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Abstract

We study how information perturbations can destabilize two-sided matching mar-

kets. In our model, agents arrive on the market over two periods, while agents in the

first period do not know the types of those arriving later. Agents already present in

the market may match early or wait for the small group of new entrants. Despite the

lack of discounting or risk aversion, this perturbation creates incentives to match early

and leave the market before the new agents arrive. These incentives do not disappear

as the market gets large. Moreover, we identify a new adverse phenomenon in this set-

ting: as markets get large the probability of chaos – where no early matching scheme

for existing agents is robust to pairwise deviations – approaches 1. These results are

independent of the distribution of agents’ types and robust to asymmetries between

the two sides of the market. Our findings thus suggest that matching markets are

extremely sensitive to institutional details and uncertainty.
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1 Introduction

Many two sided labor matching markets suffer from unraveling, with matching decisions

taken earlier than efficient. Centralized and decentralized matching mechanisms, designed

to coordinate matching times among different agents and prevent unraveling, often collapse.1

The economic literature suggests several particular forces that can drive unraveling: risk

aversion on the side of agents, similar preferences, exploding offers or unbalanced supply and

demand. But, does unraveling arise in simpler markets perturbed only by a small uncertainty

facing agents? Can markets fail even when they grow large and this uncertainty becomes

trivial?

To explore these issues, we study in this paper an information perturbation of a simple

matching market. In this market, n men and women arrive on the market in the first

period, having types drawn independently according to some distribution. The types of men

reflect the fully-aligned preferences of women over possible matches, and vice versa. In this

environment, a fully assortative match is the only possible stable outcome. We perturb this

simple setup by introducing a second period in which k new agents will arrive on the market

on each side, with types drawn from the same distribution. We assume that in the second

period an assortative match will take place, perhaps as the result of a centralized matching

mechanism. Anticipating the arrival of the new agents, men and women in the first period

may match and leave the market permanently. However, agents do not have an obvious

incentive to match early – we assume no discounting or risk aversion by agents.

We first show that in small markets two adverse phenomena arise. The first is unraveling

– given that all other agents wait for the second period, there may be a positive probability

that some pairs of agents will want to match early and leave the market. In our setting,

this happens when agents on both sides of the market are positioned high relative to their

surroundings, and thus for these agents waiting for new entrants has a larger downside than

upside.

The second phenomenon is chaos. We show that in some realizations there exists no

possible pure strategy early matching scheme, where some couples leave the market early

while some stay for the second period, which is robust to pairwise deviations. That is, for

every possible partial pairing of couples in the first period, given that all paired couples leave

the market in the first period while all other agents remain for the second period, there exists

either: (1) an agent who is part of a pairing but would rather break of his engagement and

stay for the second period or (2) a pair of agents who are unpaired but would rather leave

1See for example Roth and Xing (1994) for many examples of markets suffering from unraveling and
collapse of centralized matching mechanisms.
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the market together. Chaos stems from the externalities which different couples impose on

one another in this perturbed market – in the second period lower ranked agents on one

side of the market provide insurance for higher ranked agents on the other side, while higher

ranked agents on one side of the market cap the upside for lower agents on the other side

from staying on the market. Since this definition also covers the empty partial pairing as a

special case, chaotic realizations are a subset of the ones displaying unraveling.

Our main result is that as initial markets grow thick, holding the size of the number of

entering agents fixed, chaotic realizations occur with a probability approaching one. This

result is robust to the specification of the distributions from which agents’ types are drawn,

asymmetries between the two sides of the market and different specification of the exact game

that takes place in the first period. Thus, this result implies that small uncertainties and

seemingly minor institutional details in matching markets should be of concern to the market

designer. In practice, phenomena like chaos are likely to destabilize matching markets over

time, especially centralized matching mechanisms. Moreover, thick markets do not mitigate,

and perhaps exacerbate these instability problems.

A second result answers the question of how strong unraveling forces are in this perturbed

market – that is, assuming that all other agents remain for the second period, how likely

are pairs of agents to prefer matching early? We prove that as markets grow thick, while

the number of arriving agents is fixed, each couple in the interior of the distribution has a

probability approaching 25% to prefer to match early, and this is regardless of the distribu-

tions of types on the two sides of the market. Moreover, we show that with a probability

approaching 1, a positive share of agents simultaneously prefers to unravel. This suggests

that in markets perturbed by uncertainties, having all agents wait for a central match maybe

“very far” from an equilibrium, especially if the market is large.

