 1 0
(1—a)(§—fgf—j) (1-a)m (1-a)™ (1-a)m q

where o = (1 — exp(—PCSEAt/2)) / (PCSEAL/2). Since SE > 0 across all relevant pa-
rameter space, 0 < « < 1. This property is important when considering stability and the

subcharacteristic condition which is discussed later in this paper.

. . . m m m
4.2 Effective Material Jacobians - A7 4, ijeﬁc, ot

The effects of the stiff source terms on the hyperbolic structure are accounted for by trans-
forming to a moving-mesh (Lagrangian) frame (A", = A —ul, AJ'; = AP —vl, AT =
AT —wl), applying the propagation operator Z to A7*, and transforming back to an Eulerian
frame, such that the effective material Jacobians (A7'.q = ZAT', +ul, A7 5 = TAT + v,
ATl g = TAT, +wl) are given by [13]:

0 1 0 0 0
Aty —w? —(v = 3)u —(y-Dv  —(y-Dw (y-1)
A;’fe“ = —uv v u 0 0
—uw w 0 u 0
u{%v2faf17(lfa) (%+%V2)] 7(771)u2+a1:1+(17a)(%+%v2) —(v—1Duv —(v—1Nuw yu
0 0 1 0 0
—uv v u 0 0
AT g = IFvZ 2 —(v = Du —(y = 3)v —(y-Dw  (vy-1)
—vw 0 w v 0

v{%v2faﬁf(1fa)(%+%v2)} —(v — Duv 7(771)v2+a1:1+(17a)(%+%v2) —(v — 1ovw v



Extending a Hybrid Godunov Method to Multiple Dimensions 17

0 0 0 1 0

—uw w 0 u 0

AT e = —vw 0 w v 0
5tv2 —w? —(v=Du  —(y—1 —(v = 3w (v—1)

w[%V27QH7(17a) (%+%V2)] —(y—Duw  —(y—Dovw —(y—Dw?+aH+ (1 -a) (%+%V2) yw

These Jacobians have the following eigenvalues: A?’eff’ (04} = {u—aef, U, Uteg }, )‘Z?eff, (04} =
{V = Qefr, v, v+ e}, and )\Z,Lefﬂ{—ﬁ,—l—} = {W — defr, W, W+ acg }, respectively. Here, the effective

sound speed aqg (i.e., the radiation modified sound speed) is:

2 = —VT”W taly—1H+(1-a) <T+ VT”W) (46)
- a% +(1—a)T (47)
= (a(v—-1+1) %, (48)

where T' = p/p because of the choice of non-dimensionalization. Here, one notices that

H, (T + (v —1)V?/2) > 0 across all relevant parameter space such that the effective sound

speed aqr admits the following limits:

-1 .
~PCSE - 0=a—1 = dsy— —VTV2 +(y—1)H = % (adiabatic) (49)
~PCSE - —0=a—=0 = ot —T= g (isothermal). (50)

When examining Equations and B0, one sees that the subcharacteristic condition for
material wave speeds is satisfied in each spatial direction, such that [13]:

)\7;:7 = U — Qad S )\;ch377 = U — Qeff S )\Z?O = AZ?CH‘,O = U S )\;n:cfﬂ+ =u-+ Qeff S )\Z?CH',+ =u-+ Aad, (51)
Ay =0 = 8ad S Ao — = U = Gef S Aylp = Aylemro = U S Ao = U F Gt S Ao = U+ daa,  (52)
A=W = aad S AN og - =W — aet S AT = ANogo =W S Ao | = W+ Gep < Ao 1 = W + Qad, (53)

This condition is necessary for the stability of the system and guarantees that the numerical
solution tends to the solution of the equilibrium equation as the relaxation time tends to
zero. Additionally, the structure of the equations remains consistent with respect to clas-
sical Godunov methods. Therefore, the CFL. CTU time-stepping condition applies. Lastly,
the right material eigenvectors RY, ., ¢ (stored as columns) and left material eigenvectors

LY, ., .y o (stored as rows) are given in Appendix 2.



