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Abstract

This paper presents an approach to modeling progressive event-history
data when the overall objective is prediction based on time-dependent co-
variates. This approach does not model the hazard function directly. Instead,
it models the process of the state indicators of the event history so that the
time-dependent covariates can be incorporated and predictors of the future
events easily formulated. Our model can be applied to a range of real-world
problems in medical and agricultural science.

1 Introduction

This paper presents a new theory for event history processes that involve a se-
quence of irreversible, progressive events and associated external time-dependent
covariates, i.e. covariates not influenced by the occurrence of the events of central
interest (Kalbfleisch and Prentice 2002). These covariates are known up to times on
a discrete scale, say daily scale, for example. Such events signal changing condi-
tions, which may point to the need for strategic actions that reduce risk associated
with those processes, for example cancer progression or survival of wine-grape
perennial crops. By modeling how such event sequences change in relation to
time-dependent covariates, useful information may be provided to those involved
in assessing best therapeutic intervention responses, or environmental impacts.

General event-history data have been well studied. As examples: Weiss and Ze-
len (1965) and Lagakos et al. (1978) considered semi-Markov models; Hougaard
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(2000) described a broad range of Markov models; Cook and Lawless (2007) pre-
sented two broad approaches for recurrent event data: modeling the counts of
events in a time interval and modeling the gap time between two events; Aalen
et al. (2008) described approaches based on counting processes. Many of these
approaches can be used to analyze progressive events data. However, when a time-
dependent covariate is present, the problem becomes thorny, especially if the main
objective of the analysis is prediction.

When a single event is under consideration and a time-dependent covariate is
present, the usual practice is to apply the Cox model (Cox, 1972) or a paramet-
ric proportional hazards model (Collett, 2003). The advantage of the Cox model
is that if the hazard function is only related to the covariate evaluated at the cur-
rent time, then we can plug that covariate value into an expression for a partial
likelihood function, regardless of the values of the covariate at other time points.
However, this causes a loss of efficiency, since the information contained in the
covariate between the gap times of events are not used. Cox (1972) argued that
the loss of efficiency is not much unless either:(1) the model parameter is far from
zero; (2) censoring is strongly dependent on covariates; or (3) there are strong time
trends in the covariates. While the first two issues may not concern us, the third
is crucial for phenological data since the associated climate variables usually have
strong seasonality (and will exhibit as a dominant local trend between event-times
within a season). On the other hand, the Cox model is not suitable for prediction,
since it does not extrapolate beyond the last observation. A parametric proportional
hazards model might be a good choice for prediction. But it requires explicit dis-
tributional assumptions for the time-to-event, which may be mis-specified. Also,
if the hazard ratio is related to the covariate evaluated at several time points at
and prior to the current time, the likelihood function may involve a complicated
integration.

When multiple events are of interest, to deal with time-dependent covariates,
the usual approach is to apply a Cox model for each event where time-dependent
covariates are present (e.g. Hougaard, 1999), or use a parametric model to model
the hazard rate and to incorporate the covariates just as in the parametric propor-
tional hazards model (e.g. Cook and Lawless, 2007). These approaches induce
similar problems to those in the single event case.

In this paper, we introduce an approach based on modeling the process of event
state indicator. In this approach, all the available information contained in time-
dependent covariates can be easily incorporated in the likelihood function, and the
construction of a predictor is straightforward. Also, this approach does not impose
strong distributional assumption on times to events.

The paper is organized as follows. Section 2 presents a model for a single
event. There our basic assumptions are introduced and estimation and prediction
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procedures for the model are described. Also, the estimation for the case of non-
informative right censored response is considered. Section 3 presents a model for
sequential events, which is an extension of our model for single event but with a
few additional assumptions. In section 4, we test our model for single event by
applying it to the blooming event of pear trees. There a cross validation procedure
is used to evaluate our prediction of future events. The uncertainty associated with
the prediction is also assessed. The final section summarizes our methods, and
gives pointers to possible future work.

2 Model for a single event

This section concerns the case of a single phenological outcome called an “event”,
for example “death”. The data consist of the times to the occurrence of that out-
come for N experimental subjects, i = 1, · · · , N .

2.1 Basic setup

In the sequel, upper case letters denote random variables and lower case ones, their
realized values.

We adopt the following assumption in this section:

Assumptions 1. Only one event can occur for each individual, and once it has
occurred, it remains in the “occurred” state thereafter.

We assume a discrete time scale with a well-defined origin t0, that we take to
be t0 = 0 without loss of generality. For individual i, let Ti denote the random
time to occurrence of the event. At each time point t = 0, 1, · · · , classify the state
of the event for each individual as “occurred” or “not occurred”. At time t, let Yi, t
denote this state, being 1 or 0 according as the event has “occurred” or not. Then,
time to event Ti and state indicator Yi, t have the following relationship:

Yi, 0 = 0, Yi, 1 = 0, · · · , Yi, (Ti−1) = 0, Yi, Ti = 1, Yi, (Ti+1) = 1, · · · , (1)

where Yi, t is 1 for all t ≥ Ti by Assumptions 1.
Associated with each individual is a time-dependent covariate vector, which

is observed on the same discrete time scale. Denote its value at time t (t =
· · · , −1, 0, 1, · · · ) byXi, t. Note that a fixed covariate is a special time-dependent
one and so is subsumed by our theory. For individual i, we further denote the co-
variate process evaluated at all time points, i.e. {· · · Xi,−1 = xi,−1, Xi, 0 =
xi, 0, Xi, 1 = xi, 1, · · · }, as Xi, t′∈Z. Similarly, we write Yi, 0:t as the set of state
indicators Yi, t evaluated from time origin 0 to time point t (t = 0, 1, · · · ), i.e.
{Yi, 0 = yi, 0, · · · , Yi, t = yi, t}.
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2.2 Probability model