Unraveling in matching markets has previously been linked in the literature to several

different causes. Li and Rosen (1998), Suen (2000) and Li and Suen (2000) study unraveling

in environments where matching early acts as insurance for risk averse workers. Halaburda

(2009) shows that similar preferences by firms can increase the probability of unraveling in

labor markets. Although our setting features identical preferences across agents, which in

Halaburda’s paper are the most conductive for unraveling, our setting is different as in it all

agents who are on the market have full information regarding their type and the preferences

of all other agents. Thus, each agent can rather precisely assess his own chances on the

market in future periods.

Roth and Xing (1994) discuss instability in centralized matching mechanisms and sug-

gest the presence of market power as a possible reason for unraveling. Damiano et al. (2005)
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explore search costs as a reason for unraveling. Niederle and Roth (2009) show in a the-

oretical and an experimental setting that exploding offers and binding contracts promote

early contracting in markets. In a recent paper, Fainmesser (2010) shows that the local

micro-structure of social networks through which information about agents’ type flows, can

influence whether a matching market will unravel or not. Niedrele et al. (2010) discuss the

role, theoretically and experimentally, of the balance between demand and supply in unrav-

eling.

The remainder of the paper is organized as follows: in Section 2 we present the basic

model and discuss its generality; Section 3 shows how chaos and unraveling arise in small

markets and discusses the basic forces driving these phenomena; Section 4 contains the main

theorem proving the prevalence of chaos in large, perturbed markets and outlines a roadmap

for the proof; Section 5 presents the main theorem on unraveling incentives for agents in

perturbed markets and Section 6 concludes.

2 The Basic Model

We study a simple two-sided matching market in which men and women arrive on the market

and are matched across two periods.

Players In the first period n men and n women are present on each side of the market.

After the first period is over, k new men and k new women arrive on the market. The new

arrivals can be interpreted as agents whose types are unknown by others in the first period.

In some applications it can also be interpreted literally.

Both men and women have types. Men have types independently and identically drawn

(i.i.d.) from some distribution F on the interval [m,m] which has density f ; and the women

have types drawn i.i.d. from some distribution G on the interval [w,w] which has density g.

In the first period, the types of all men and women present in the market are known to all

agents.

For each 1 ≤ i ≤ n we denote by mi the i-th lowest type among the n men present in

the first period. Likewise, women’s types in the first period are denoted by wn ≥ . . . ≥ w1.

For most of this paper, we focus on the case when n is large in comparison to k, i.e.,

there is only a small amount of uncertainty in period 1.

Preferences Both men and women have utility functions which are a linear function of

the type of the agent they are matched with, and some function of their own type. Thus,
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men and women have fully aligned preferences: men’s types fully reflect every women’s

preferences over men, and vice versa.

We assume that agents are risk neutral and have no discounting between the two periods.

Game Order In the first period men and women may form pairs and permanently leave

the market, gaining utility from their match partner. We intentionally do not explicitly

model the exact game played in this period but only require, in the spirit of the stability

literature in matching, that pairs of agents can make jointly deviate. The purpose is to have

the result be as general as possible, as we discuss in the next item.

In the second period all players who are present — including players who stayed on the

market in the first period and the new entrants — are assortatively matched, i.e., the highest

type man is matched to the highest type woman, the second highest to the second highest, etc.

Given the aligned preferences structure, assortative matching is the unique stable outcome

in the second period. Furthermore, assortative matching is the unique efficient outcome if

utility functions admit complementarities in the types of both agents involved in a match.

Comments on Generality The setting we present is general across several dimensions:

• Game-play. We intentionally do no model the game play in the first period. All

we require is that pairs of agents, of the same ranking or otherwise, have the ability

to match and leave the market in the first period. This can be manifested through

different offer-response mechanisms, which can be sequential, one-shot etc.

• Information. The assumption on common-knowledge of all types present in the first-

period market is stronger than we need. For our unraveling results, it is enough that

agents know their own type, and the types of agents on the other side of the market

within a distance of k of their own rank. In a market with n = 20 and k = 2 for example,

the man ranked 13 needs only to know the types of women of ranks 11 through 15.

If n is large relative to k, this implies that agents need only “local” knowledge of the

market.