18 M D Sekora

4.3 Computing Left /Right States

In the modified Godunov predictor scheme one uses effective piecewise linear extrapolation
to spatially reconstruct material quantities at the left/right sides of cell interfaces. This

technique is shown in the following relations for each spatial direction:

Frm,n+1/2 m,n 1 At m m,n T m,n
Orf=uns + g (1 SeAnalUZ ) PRAUZ) 54)
At At m m,n r,n+1
+ 71 (7)5 (Ui,j,kaU@,}Jj ),

rmn+1/2 m,n 1 At m m,n x m,n
UR,i+1/2,j,k = Ui+1,j,k - 5 I+ EAm,oﬁ(Ui—l-l,j,k) PA(AUHl,j,k) (55)
At At m m,n r.n+1
+ 71 (7) S (Ui—i-l,j,kai-i-l—,;,k)a
rrm,n+1/2 m,n 1 At m m,n m,n
UL,i,jil//z,k =Ujp + B (I - A—yAy,eff(Ui,j:k) PX(AUSY) (56)
At At m m,n r,n+1
+ 5T (7)5 (U Ui,
rrmon+1/2 m,n 1 At m m,n m,n
O = Ul = 5 (T4 S0 ) RAUZDD 6)
At At m m,n rn+1
+ 71 (7) S (Ui,j’—i-l,k7Ui,j++l,k)7
rrm,n+1/2 m,n 1 At m m,n z m,n
Orrilin =+ g (1 AU ) PR 53)
At_ (AN . mn o orm
v Fz(5) s
Um,n+l/2 _ymn 1 I At A™ (™ PZ(AU™"
Rijk+1/2 = Yightt T 5 + As Tet(Uiihe1) | PALAUS ) (59)
At At m m,n r,n+1
v S5T(5) s v,

where Pix’y’z} is a slope limiting function used to eliminate spurious oscillations in the =z,
y, and z directions, rey, andy, andy, and z directions, rey, andy, and z directions, rey,
and z directions, respectively. Slope limiting is performed for each of the material quan-
tities. Although most slope limiters can be used, this algorithm employs the extremum-

preserving [2L[16] and traditional van Leer limiters (also referred to as the MUSCL limiter).
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These techniques can be implemented either componentwise or across characteristic fields.
After reconstructing the material quantities in each of the spatial directions, an approximate
Riemann solver evaluates the passage of material into and out of each computational cell by
using the material states that are to the left/right of the cell interfaces [I5]. It is important
to emphasize that these flux functions do not directly account for the influence of radiation
on the material quantities. Rather, the radiation effects are included via the source terms,

propagation operator, and effective material Jacobian.

5 Corner Transport Upwind Correction

Before advancing the material quantities from time ¢, to time t,.,, one accounts for how
the left /right states (Uf)p;i1/040 ULriji1200 UL/mijkt1/2) and thus the fluxes (F7Y, 5 5,

77]4—1/2,]{’ Hz,],k+1/2
lar, one corrects for material propagating across the corners of a computational cell in the

) are affected by transport in the other spatial directions. In particu-

following manner [I]:

mn+1/2 frmn+1/2 At ~
UL,i+1/2,j7k - UL,i+1/2,j,k —A <G i+1/2.k ] 1/2, k‘) (60)
At
2Az ( i,k+1/2 7 ,jk) 1/2)
Um,n+1/2 o Um,n+1/2 At ~ 61l
Ri+1/2,5k — YR,i+1/2,j.k T z+1,y+1/2k i+1,—1/2,k (61)
- QAZ ( i+1,5,k+1/2 Hﬁ-l,j,k—l/2
mn+1/2  frmant1/2 At /=
UL,i,j+1/27k - UL,i,j+1/27k - T (F+1/2,jk 1/2J k) (62)
At -
T 9Az (H igk+1/2 ,jk) 1/2)
m,n+1/2  Frmn+1/2 At -
UR,i,j+1/2,k = UR7i7j+1/2,k ~ 9Ar ( i+1/2,j+1,k F_1/27j+1’k> (63)
_A rrm
T 9Az ( ijH1Lk+1/2 Hz’,j—i—l,k—l/z) ;
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m,n+1/2  Frmn+1/2 At ~
L,jk+1/2 — Y Ljijk+1/2 IAT <F+1/2,]k 1/2,] k) (64)
At -
- Ty (G i,j+1/2,k ]—1/2,k) )
mmn+1/2  Fymn+1/2 At -
UR,i,j,k+1/2 UR,W E+1/2 IAT ( i+1/2,5,k+1 F—1/2,j,k+1> (65)
At

m (G i j+1/2,k+1 ;3—1/2,k+1) :

With these corrected left/right material states, one again uses an approximate Riemann

solver to evaluate the passage of material.