The conditional probability distribution of Yi, 0:t given Xi, t′∈Z is

P
(
Yi, 0:t

∣∣Xi, t′∈Z
)
= P

(
Yi, 0 = yi, 0

∣∣Xi, t′∈Z
) t∏
s=1

P
(
Yi, s = yi, s

∣∣Yi, 0:(s−1), Xi, t′∈Z
)
,

(2)
where P (·) is the probability set function. This expression can be simplified using
the following result:

Proposition 1. For each individual i and single event in Assumption 1, conditional
on Xi, t′∈Z, the stochastic process {Yi, t : t = 0, 1, · · · } is a first order Markov
chain, i.e.

P
(
Yi, t = yi, t

∣∣Yi, 0:(t−1), Xi, t′∈Z
)
= P

(
Yi, t = yi, t

∣∣Yi, (t−1) = yi, (t−1), Xi, t′∈Z
)
,

(3)
for all t = 1, 2, · · · and yi, t ∈ {0, 1}.

Proof. In the proof everything will be conditional on Xi, t′∈Z and is omitted for
simplicity. Since for each individual i and all t = 0, 1, · · · , Yi, t is a binary
random variable, it suffices to separately consider only two cases, Yi, (t−1) = 0 and
Yi, (t−1) = 1. Firstly, Yi, (t−1) = 0 implies that Yi, 0 = 0, · · · , and Yi, (t−2) = 0,
making {Yi, 0 = 0, · · · , Yi, (t−2) = 0, Yi, (t−1) = 0} the only possible probability
event for Yi, 0:(t−1) and thus equivalent to {Yi, (t−1) = 0}.

Secondly, for the type of single event under consideration, if for some t′ > 0,
Yi, (t′−1) = 1, then Yi, (t−1) = 1 for all t ≥ t′. Thus, when Yi, (t−1) = 1 (t > 0),
we have

P
(
Yi, t = yi, t

∣∣Yi, 0:(t−1) ) = P
(
Yi, t = yi, t

∣∣Yi, 0:(t−2), Yi, (t−1) = 1
)
= 1, (4)

which completes the proof.•
Equation (2) then simplifies to

P
(
Yi, 0:t

∣∣Xi, t′∈Z
)
= P

(
Yi, 0 = yi, 0

∣∣Xi, t′∈Z
) t∏
s=1

P
(
Yi, s = yi, s

∣∣Yi, (s−1) = yi, (s−1), Xi, t′∈Z
)
.

(5)
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For individual i,the previous equation and (1) imply that the conditional probability
that the event occurs at time ti, given all the covariate values Xi, t′∈Z is

P
(
Ti = ti

∣∣Xi, t′∈Z
)
= P

(
Yi, 0 = 0, Yi, 1 = 0, · · · , Yi, (ti−1) = 0, Yi, ti = 1

∣∣Xi, t′∈Z
)

= P
(
Yi, 0 = 0

∣∣Xi, t′∈Z
)
·

[
ti−1∏
s=1

P
(
Yi, s = 0

∣∣Yi, (s−1) = 0, Xi, t′∈Z
)]
·

P
(
Yi, ti = 1

∣∣Yi, (ti−1) = 0, Xi, t′∈Z
)
. (6)

Now we are ready to build a regression model based on this probability model.

2.3 Regression model

Assume that the occurrences of the events of different individuals are indepen-
dent realizations from the same population. We require additional assumptions
about the relationship of the occurrence of the event and covariate to limit the to-
tal number of parameters. In Equation (6), the probability of an event occurring
at time ti is conditioned on covariate values evaluated at all discrete time points
· · · , −1, 0, 1, · · · . In real applications, the occurrence of an event usually only
depends on the covariate values at and prior to the occurrence time. Furthermore,
in some situations, we may assume that at a time point t ≥ 0, the state of the event
mainly depends on the covariate values at the current and several previous times,
or some weighted average of them. In practice, we want to make some reasonable
assumptions so that the total number of covariates (and consequently the total num-
ber of parameters in the regression model) is limited, and the number of covariates
does not change over time.

For the purpose of illustration, simply assume that for individual i at time point
t, the state indicator Yi, t is only related to the covariate values evaluated from time
t−K to t, i.e.

{
Xi, (t−K), · · · , Xi, t

}
, where K is constant. Now, for individual

i at time t, no matter if Xi, t is a vector or not, the total number of covariate values
that are related to Yi, t is finite and fixed, and we will put them together as a vector
denoted by Xi, t. Then in Equation (6), term Xi, t′∈Z on the right hand side (RHS)
can be replaced by Xi, t.