For our chaos result (which we require that k = 1), what we actually need is that

agents know their own type, and know, among those who stay to the second period, the

types of the two agents on the other side of the market closest to their own rank. Since

the decision of whether to match early or to stay for the second period is endogenous,

it’s convenient for us to assume that every agent knows all other agents’ type.
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However, as we will show in our result, it is highly unlikely that a large number of

consecutively ranked agents would simultaneously decide to match early. Suppose

that a man m knows the types of all women within a distance of C of his own rank,

where C is a large constant. Then with very high probability that there will be two

women, one above and one below m’s rank, who are among the 2C + 1 women that

m know and who decide to stay to the second period. Therefore, the information

assumption for our chaos result will hold with very high probability if agents know the

types of agents on the other side of the market within a distance of C of their own

rank, where C is a large constant that does not grow with n.

• Preferences. Utility functions are unrestricted as long as they are a linear function

of the type with which agents are matched. This can captures markets with comple-

mentarities in types and ones with substitutes.

• Distributions Our results depend only on regularity conditions on F and G, but are

otherwise distribution-free. This generality allows the model do describe, for example,

asymmetric rates of entry into the market from the two sides. This could be modeled

by having one of the distributions have an very high density — simulating an atom —

near the lowest type of agent.

This generality serves to show that the adverse effects we identify due to informational

perturbations are relevant to many settings, and are fundamental to the structure of matching

markets.

3 Chaos and Unraveling in Small Markets

We start by examining agents’ behavior in small markets. We are particularly interested

in cases where having all agents wait to be matched in the second period is not robust

to pairwise deviations agents may make in the first period. Any deviation from the full

assortative match may lead to inefficient outcomes, and moreover may cause any institutional

matching mechanism which exist in the market to collapse (cite someone).

Agents may prefer to leave the market early in the first period, but initially, it is not

entirely clear why unraveling should arise in our setting — agents have no inherent prefer-

ences for finding and early match and are not risk averse so do not mind the uncertainty

associated with waiting.

Consider the simplest possible environment in our setting, where n = k = 1, so in the

first period a single man and a single woman arrive on the market, and in the second period
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another pair will arrive. For simplicity, assume that agents’ types (for both the men and the

women) are distributed according to the uniform distribution on the unit interval [0, 1].

Regardless of the exact game form played in the first period, we can ask which pair-types

would prefer to leave the market early and match with each other rather than to wait for

the second pair to arrive and match assortatively.

A man of type m would prefer to leave the market in the first period with a woman of

type w if his expected match in the second period was lower than w. This future match can

fall into three cases:

1. If the both entrants are of higher type than the incumbents, or if both entrants are

of lower type than the incumbents, then the incumbents are matched in the second

period;

2. If the entrant man is of a higher type than m while the entrant woman is of lower

type than w, then the incumbent man is matched to the entrant woman, and gets a

match of quality lower than w. These are the realizations in which the man loses from

waiting.

3. If the entrant man if of a lower type than m while the entrant woman is of higher type

than w, then the incumbent man is matched to the entrant woman, and gets a match

of quality higher than w. These are the realizations in which the man gains by waiting.

Formally, the expected value of this match is given by:

(

mw + (1−m)(1− w)
)

w + (1−m)

∫ w

0

tdt+m

∫ 1

w

tdt

where the terms correspond to the cases above. Comparing this to w and simplifying, we

have that the man in the first period would strictly prefer to match early if and only if:

(1−m)w2 > m(1− w)2

Symmetrically, the condition for the first period woman to prefer an early match is given by:

(1− w)m2 > w(1−m)2

Therefore, pairs (m,w) which satisfy both of the above conditions would rather match

early and leave the market over staying for the bigger match in the last period. The set of

such pairs is non-empty, and is plotted in Figure 1.
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Figure 1: Unraveling in a small market. Types in the shaded area prefer to match early.

The figure reveals that a non negligible share of pairs — approximately 9.7% of pairs in

this example — prefer to match early, suggesting that unraveling is present as a phenomena

even in this simple setting.

Pairs that prefer an early match are of two notable characteristics: they are of similar type

and have relatively high types. Intuitively, pairs with similar types have a similar probability

of gaining or losing from waiting to the full match. However, since they are of high type

and hence the upside from waiting is smaller than the possible downside. Thus, these agents

experience an endogenous risk aversion, preferring to leave the market. Other pairs prefer

to stay — if the two types are not similar, the higher of the two knows that she/he can

expect with high probability a better draw in the second period, and thus prefers to stay.