6 Modified Godunov Corrector Scheme

The time discretization for the source term is a single-step, second order accurate scheme
based on [5,[1314]. Given the material system of balance laws, one aims for a scheme that
has an explicit approach for the flux divergence (V- F" +V -G™ 4+ V - H™) and an implicit
approach for the stiff source term S™(U). At each grid point, one solves the following
collection of ordinary differential equations:

aagm

— _ Sm(U) _ (V . Fm)n+1/2 _ (V . Gm)n+1/2 _ (V . Hm)n+1/2, (66)

where the time-centered flux divergence terms are inputted from the predictor step and taken
to be constant valued. Using Picard iteration and the method of deferred corrections, an
initial guess for the solution to the collection of ordinary differential equations is:

U=0m" + At(I— AtVymS™U)|ymn grot1) " (67)
(Sm(Um,n’ Ur,n—l—l) o (V . Fm)n+1/2 o (v . Gm)n+1/2 . (V . Hm)n+1/2) )

Here, VymS™(U) has the same functional form as that which was used to define the propa-
gation operator Z in a previous section. Therefore:

1 0 0 0 0
0 1 0 0 0

(I — AtVymS™U)) = 0 0 1 0 0 (68)
0 0 0 1 0

AtPCS?  AtPCSE AtPCSE ~ AtPCSE. 1+ AtPCSE
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By inverting the above matrix, one finds:

1 0 0 0 0
0 1 0 0 0
(I — AtVymSU)) ! = 0 0 1 0 0 (69)
0 0 0 1 0
—AtPCSF  —AtPCSE_~ —AtPCST  —AtPCSE 1

1+AtPCSE  1+AtPCSE  1+AtPCSE  1+AtPCSE  1+AtPCSE

The error estimate e is the difference between the solution obtained from one iteration of the
Picard technique where U is used as the starting value and the initial guess U:

At
2
— At <(V . Fm)n+1/2 + (V . Gm>n+l/2 + (v . Hm)n+1/2) . ﬁ

(A =umn 4 2 (S0, 4 s, gt (70)

Following Miniati & Colella 2007, the correction to the initial guess is given by:
-1
S(AL) = (1 - AtvaSm(U)b,Ur,m) e(At). (71)
Therefore, the material quantities at time ¢, are:

Umntt = U + §(At). (72)

7 Conclusions and Future Work

This paper presents the algorithmic details for constructing a hybrid Godunov method to
solve three-dimensional radiation hydrodynamical problems. Careful consideration was taken
when developing this technique such that one can compute numerical solutions for a host of
physical phenomena (e.g., free streaming, weak equilibrium diffusion, and strong equilibrium
diffusion limits). Additionally, the algorithmic ideas in this paper were cast in such a way
so that they can be easily implemented in existing codes, particularly ones that carry out
MHD calculations. Future papers will showcase (i) a series of multidimensional radiation
hydrodynamical tests which demonstrates the robustness of the hybrid Godunov method
and (i4) how to combine a numerical method for radiation hydrodynamics with a technique

for updating the variable tensor Eddington factor f.
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Appendix 1: Partial Derivatives