We further assume that time origin 0 is the earliest time an event can occur,
otherwise the data is not useful for studying the probability of the occurrence of
the event. Then we have

P (Yi, 0 = yi, 0 |Xi, 0 ) = P (Yi, 0 = yi, 0 |Yi,−1 = 0, Xi, 0 ) . (7)

By virtue of the Markov property of {Yi, t : t = 0, 1, · · · }, for modeling P
(
Ti = ti

∣∣Xi, t′∈Z
)
,

it suffices to model P
(
Yi, t = yi, t

∣∣Yi, (t−1) = 0, Xi, t
)

for t = 0, · · · , ti and
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yi, t ∈ {0, 1}. Write

Pi, t ≡ P
(
Yi, t = 1

∣∣Yi, (t−1) = 0, Xi, t
)
. (8)

Then since yi, t ∈ {0, 1}, we have

P
(
Yi, t = yi, t

∣∣Yi, (t−1) = 0, Xi, t
)
= Pyi, ti, t (1− Pi, t)

1−yi, t . (9)

For each fixed individual i, Pi, t is a function of t and Xi, t. Now, to build a regres-
sion model, we will choose a useful explicit form for this function with unknown
parameters, and carry out statistical inference for these parameters.

If we want to restrict the functional form of Pi, t to a linear function of the
parameters, then for individual i, at each time point t = 0, · · · , ti, we may
consider a linear regression model for binary events. Consider a monotonic link
function g : (0, 1)→ (−∞,∞) (e.g., g could be the logit or probit function). We
assume that g (Pi, t) equals a linear function of the covariate vector Xi, t, i.e.

g (Pi, t) = βTt Xi, t , (10)

where βt is a parameter vector which remains the same across different individuals
i, but may vary with time t. The superscript T stands for the transpose of a vector
or a matrix.

By Equation (6) – (10), we have

P
(
Ti = ti

∣∣Xi, t′∈Z
)
= g−1

(
βTt Xi, ti

) ti−1∏
s=0

(
1− g−1

(
βTt Xi, s

))
, (11)

where g−1 is the inverse function of g. To achieve computational tractability, we
take βt to be a constant vector over time, so the subscript t of βt in the above equa-
tion can be omitted. Under the independence assumption, the likelihood function
of the data is

L (β) =

N∏
i=1

[
g−1

(
βTXi, ti

) ti−1∏
s=0

(
1− g−1

(
βTXi, s

))]
, (12)

One can now proceed with maximum likelihood (ML) or Bayesian methods to
estimate parameters.

2.4 Non-informative right censoring

If the event has not occurred for an individual by the end of the study or an individ-
ual left the study before the event occurs, we get a right-censored observation. In
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this paper, we consider non-informative right censoring, i.e. the time to the event is
independent of the censoring mechanism. The methodology is derived from Collett
(2003).

Here, when writing the conditional probability of an event occurring at some
time point given covariate values Xi, t′∈Z, we will omit the conditioning variable.
All the probability expressions in this section are then conditioned on Xi, t′∈Z.

For each individual i = 1, · · · , N , we have an observed time ti, which is
either an event-time, or a right censoring time. We denote this observation as a
random variable τi. Then the value of τi is ti. Now, for individual i, let δi be
an indicator which takes values 1 or 0, according as we observe the event or not
because it is right censored. By the non-informative censoring assumption, we can
assume that each individual i is associated with two independent random variables:
event time Ti and censoring time Ci. If the observation for individual i is censored,
we have

Ci < Ti and τi = Ci, when δi = 0 , (13)

otherwise, we have

Ci > Ti and τi = Ti, when δi = 1 . (14)

Now, it is easy to see that τi = min (Ti, Ci), and

P (τi = t, δi = 0) = P (Ci = t, Ti > t) = P (Ci = t)P (Ti > t) , (15)

where the second equality holds because of the non-informative censoring assump-
tion. Similarly, we have

P (τi = t, δi = 1) = P (Ti = t, Ci > t) = P (Ti = t)P (Ci > t) . (16)

The likelihood function for the observations t1, · · · , tN then is

L =

N∏
i=1

P (τi = ti, δi)

=
N∏
i=1

(P (Ci = ti)P (Ti > ti))
1−δi (P (Ti = ti)P (Ci > ti))

δi

=

[
N∏
i=1

P (Ci = ti)
1−δi P (Ci > ti)

δi

][
N∏
i=1

P (Ti = ti)
δi P (Ti > ti)

1−δi

]
.

(17)

By the non-informative censoring assumption, term
[∏N

i=1 P (Ci = ti)
1−δi P (Ci > ti)

δi
]

does not involve parameters that are related to the distribution of event-time Ti.
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Therefore, to find the maximum likelihood estimator (MLE) of the model parame-
ters, it suffices to maximize the following function

L′ (β) =

N∏
i=1

P (Ti = ti)
δi P (Ti > ti)

1−δi , (18)

and
β̂MLE = ArgmaxL′ (β) . (19)

Term P (Ti = ti) in Equation (18) is given by Equation (11) (note that the con-
ditioning variable Xi, t′∈Z has been omitted in the current expressions), while term
P (Ti > ti) can be calculated as follows:

P (Ti > ti) = P (Yi, 0 = 0, Yi, 1 = 0, · · · , Yi, ti = 0) =

ti∏
s=0

(
1− g−1

(
βTXi, s

))
.

(20)

Then we can re-write Equation (18) as

L′ (β) =

N∏
i=1

[
g−1

(
βTXi, ti

) ti−1∏
s=0

(
1− g−1

(
βTXi, s

))]δi [ ti∏
s=0

(
1− g−1

(
βTXi, s

))]1−δi
.