Alternatively, if the two types are similar but both low, then both agents have a higher

upside than downside from waiting, since a good draw is expected to improve their match

by more than a bad one would.

Following this result, a natural question to ask is whether these forces are driven by the

small size of the market and disappear in a thick market, or whether they persist even as

the market becomes large. We rigorously explore this question in Section 5.

Unraveling however, is not the only adverse outcome that can emerge in small markets.

Consider now a second example: take n = 2, k = 1 and have agents’ types again be uniformly
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distributed on the unit interval. Specifically, consider the realization of types where:

m1 = w1 =
2

5
m2 = w2 =

3

5

What will agents do in equilibrium? First, consider the option of the top-ranked agents

staying in the market and waiting for the second period. If this is the case, let us look at

the incentives of the lower-ranked pair. Leaving the market together gives each of the two

a match of type 2/5. However, if one of them would choose to stay on the market, their

payoff given that the top-ranked pair indeed stays for the second period is 49/125,2 which

is smaller than 2/5. Thus, the bottom-ranked pair would rather leave the market together.

The intuition here is along the same lines as before — the presence of the top-ranked pair in

the second period caps the upside from staying for the bottom-ranked pair in this realization,

and thus they rather leave the market early.

If the bottom-ranked pair indeed matches early and leaves the market, then when consid-

ering the incentives of the top-ranked agents, we return to the first example discussed above,

with n = k = 1. As displayed in Figure 1, a pair with both agents of type 3/5 prefers to

match early and leave the marked. Thus, the top-ranked pair would prefer to match early.

If indeed the top-ranked pair contracts early and leaves the market, when considering

the incentives of the lower-ranked pair we are again back to the first example. Returning to

Figure 1, we note that a pair of agents both with type 2/5 would not want to match early.

Finally, we consider the bottom-ranked pair staying on the market for the second period.

If this is the case, the top ranked agents may get 3/5 by contracting early, but have an

expected match of 76/125,3 a higher payoff, in the second period. Intuitively, the bottom-

ranked pair’s presence in the second period market bounds the downside from staying on

the market for the top-ranked agents. Thus, if the bottom-ranked pair stays on the market,

the top-ranked pair would tend to stay as well.

But now we have come full circle — as displayed in Figure 2, each of choices described

by the two pairs implies another by the other pair, but none of these choices is consistent

with a corresponding choice by the other pair.4

2This payoff comes from the following calculation: the agent gets 2/5 with probability (2/5)2 + (3/5)2

(no change in his/her relative ranking in the second period); gets 1/5 with probability (3/5)(2/5) (matched
with the new agent whose type is between 0 and 2/5); gets 1/2 with probability (2/5)(1/5) (matched with
the new agent whose type is between 2/5 and 3/5); gets 3/5 with probability (2/5)2 (matched with the top
agent of the first period). Taking expectation over all possible payoffs gives 49/125.

3This is calculated in the same fashion as in footnote 2.
4To complete the argument, one also has to consider possible early matching by cross matches of top-

ranked and lower-ranked agents. It is easy to check that in this example these are never profitable to the
top ranked agent.
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Figure 2: Chaos in a Small Market

We will call such a realization chaotic, as it admits no preordained, partial early matching

which is immune to pairwise deviations. In such a realization, not only will some agents not

wait for the (perhaps efficient) second period match, but moreover, in any equilibrium agents

will be using mixed strategies when deciding on matchings. This is clearly an undesirable

outcome for a market designer in charge of a matching mechanism.

Chaos originates in this example directly from the informational perturbation represented

by the incoming agents. Because of the uncertainty agents are faced with in the second stage,

ranked couples impose externalities on each other. In this example, the top-ranked couple

imposes a negative externality on the bottom-ranked couple if it decides to stay for the

second period, and does so by capping the upside from staying for the lower-ranked couple.

On the other hand, the lower-ranked couple imposes a positive externality on the top-ranked

couple by staying in the market — they provide insurance against very negative outcome for

the top-ranked types.

The existence of chaotic realizations is perhaps surprising, but in this example, they

are rare — only about %1 of realizations are chaotic. We again ask what happens when

markets grow large — does thickness smooth out markets to prevent chaotic outcomes,

or do they become common? This question is particularly interesting if the informational

perturbation becomes small relative to the size of the market. One might may expect that

when uncertainty becomes minor, these perverse cycles of externalities may disappear. We

turn to answer this question directly in the next section.
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4 Chaos

In this section we answer the question posed in the previous section and show that a seemingly

minor informational perturbation in the form of one pair of arriving players5 in the second

period has a large rippling effect on the stability of the matching market, especially when

the market is thick. We do this explicitly by studying the prevalence of chaotic realizations.