SF“’ —o¢E, TaMg (T4 - Er) 4aammT3 1 —FE M?
P = p2C (ma: + mg foa + myfya: + mzfzz) - p2<C + C (’7 - ) - + p_3 5 (73)
4
Fp otEr (1 + fox) 9a (T 7E7‘) 40amy T? —Mg
sk = + + (=1 , (74)
x pC pC pC p?
3
Fg _ ot Erfyx dogmg T B —my
Smiy = T G-n(5) (75)
3
Fyp _ otErfie doamagT -~ —mz
S, = oC + (v —1) 2 , (76)
46 ama T3 1
F, aMy
sgo= g (2). )
B pC P
_ T — E 3 _ 2
Fy _ otEp TaMy ( 7‘) 4oqamyT E M
S, = 22C (my + Mo foy + my fyy + Mz fay) — 220 + o =D+ —p3 , (78)
F, ot Erfoy 4oamy T3 —myg
Snt = + -1 ( ) , 79
My C oC (v—1 2 (79)
va (T* - E) 3
SFy _ otE, (1 + fyy) n a r ‘ dogmyT (v—1) (77711) (80)
™y pC pC pC 02 /)’
3
Fy otErfay 4oamyT (7mz>
S = + —1 , 81
my oC oC (v ) 02 (81)
3
Fy dogmyT 1
sproo= e (=), (82)
B pC P
GF: _ —otEy Tamz (T4 - Er) doqm. T3 —E M?
P = 22C (mz + mg frz +7nyfyz+7nzfzz)* »2C + oC (v—1 p72+p7,§ s (83)
F otErfos | doam.T® (ﬂm)
sF= - + —1 , 84
et oC o (v=1 2 (84)
F ctErfyz 4o'asz3 (7my>
CR - + —1 , 85
my pre oC (y=1 2 (85)
E, (1 o (T4 —FE ) 4 T3 _
Fs _ ot Ly +fzz) a T TaMz mz
sk = + + (v=1) : (86)
pC pC pC p?
40am; T3 1
F, aMz
S = —— (-1 (-), 87
£ e () (s7)
—FE M? (0a —0s) Mg Fr, 2(cq —os)mg E
SE = 40,7 (v-1) (—2 + T) - R ot T (e + ma foe + My fye + M fax) (88)
P p2C psC
(0a — 0s) myFr, 2(cq —os)myE
e :2C vy = p3£2 vr (my+7nzfzy+myfyy+7nzfzy)
(0aq —0s) mzFy, 2(0q —0os)mzE
- < :2([: SR b + < p3£2 = (’le+mmfmz+myfyz+7nzfzz)v
—m, oq —0s) F, oq —0s) E
SE = 40,7 (v-1) ( ””) 4 lgazoa)Fro (0 —0o) Br (2ma + 2mg fouw + My fye + ms foz) (89)
x p2 pC p2C2
_azo)Br o (ca—o)Er
Tmy Ty Tmz Tz
—m oq —0s) Fr, oq —0s) E
sh = 40,7 (v - 1) <—2y> 4 Loa ) Fry _ (g = 95) Br (2my + Mg foy + 2my fyy +mz fay) (90)
Yy p pC p2C2
_ (0a —0s) Er Fow — (0a —0s) Er f
7P2C2 Mz Jyx 7;)2@2 Mz Jyz,
—m 0q —0s) Fr, (0q —0s) E
sk = 40,7 (v-— 1)( 22) 4 Fem ) Frz (%a T (2ma + Mg fas + My fys + 2ms faz) (91)
z P pC p2C
(0a —0s) Er (0a —0s) Er
- Tmmfzm - T’myfzyv

SE = 40,73 (v-1) (%) . (92)
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Appendix 2: Effective Material Eigenvectors

1 1 0 0 1
U — Aoff u 0 0 U+ e
m — v v 1 0 v
Rz,eff - 0 1 ’
w w
v? ady  v2 v2 a2e
3T uaerr + 3T 3 v w Sy tuaerr + T
1 (4 g Gzv? —1 (1+M) -1 (y=Dv -1 (y—Dw (@Et)
2aepr 2aepf 2aepr Geff 2aeff  Aeff 2aer  Geff 202
1— <w—12)v2 (v =Du (v=1v G =Dw ~(=1)
Lmo 2agss aotf aotf Gotf Gotf
z,eff = —v 0 1 0 0
—w 0 0 1 0
-1 [, _ (=nv? 1 (1 _ (w—l)u) -1 (v=Dv -1 (y=Dw (=1
2aepp 2aepp 2aepp Aoff 2a0ff  Aff 200ff  Qeff 202,
1 0 1 0 1
u 1 u 0 u
R™ .. = v = eff 0 v 0 v+ aeff
y,eff ’
w 0 w 1 w
2 2
2 a 2 2 a
v v v
g T Vaeff t We,fﬁ U T W T Ve t+ We,ft;
1 (g =2 -1 (y=Du —1 (1 + (wfl)v) -1 (=Dw (=1
2aefp 20t 200ff  Goff 2aepp Aoff 2a0ff  Aff 202
—u 1 0 0 0
L 1 G=pv? G=Du G=1)v G=w —(y=1)
Jeff = 2z I v
ve 2a5s ages ages age age
—w 0 0 1 0
-1 (,  G-nv? L G-lu g (3 Gobv) ol G-bw Gob)
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