(21)

Now, we can easily estimate β using Equation (19) if it is assumed constant over
time.

2.5 Prediction

To use the regression model to predict the time to a future event, we must know
the future values of time-dependent covariates in advance. However, generally we
will not know them and hence must predict them. We therefore assume that their
predictive distribution is available in order to make progress on this problem.

With that understanding and time origin 0, suppose the current time is tc ≥ 0.
For a new individual, one whose data were not used for parameter estimation and
whose event-time is unknown, suppose the event has not occurred up to tc. This
subsection presents a predictor for the event-time of this individual, denoted by T ∗,
with corresponding state indicator Y ∗t at time t ≥ 0.

To construct that predictor, we denote the covariate vector for this individual
evaluated at time t as X∗t . Similarly we write the “new individual version” of Xi, t
as X ∗t . Since we know the covariate values up to time tc, X ∗t may be decomposed
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into two vectors: one vector X ∗t, obs consists of covariates values evaluated from
time 0 to time tc, which we observed exactly, and the other, X ∗t, pred, consists of
predicted covariates values from tc + 1 to t, whose predictive distributions are
given by another model. Furthermore, denote the estimated parameter vector as
β̂, and the covariates and state indicator used to estimate β̂ as Xtrain and Y train

respectively.
If we knew the true value of β, Equation (11) would imply the predictive dis-

tribution of bloom time T ∗. In other words the probability of the event occurring
at time tc +K for any K ≥ 1 given X ∗t,obs, the observed covariate values for the
new individual, would be

Pβ
(
T ∗ = tc +K

∣∣X ∗tc+K, obs )
=

∫
Pβ
(
T ∗ = tc +K

∣∣X ∗tc+K, obs, X ∗tc+K, pred ) dP
(
X ∗tc+K, pred

)
=

∫
g−1

(
βTX ∗tc+K

)K−1∏
s=1

(
1− g−1

(
βTX ∗tc+s

))
dP
(
X ∗tc+K, pred

)
. (22)

We attach a subscript β on that probability function to emphasize we are using
the true parameter values. The problem is that we do not know the true β. So
we replace β by β̂ in Equation (22) to estimate the predictive distribution of the
event-time T ∗ as:

Pβ̂
(
T ∗ = tc +K

∣∣X ∗tc+K, obs )
=

∫
g−1

(
β̂TX ∗tc+K

)K−1∏
s=1

(
1− g−1

(
β̂TX ∗tc+s

))
dP
(
X ∗tc+K, pred

)
. (23)

If the predictive distribution of X ∗tc+K, pred is given by another model, the integral
in this equation may be calculated by the Monte Carlo (MC) algorithm. Generate a
sample of large size L from the distribution of X ∗tc+K, pred, and denote the sample
points as X ∗tc+K, pred (l) (l = 1, · · · , L). Then we may approximate the predictive
probabilities by

Pβ̂
(
T ∗ = tc +K|X ∗t,obs

)
≈ 1

L

L∑
l=1

Pβ̂
(
T ∗ = tc +K

∣∣X ∗tc+K, obs, X ∗tc+K, pred (l)) .
(24)

This “plug-in” approach for predictive distribution is generally criticized as
failing to take into account the uncertainty of the unknown parameter. But, if one
takes the Bayesian approach, the uncertainty of the unknown parameter is incorpo-
rated in a natural way. Suppose in an estimation procedure, one takes the Bayesian
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approach and gets P
(
β|Xtrain, Y train

)
, the posterior distribution of β. Then the

predictive distribution of T ∗ is:

P
(
T ∗ = tc +K

∣∣X ∗tc+K,obs, Xtrain, Y train
)

=

∫ ∫
P
(
T ∗ = tc +K

∣∣X ∗tc+K,obs, X ∗tc+K,pred, β, Xtrain, Y train
)

dP
(
β|Xtrain, Y train

)
dP
(
X ∗tc+K,pred

)
. (25)

One may expect that the Bayesian approach will in general be superior to the “plug-
in” approach in terms of prediction. However, Smith (1998) showed that for many
models, when assessed from the point of view of mean squared error of predictive
probabilities, the “plug-in” approach is better than the Bayesian approach in the
extreme tail of the distribution. It is not directly clear if this argument fits our
model, but the point here is that we think both approaches make sense.

3 Model for multiple events

3.1 Basic setup

Suppose there are N individuals, and S ≥ 1 different events may occur to each
individual. We make the following assumption:

Assumptions 2. For each individual, the S events have the following properties:

1. They occur in a fixed time order;

2. For an event to occur, all the events prior to it must have occurred.

3. For a fixed individual, no two different events occur at the same time point.

By these assumptions, we can label each event by the time order in which it
occurs, using the symbol s = 1, , · · · , S. When we talk about the occurrence of the
sth event, all the previous events from the 1st to the (s− 1)st must have occurred.