To define these formally, we first define the notion of an early matching.

Definition 1. An early matching is a function µ : {1, . . . , n} → {1, . . . , n, ∅}, satisfying

µ(i) = µ(j) 6= ∅ ⇒ i = j, which is a proposed unraveling scheme for the first period.

According to µ:

1. If µ(i) 6= ∅, then the man of rank i is designated to leave the market early with the

woman of rank µ(i);

2. If µ(i) = ∅, then the man of rank i is designated to stay in the market to be matched

in the second period.

3. If i 6∈ {µ(1), . . . , µ(n)}, then woman of rank i is also designated to stay in the market

to be matched in the second period.

For every particular realization, we are interested in early matchings which players will

not want to deviate from. Conditional on the realization, such early matchings may serve as

schemes for possible equilibria of the specific game played in the first period.

Formally, let C = {(mi, wi)}1≤i≤n be an rank-ordered list of types of men and women

present in the first period: mn ≥ mn−1 ≥ . . . ≥ m1 and wn ≥ wn−1 ≥ . . . ≥ w1. C fully

expresses, up to a permutation, the realization of types in the population. Now, fix an early

matching µ. Let C(µ) be an ordered list of men and women in C who wait for the second

period, according to µ. For a man of rank i such that µ(i) 6= ∅, let C(µ, i) be the ordered

list of men and women in C who wait for the second period and the pair (mi, wµ(i)). The

set C(µ, i) would exactly represent the types in the second period if either man i or woman

µ(i) were to deviate from the unraveling pattern described by the early matching µ.

For a rank-ordered list L of pairs of types, and a type of manm included in L, let U(m,L)

be the expected match of a man of type m staying in the market for the second period, when

the population of first-period types also staying is expressed by the list L. Similarly, define

V (w,L) to be the expected match of a woman of type w when she is part of the list L which

stays on the market for the second period.

5We maintain the assumption of k = 1 throughout this section.
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Formally, suppose that m and w are of the same rank in L, and that w+ and w− are the

women ranked just above w and just below w in L, respectively. Since only one new pair of

man and woman arrives in the second period (k = 1), we then have:

U(m,L) =

[

F (m)G(w) + (1− F (m))(1−G(w))

]

w (1)

+ (1− F (m))

(

w−G(w−) +

∫ w

w−

xg(x) dx

)

+ F (m)

(

w+(1−G(w+)) +

∫ w+

w

xg(x) dx

)

,

where the first term represents the events where m and w are matched in the second period,

the second term represents events where m is match with a worse type than w, and the last

term represents event where m is match with a higher type than w. Likewise, suppose that

m+ and m− are the men ranked just above and below m in L, we have:

V (w,L) =

[

G(w)F (m) + (1−G(w))(1− F (m))

]

m (2)

+ (1−G(w))

(

m−F (m−) +

∫ m

m−

xf(x) dx

)

+ G(w)

(

m+(1− F (m+)) +

∫ m+

m

xf(x) dx

)

,

We can now define the notion of a pairwise-stable early matching.

Definition 2. Given an ordered list of first-period types C = {(mi, wi)}1≤i≤n, an early

matching µ is pairwise stable if:

1. For any couple (mi, wµ(i)) who matches early (µ(i) 6= ∅), we have U(mi, C(µ, i)) < wµ(i)

and V (wµ(i), C(µ, i)) < mi.

2. For any man and woman (mi, wj) who both stay for the second period (µ(i) = ∅ and

j 6∈ {µ(1), . . . , µ(n)}), we have either U(mi, C(µ)) ≥ wj or V (wj, C(µ)) ≥ mi.

The definition requires that a pairwise stable early matching µ for a realization C would

specify a “stable” unraveling — (1) every member of a pair which is designated by µ to

match early would prefer the designated match over staying for the second period, and (2)

every pair of agents designated to stay on the market by µ does not want to deviate and
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match early. These preferences are formed assuming that all other players act according to

µ.

As displayed in Section 3, stable matching functions may not exist for some realizations

due to the externalities pairs’ decisions impose on other pairs. We now formally define a

chaotic realization to be one which admits no pairwise-stable early matching.

Surprisingly, as markets grow thick and the impact of the informational perturbation in

terms of utility becomes small, we find that chaotic realizations happen with a probability

approaching one.

Theorem 1. Suppose that (i) there exists p ∈ (0, 1) such that the densities f and g are

positive and continuous at x and y, respectively, where F (x) = G(y) = p and (ii) there

exist positive and finite numbers a, a such that a ≤ f(m), g(w) ≤ a for all m ∈ [m, x] and

w ∈ [w, y]. Then, the probability of a chaotic realization in the first period tends to 1 as n

tends to infinity.

We remark that only assumption (i) is crucial: (ii) is made only for convenience, and the

theorem should continue to hold under a much weaker version of (ii).

The theorem says that when the market in the first period is sufficiently thick, then with

probability close to 1 any proposed unraveling arrangement (including no unraveling) will

be unstable: either a couple would have incentives to jointly deviate from waiting for the

second period by matching early, or an individual man or woman would have an incentive

to deviate from his/her early matching by staying for the second period.

We emphasize that it is the size of the market that is responsible for the magnitude of

the instability: for F = G = U [0, 1] and when n = 2, numerical integrations reveal that

the probability of realized types having a stable early matching is ≈ 0.99; when n = 3, the

probability becomes ≈ 0.97. As we have discussed in Section 3, players’ decision to stay or

to match early imposes externalities on each other. As the number of players increases, their

interdependent externalities become difficult to reconcile simultaneously, leading to chaos.

Without referring to the specific offer game played in the first period, this result im-

plies that a small uncertainty introduced into the matching market will result in dramatic

consequences. In applications, this would render institutional matching markets in the sec-

ond period highly unlikely to survive in the long term. In a setting with complementarities

between types, Theorem 1 also implies that inefficient outcomes are highly likely to occur.

The full proof of Theorem 1 is rather involved, but it is of value to outline the roadmap

of the proof and discuss the underlying idea below. Complete proofs can be found in the

Appendix.
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4.1 Roadmap to the Proof of Theorem 1

We first make an observation that is crucial to all of our analysis. Let L be the an ordered

list of agents who stay to the second period, m and w be the types of a pair of equally-ranked

agents, such that (m,w) ∈ L. Let w+ and w− be the women just above and below w in L.

Man m’s expected payoff from waiting for the second period, U(m,L), is given in equation

1. It is easy to use integration by parts to verify that m has strict incentive to match early

with the woman of type w, or U(m,L) < w, if and only if:

(1− F (m))

∫ w

w−

G(x) dx > F (m)

∫ w+

w

(1−G(x)) dx. (3)

The LHS of 3 can be interpreted as m’s weighted downside in the second period, while

the RHS is his weighted upside. Thus, m has incentive to match early with w if and only if

his weighted downside is bigger than his weighted upside in period 2.

Analogously, let m+ and m− be the men just above and below m in L. Then woman

w’s payoff in the second period is given by equation 2 (cf. Equation 2), and she has strict

incentive to match early with m if and only if:

(1−G(w))

∫ m

m−

F (x) dx > G(w)

∫ m+

m

(1− F (x)) dx. (4)

Step 1. Reducing to assortative early matching: The first step of the proof is to

convert any non-assortative, pairwise-stable early matching to an assortative, pairwise-stable

early matching. This is accomplished by two lemmas.

Lemma 1. Suppose that early matching µ is pairwise stable for a list of types. Then,

men and women who match early according µ must come in blocks; that is, let Im = {i ∈

{1, . . . , n} : µ(i) 6= ∅} be the set of ranks of men who match early, and Iw = {i ∈ {1, . . . , n} :

i 6∈ {µ(1), . . . , µ(n)}} the set of ranks of women who match early, then we have Im = Iw.

Proof. Suppose that Im 6= Iw. Let j be the maximum element of the non-empty set Im \Iw∪

Iw \ Im. Without loss of generality suppose that j ∈ Im \ Iw, i.e., man of rank j is matched

early, but woman of rank j is not. Since j is the maximum element, man j must be matched

early to a woman ranked lower than j (µ(j) < j), because all women above j are either

“taken” (matched early with some man above rank j) or not matching early. However, man

of rank j cannot have incentive to match early with woman of rank µ(j), because by not

matching early with her she will still be available in the second period, while woman of rank

j is also available, and man of rank j can be “bumped” down at most one place by the new
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agents, so woman of rank µ(j) is his lower bound in the second period.