Now, for an individual i, there are S+1 states: no events have occurred, the first
event has occurred but the second hasn’t and so on to the last event has occurred,
i.e. all S events have occurred. We will denote these states by 0, 1, · · · , S,
respectively. For the ith individual, we will denote the random variable for the
time to the sth event as Ti, s, and denote its value as ti, s, s = 1, · · · , S. We
also create a state indicator Yi, t with Yi, t = l ∈ {0, 1, · · · , S} indicating that
the individual i is in the lth state. For the ith individual, starting from the time
origin 0, we consider discrete time points 0, 1, · · · , ti, 1, · · · , ti, 2, · · · , ti, S . The
time origin 0 satisfies 0 ≤ ti, 1. The value of Yi, t can only be l or l + 1 when
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Yi, t−1 = l ∈ {0, 1, · · · , S − 1}. Also, Yi, t = S for all t ≥ ti, S . Then, the
event-times {Ti, s} and state indicators {Yi, t} have the following relationship:

Yi, 0 = 0, · · · , Yi, ti, 1 = 1, Yi,( ti, 1+1) = 1, · · · , Yi, (ti, S−1) = S − 1,

Yi, ti, S = S, Yi, (ti, S+1) = S, · · · (26)

Furthermore, assume that at each discrete time point, we observe a covariate vector
Xi, t.

With the above notation, we will continue to let Yi, 0:t denote {Yi, 0 = yi, 0, · · · , Yi, t =
yi, t}, and Xi, t′∈Z denote {· · · Xi,−1 = xi,−1, Xi, 0 = xi, 0, Xi, 1 = xi, 1, · · · },
as we did above for a single event.

3.2 Probability model

For multiple progressive events that satisfy Assumptions 2 and each individual
i, the conditional probability of Yi, 0:t given Xi, t′∈Z still satisfies Equation (2).
However, the stochastic process {Yi, t : t = 0, 1, · · · } is no longer necessarily a
first-order Markov chain. Instead, the following result holds with l = 1, · · · , S−
1:

P
(
Yi, t = yi, t

∣∣Yi, 0:(t−1), Xi, t′∈Z
)

=


P
(
Yi, t = yi, t

∣∣Yi, (t−1) = 0, Xi, t′∈Z
)
, if 0 ≤ t ≤ ti, 1

P
(
Yi, t = yi, t

∣∣Yi, (t−1) = l, Ti, 1 = ti, 1, · · · , Ti, l = ti, l, Xi, t′∈Z
)
, if ti, l < t ≤ ti, (l+1)

1, if ti, S < t .

(27)

This result and Equation (2) implies that for each individual i,

P
(
Ti, 1 = ti, 1, Ti, 2 = ti, 2, · · · , Ti, S = ti, S

∣∣Xi, t′∈Z
)

=

P
(
Yi, ti, 1 = 1

∣∣∣Yi, (ti, 1−1) = 0, Xi, t′∈Z

) ti, 1−1∏
t=0

P
(
Yi, t = 0

∣∣Yi, (t−1) = 0, Xi, t′∈Z
) ·

{
S−1∏
l=1

[
P
(
Yi, ti, (l+1)

= l + 1
∣∣∣Yi, (ti, (l+1)−1) = l, Ti, 1 = ti, 1, · · · , Ti, l = ti, l, Xi, t′∈Z

)
·

ti, (l+1)−1∏
t=ti, l+1

P
(
Yi, t = l

∣∣Yi, (t−1) = l, Ti, 1 = ti, 1, · · · , Ti, l = ti, l, Xi, t′∈Z
) ]}

.

(28)
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With l = 0, 1, · · · , S − 1 we write

Pi, t (l) ≡
{

P
(
Yi, t = 1

∣∣Yi, (t−1) = 0, Xi, t′∈Z
)
, if l = 0

P
(
Yi, t = l + 1

∣∣Yi, (t−1) = l, Ti, 1 = ti, 1, · · · , Ti, l = ti, l, Xi, t′∈Z
)
, if l > 0.

(29)
Since conditional on Yi, (t−1) = l, Yi, t can only take values l or l + 1, once we get
a model for Pi, t (l) for l = 0, · · · , S − 1, we can model every term in Equation
(28).

Compared with the expression of P
(
Ti = ti

∣∣Xi, t′∈Z
)

for a single event (Equa-
tion (6)), Equation (28) is much more complicated. In the single event case, the
Markov property implies that, to model P

(
Ti = ti

∣∣Xi, t′∈Z
)

for each individual i,
it suffices to model the conditional probability P

(
Yi, t = yi, t

∣∣Yi, (t−1) = 0, Xi, t
)
,

which is a function of only t and Xi, t. However, now we need to model Pi, t (l)
for l = 0, · · · , S − 1, which is a function of not only t and Xi, t′∈Z, but also
of ti, 1, · · · , ti, l, and event state l. To simplify this probability model, We need
to make extra assumptions on the dependences among different events. A simple
way is to assume that {Yi, t : t = 0, 1, · · · } is a Markov chain, and then we can
proceed just like the case of single event. However, this assumption may be too
restrictive in many cases. Below, we will provide an alternative approach based on
other assumptions.

3.3 Regression model

Assume as above that Yi, t only depends on covariate values evaluated at a finite
number of time points, Xi, t. All the Xi, t′∈Z terms in Equation (29) and on the
RHS of Equation (28) can then be replaced by Xi, t. Also, we write {Yi, 0 =
yi, 0, · · · , Yi, t = yi, t}, t = 0, 1, · · · , as Yi, 0:t.