The above lemma guarantees that couples who do match early must be “trapped” between

men and women of the same ranking who stay for the second period. Therefore, we are

justified in using Equation 3 and 4 to examine agents’ incentive to match early.

Lemma 2. Suppose that for types m4 > m3 > m2 > m1 and w4 > w3 > w2 > w1, men m4

and m1 and woman w4 and w1 wait for the second period, while m3 and w2 have incentives

to match early with each other, and likewise for m2 and w3. Then, m3 and w3 also have

incentives to match early with each other, and likewise for m2 and w2.

Proof. By (3), we have

(1− F (m3))

∫ w2

w1

G(x) dx > F (m3)

∫ w4

w2

(1−G(x)) dx,

which implies that (by changing w2 to w3)

(1− F (m3))

∫ w3

w1

G(x) dx > F (m3)

∫ w4

w3

(1−G(x)) dx,

i.e., m3 has incentive to match early with w3, and that (by changing m3 to m2)

(1− F (m2))

∫ w2

w1

G(x) dx > F (m2)

∫ w4

w2

(1−G(x)) dx,

i.e., m2 has incentive to match early with w2.

Likewise, w3 has incentive to match early with m3, and w2 has incentive to match early

with m2.

Here is an intuitive story of why a pairwise-stable cross match (m2 − w3 and m3 − w2)

can be converted to a pairwise-stable assortative match (m2 − w2, m3 − w3) in the above

lemma: if woman w3 is happy with m2 (which is true, since w3−m2 is pairwise stable), then

of course she should be happy with a better man m3. And likewise man m3 must be happy

with woman w3. The trickier part is the lower couple: why should man m2 be happy with

woman w2? The answer is that since man m3, who is in strictly better position than man

m2, is happy with woman w2 (since m3−w2 is pairwise stable), then the lower man m2 must

be happy with woman w2 as well. Similarly for woman w2 with man m2.

Converting a non-assortative, pairwise-stable early matching (call it µ1) to an assortative,

pairwise-stable early matching is now transparent: among men and women who match early
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according to µ1, find the lowest cross match, and “uncross” the match as it is done in

Lemma 2, and leave all other early matches in µ1 unchanged. Call the resulting early

matching µ2. By Lemma 2, the early matching µ2 must be pairwise stable. Clearly, µ2 has

exactly one less cross match than µ1. Now repeated the same procedure on µ2. Since each

time we get one less cross match while preserving pairwise stability, the procedure eventually

terminates with an assortative early matching that is pairwise stable.

For concreteness, we illustrate this procedure in Figure 3.
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Figure 3: Converting non-assortative, pairwise-stable early matching to assortative, pairwise-
stable early matching. A line between mi and wj indicates that mi and wj match early.
µi−1 ⇒ µi means that if µi−1 is pairwise-stable, then µi is pairwise-stable as well.

Therefore, if a list of types admits a pairwise-stable early matching, it must admit an

assortative, pairwise-stable early matching. Incidentally, we have the following curious prop-

erty of assortative, pairwise-stable early matching.

Proposition 1. Any list of types admits at most one assortative, pairwise-stable early

matching.

The proof of the proposition is included in the appendix. The proposition explains that

our seemingly crude approach of using union bound to estimate the probability of non-chaotic

realizations in the Appendix is in fact the right thing to do; however, the proposition will

not play any direct role in our proof.

The advantage of working with assortative, pairwise-stable early matching is that agents’

incentive consideration is fully captured by Equation 3 and 4, which are greatly more

tractable than working directly with U(m,L) and V (w,L). It is informative and helpful
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for Step 2 to write out the definition of pairwise-stable, assortative early matching in terms

of Equation (3) and (4).

Let us represent an assortative early matching by the ranks of couples who stay to the

second period: given an ordered list of ranks {il}1≤l≤L ⊆ {1, . . . , n}, where iL > iL−1 > . . . >

i1, we have µ(il) = ∅. Every couple (mi, wi) not on the list matches early with each other,

i.e., i 6∈ {il : 1 ≤ l ≤ L} ⇒ µ(i) = i.