In the Equation (29) for Pi, t (l), Ti, 1, · · · , Ti, l, l = 1, · · · , S − 1 and
covariate vector Xi, t are all conditioning variables. Let us treat ti, 1, · · · , ti, l as
time-dependent covariates, and assume an explicit form (with unknown parame-
ters) for Pi, t (l) as a function of ti, 1, · · · , ti, l and Xi, t.

For example, let g : (0, 1) → (−∞,∞) be a monotonic link function, and
assume g (Pi, t (l)) is a linear function or a polynomial of ti, 1, · · · , ti, l and Xi, t.
For different l = 0, · · · , S − 1, the numbers of conditioning event-times in the
expression of Pi, t (l) are different. We use a trick to make the number of covariates
constant over time so that our mathematical expressions can be simply formulated.
For each individual i, we define the following time dependent covariates:

T ′i, l (t) =

{
0, if t < ti, l
ti, l, if t ≥ ti, l

, for l = 1, · · · , S − 1 . (30)
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Now for every l = 0, · · · , S − 1, Pi, t (l) is a function of T ′i, 1, · · · , T ′i, (S−1),
Xi, t, l and t. If we assume g (Pi, t (l)) is a linear function of T ′i, 1, · · · , T ′i, (S−1)
and Xi, t, we can define a covariate vector

Zi, t ≡
(
X Ti, t, T ′i, 1 (t) , · · · , T ′i, S−1 (t)

)T
. (31)

Similarly, if we assume g (Pi, t (l)) to be a polynomial function of them, we can
define Zi, t as a vector which consists of the terms of the polynomial. Under both
assumptions, we can write

g (Pi, t (l)) = βTt, lZi, t, for l = 0, · · · , S − 1 , (32)

where βt, l is a parameter vector that varies with time t and event state l but remains
the same across different individuals. In many situations, we may reasonably as-
sume βt, l is constant over time. Then it is a function of only l, and we will write it
as βl.

Now, if all N individuals are independent, and for each individual, we observe
all the S events (i.e. no censoring), then the likelihood function is

L (βl) =
N∏
i=1

P
(
Ti, 1 = ti, 1, Ti, 2 = ti, 2, · · · , Ti, S = ti, S

∣∣Xi, t′∈Z
)

=

N∏
i=1

{
g−1

(
βT0 Zi, t

) ti, 1−1∏
t=0

(
1− g−1

(
βT0 Zi, t

))
·

S−1∏
l=1

[
g−1

(
βTl Zi, t

) ti, (l+1)−1∏
t=ti, l+1

(
1− g−1

(
βTl Zi, t

)) ]}
(33)

In the above model, we are making an explicit assumption on the conditional dis-
tribution of Yi,t given all the previous events times. By successive conditioning, we
actually are implicitly making an assumption about the joint distribution of all the
S event-times Ti, 1, · · · , Ti, S (see Equation (28)). Sometimes, this assumption
may be not easy to verify. On the other hand, even if βl is constant over l, there are
S − 1 more covariates than the single event case. When S is large compared to N ,
the estimates of parameters will have large standard errors.

3.4 Estimation and prediction

We consider the model defined by Equation (30) – (32). When there is no cen-
soring, the likelihood function is given by Equation (33). We now turn to the

13



case where the responses are non-informatively right censored. First, we may as-
sume Ti, 0 = 0. Note that we have assumed Ti, l 6= Ti, l′ for l 6= l′ and l, l′ =
1, 2, · · · , S in Section 3.1. However, it is possible that Ti, 0 = 0 = Ti, 1. For
each individual i, we observe several times, the last one being the event-time for
the last event or censored time, and the previous times as the event-times prior to
the last observation. If the last observed time is the time to the last event, there is
no censoring; otherwise the observation is right censored.

Denote the last observed time by the random variable τi and its value by ti,
where the censoring time is generated by a random variable Ci. Suppose for each
individual i, prior to the last observed time ti, we observe Ki ∈ {0, 1, . . . , S}
events. Without censoring Ki = S − 1, τi = ti = Ti, S and Ci > Ti, S ; otherwise,
τi = ti = Ci and ti,Ki ≤ Ci < Ti,Ki+1. Just as before, we define a censoring
indicator δi, which takes values 0 or 1 according as the last observation is censored
or not. Then we can easily show that, under the non-informative right censoring
assumption, the MLE equals the parameter value that maximizes the following
function,

L′ (βl) =

N∏
i=1

{
P
(
Ti, 1 = ti, 1, · · · , Ti,Ki = ti,Ki , Ti,Ki+1 = ti

∣∣Xi, t′∈Z
)δi ·

P
(
Ti, 1 = ti, 1, · · · , Ti,Ki = ti,Ki , Ti,Ki+1 > ti

∣∣Xi, t′∈Z
)1−δi } .

(34)

The first factor on the RHS of the above equation is 1 when δi = 0, and when
δi = 1, it is given by Equation (28). When δi = 1, the second factor is 1 and when
δi = 0, it is

P
(
Ti, 1 = ti, 1, · · · , Ti,Ki = ti,Ki , Ti,Ki+1 > ti

∣∣Xi, t′∈Z
)

=

Ki−1∏
l=0

[
P
(
Yi, ti, (l+1)

= l + 1
∣∣∣Yi, (ti, (l+1)−1) = l, Ti, 1 = ti, 1, · · · , Ti, l = ti, l, Xi, t′∈Z

)
·

ti, (l+1)−1∏
t=ti, l+1

P
(
Yi, t = l

∣∣Yi, (t−1) = l, Ti, 1 = ti, 1, · · · , Ti, l = ti, l, Xi, t′∈Z
) ]
·

ti∏
t=ti,Ki

+1

P
(
Yi, t = Ki

∣∣Yi, (t−1) = Ki, Ti, 1 = ti, 1, · · · , Ti, l = ti,Ki , Xi, t′∈Z
)
·

P
(
Yi, 0 = 0

∣∣Xi, t′∈Z
)
. (35)

Once model parameters are estimated, the prediction procedure is not very dif-
ferent from the case of a single event. We only note here that it will be compu-
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tationally challenging to predict all the future events for a new individual at the
same time. Instead, we focus on the time for the next event conditioned on known
previous event-times.

4 Example

Here, we briefly show an application of our model to a single phenological event –
blooming of pear trees.

4.1 Data and objectives

Representative bloom dates of pear trees in Summerland of British Columbia,
Canada, between 1937 and 1964 were recorded. In each year, a pear tree blooms
at most once, and the bloom date is counted as the number of days from the first
day of a year to a representative bloom date of all the pear trees in the area under
consideration in that year. Note that the time origin (t0) here is set to January 1st

of each year. Daily maximum and minimum temperatures in the same area in the
corresponding years are also collected. It is well known in the agricultural sci-
ence community that the timing of a bloom event is closely related to a quantity
“AGDD” – the accumulation (cumulative sum) of the so-called growing degree
days (GDD) defined by

AGDD (t) =

t∑
k=t0

GDD (k) , (36)

where t0 is the time origin, t is the current time (discrete; on daily scale), and
GDD is defined as

GDD (k) =

{
Tmin(k)+Tmax(k)

2 − Tbase if Tmin(k)+Tmax(k)
2 > Tbase

0 otherwise
, (37)

where k is discrete time with the unit of day, Tmin (k) and Tmax (k) are daily mini-
mum and maximum temperatures, and Tbase is a thresholding constant temperature
which is unknown. Note that (1) AGDD is a function of time; (2) Tbase is an un-
known parameter; (3) AGDD is not a continuous function of Tbase. The objective
of this data analysis is to predict timings of future blooming events and to estimate
Tbase.

4.2 Estimation

Exploratory analysis suggests that the auto-correlation of the bloom dates over
years are negligible. We may therefore assume that these bloom dates on different
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years are independent realizations from the same population. We apply the regres-
sion model for single progressive event described in section 2.3 to the dataset, using
the logit function as link function. Note that years now play the role of “individ-
uals”. We assume in any given year, that on any day, the probability of blooming
is only related to AGDD evaluated at the current time, i.e. that the vector Xi, t
contains an intercept and the AGDD value on the current day. This model then
contains three unknown parameters: the intercept, the coefficient for AGDD eval-
uated on the current day, and Tbase. The MLEs of them are: β̂intercept = −22.27,
β̂AGDD = 0.07 and β̂Tbase = 2.97. A question about these estimators is whether
they are consistent. Wald’s (1949) famous sufficient conditions for the consistency
of MLE requires the likelihood function to be a smooth function of the parameters.
This is not satisfied in our model because of the presence of Tbase, but we were not
able to address this issue through theoretical analysis.

Instead we explored the issue of consistency through a simulation study. More
precisely, we generated 1000 data pairs of bloom dates and daily average temper-
atures of size 30 years, 80 years, 150 years, and 400 years respectively. We then
applied our model to these datasets and calculated the MLE of each parameter. For
each sample size and parameter, we used the average of 1000 values of the MLE to
estimate the mean of the MLE, and their sample variance to estimate the variance
of the MLE. We found that estimated means of the MLEs get closer to the true pa-
rameter values as the sample size increase from 30 to 400. Moreover, the estimated
variances of the MLEs decreases as the sample size increases. This suggests the
MLEs are consistent and gave us confidence in the value of the estimators.

On the other hand, rather than to rely on the validity of asymptotic theory to
estimate the uncertainties associated with the MLEs, we used bootstrap confidence
intervals. However, the complexity of our model makes it unclear whether the
bootstrap estimates of the quantiles of the MLEs converge to the true quantiles. We
again performed a simulation study to assess that convergence, the details being
similar to those above and hence omitted for brevity. The results show that the
lengths of quantile-based 95% bootstrap intervals of the MLEs get very close to
those of the estimated 95% intervals of the MLEs obtained using the simulated
data when the sample size increases. The bootstrap intervals are slightly biased
though (the ends of the bootstrap interval are always slightly smaller or bigger than
the estimated interval using the simulated data). Overall the results backup use
of the bootstrap intervals to reflect uncertainties in the MLEs. The quantile based
95% bootstrap confidence intervals are, for the intercept, (-37.95, -16.62), for the
coefficient for AGDD (t), (0.055, 0.122), and for Tbase, (1.93, 3.81). We see that
the both the intercept and the coefficient for AGDD (t) differ significantly from 0
at the 5% level.
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4.3 Prediction

To use (23) or (24) to predict the representative bloom date of the pear trees of
the next year in Summerland, we need to predict the daily average temperature
((Tmin (t) + Tmax (t)) /2) of that year first. After removing seasonality in daily
historical temperature data, We fit an ARIMA model to the residual historical
temperature. Note the deseasonalized historical temperature series contain weak
periodic signals with longer periods, and therefore is not strictly stationary. Never-
theless,ARIMAmay still be used as a a reasonable approximation. By comparing
Bayesian information criterion (BIC) for ARIMA models of different orders, we
settled on ARIMA (3, 0, 1) as our final model for generating future temperatures
in any given growing season.

We now turn to prediction. At the end of the current year, we generate 1000
series of the daily average temperatures of the whole next year using the fitted
ARIMA (3, 0, 1) model. We then use (24) to calculate the probability of the
blooming event happening on each successive day of the following year. This way
we get a (discrete) predictive distribution for the timing of that blooming event.

So suppose that we are on the end of the first day of the new year with its
observed average daily temperature. We then apply the ARIMA model to gen-
erate 1000 temperature series starting from the second day of the new year. As
above, we can use (24) to get another predictive distribution for the timing of the
blooming event. We repeat this procedure on each successive day, until the true
bloom date, at which time prediction ceases. If the true bloom date is around day
129, we then get 129 successive predictive distributions. What we expect to see
are increasingly more accurate predictions as the days progress toward the bloom
date and more and more information about the daily averages temperatures come
to hand for that season. Growing confidence in that prediction would provide an
increasingly strong basis for management decisions.

To see if our expectations are realized, we performed a leave-one-out predic-
tion procedure – at every step, leave out one year of data for assessment and use
the remaining years for training the model to predict the bloom date in the left-out
year. For each left-out year, we follow the prediction scenario described above.
As a result we get 28 years (1937–1964) of assessments, with a total of 3523 pre-
dictive distributions, the average of the bloom dates for those years being about
day 126. For each of these predictions, we calculate the median of the predictive
distribution as a point prediction of the new bloom date. Along with that we calcu-
late a quantile-based 95% prediction interval (PI) for the new bloom date. With all
the 3523 predictive distributions, we then can estimate the root mean square error
(RMSE) and mean absolute error (MAE) of the prediction, as well as the coverage
probability of the 95% PI. The results are as follows: the RMSE is 5.65 days; the
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MAE is 4.36 days; the estimated coverage probability of the 95% PI is 99%; the
average length of the PIs is 30 days.

The coverage probability of the 95% PI is too high, plausibly because in the
ARIMA(3, 0, 1) model we have incorporated in the random noise term, the vari-
ability in the temperature series caused by deterministic periodic signals other than
seasonal variation. In any case, reducing the variance of the white noise in the
ARIMA(3, 0, 1) model by half of its estimated value yields improvement and
we get: the RMSE is 5.79 days, the MAE is 4.33 days, the estimated coverage
probability is about 94%, and the average length of the PIs is 21 days.

As noted above, we expected the prediction to become more accurate as time
approaches the real bloom date. To check this, we calculated the MAE and the
average length of the 95% PIs each day over the years of interest, beginning 90
days prior to the bloom date (call it “lag -90”) to 1 day prior to the bloom date
(“lag -1”). The results for the MAE and the average length of the 95% PIs are
shown in Figure 1 and 2 respectively. We see that the MAE does become smaller
and the average length of the 95% PIs, shorter as the actual bloom date approaches
in line with our expectations. In fact, by the time we reach one month prior to the
bloom date, the prediction has become quite accurate (the MAE is about 3.5 days).

The above results for prediction are influenced by two models: one is our re-
gression model for a single progressive event, the other is a crude ARIMA model
for daily average temperature. To check the pure performance of our regression
model, we performed the leave-one-out procedure again. But this time, we assume
all the future daily average temperatures are known. Note that, in this case, we
cannot give a sensible estimate for the coverage probability of the 95% PIs since
for each test year, we can only get one predictive distribution. The results are very
good: the RMSE is 2.64 days, the MAE is 1.89 days, and the average length of
the 95% PIs is 9.21 days. Although this is no longer a real prediction, these re-
sults tend to validate our regression model for the blooming event. This finding
also demonstrates the importance of modeling the covariate series accurately and
points to the need of improving the temperature forecasting models.

5 Concluding Remarks

The regression models presented in this paper aim at the prediction of the times of
progressive events when time-dependent covariates that are known up to discrete
time points are present. Instead of directly modeling the hazard function, we model
the process of the binary state indicators. This way, all the time-dependent infor-
mation can be easily incorporated by considering a model for a binary variable at
each time point. When there is only a single event, the process of the state indica-
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Figure 1: Change of the MAE with the change of lag. The point prediction becomes
more accurate when time approaches the bloom date.

tors is a Markov chain. But when there are multiple events, that process does not
necessarily have a Markovian structure. In this case, some additional assumptions
are needed for simplifying the probability model and circumventing computation
challenges that would otherwise arise. Application of our approach to bloom date
data has shown that the prediction using it can be quite accurate. Although orig-
inally designed for phenological data, these models should be useful for a broad
range of survival data.

A restrictive distributional assumption in our models is that the process of the
state indicator needs to be time-homogeneous. One way to relax this assumption
might be to allow the model parameters to change with time. Another restrictive
assumption is that in the multiple events case, we require that no two events can
happen at the same time point. However, in practice, this may occur, especially
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Figure 2: Change of the average length of 95% PIs with the change of lag. The
predictive uncertainty decreases when time approaches the bloom date.

when the discrete time scale is coarse. We will need some further work to remove
this restriction.
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