Definition 3. For an ordered list of first-period types C = {(mi, wi)}1≤i≤n, an ordered list

of ranks {il}1≤l≤L is a pairwise-stable assortative arrangement (of waiting/matching early) if

1. for couple (mil , wil) who waits (1 ≤ l ≤ L), we have either

(1− F (mil))

∫ wil

wil−1

G(x) dx ≤ F (mil)

∫ wil+1

wil

(1−G(x)) dx,

or

(1−G(wil))

∫ mil

mil−1

F (x) dx ≤ G(wil)

∫ mil+1

mil

(1− F (x)) dx,

2. for couple (mi, wi) who matches early (i 6∈ {i1, . . . , iL}, so il < i < il+1 for some l), we

have

(1− F (mi))

∫ wi

wil

G(x) dx > F (mi)

∫ wil+1

wi

(1−G(x)) dx,

and

(1−G(wi))

∫ mi

mil

F (x) dx > G(wi)

∫ mil+1

mi

(1− F (x)) dx,

where we use the convention that i0 = 0, iL+1 = n + 1, m0 = m, w0 = w, mn+1 = m,

wn+1 = w.

We note that woman of rank il will never have incentive to match early with man of rank

il′ , for l > l′. Therefore, in point (1) of the above definition we only check that man and

woman of the same ranking who stay to the second period do not have joint incentive to

match early.

In Step 2 to 4 we will only work with assortative arrangement.

Step 2. Local chaos: The second step is to set up a local version of Theorem 1:

suppose exogenously (this assumption will be removed in Step 4) that couples of ranks ⌊np⌋

and ⌊np⌋+ r (where p ∈ (0, 1) and integer r ≥ 2 are fixed ex-ante) stay to the second period,

what is the probability that couples in between them will experience chaos, i.e., cannot find

a pairwise-stable assortative arrangement of waiting/matching early?
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Fix a equally-ranked couple (m,w) in between ranks ⌊np⌋ and ⌊np⌋ + r. Let w+ and

w− be the women just above and below w who stay to the second period in an assortative

arrangement. Notice that w+ ≤ w⌊np⌋+r and w− ≥ w⌊np⌋, because by assumption couples of

ranks ⌊np⌋ and ⌊np⌋ + r stay to the second period.

As n gets large, w⌊np⌋+r − w⌊np⌋ becomes (in probability) close to zero, and thus so does

w+ − w−. Therefore, Equation 3, the incentive for man m to match early with w, becomes

approximately

(1− F (m))G(w)(w − w−) dx > F (m)(1−G(w))(w+ − w).

Now, since man m and woman w are ranked between ⌊np⌋ and ⌊np⌋+ r, both F (m) and

G(w) must converge (in probability) to p ∈ (0, 1) as n gets large. Therefore, dividing out

p(1− p) on both sides, the above equation becomes

w − w− > w+ − w.

Analogously, Equation 4, the incentive for woman w to match early with m, becomes

approximately

m−m− > m+ −m,

where m+ and m− are the men just above and below m who stay to the second period.

The above consideration motivates the following definition (compare with Definition 3).

Let αi = m⌊np⌋+i −m⌊np⌋+i−1 and ai = w⌊np⌋+i − w⌊np⌋+i−1 be the gaps between consecutive

types:

Definition 4. Given an unordered list of gaps {(αi, ai)}1≤i≤r, an ordered list of indices

{il}1≤l≤L ⊆ {1, . . . , r − 1} is a pairwise-stable assortative arrangement if

1. for a couple of rank ⌊np⌋ + il who waits (1 ≤ l ≤ L), we have either
∑il

j=1+il−1
αj ≤

∑il+1

j=1+il
αj or

∑il
j=1+il−1

aj ≤
∑il+1

j=1+il
aj,

2. for a couple of rank ⌊np⌋ + i who matches early (i 6∈ {i1, . . . , iL}, so il < i < il+1 for

some l), we have
∑i

j=1+il
αj >

∑il+1

j=1+i αj and
∑i

j=1+il
aj >

∑il+1

j=1+i aj ,

where i0 = 0 and iL+1 = r.

Finally, under some mild regularity conditions on the distributions F and G, we may

treat the gaps αi and ai’s as i.i.d. exponential random variables.
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Let π(r) be the probability that gaps {(αi, ai)}1≤i≤r admit a pairwise-stable assortative

arrangement, given that gaps αi and ai’s are i.i.d. exponential random variables. π(r) is

the limit, as n tends to infinity, of the probability that couples in between ranks ⌊np⌋ and

⌊np⌋ + r admit a pairwise-stable assortative arrangement, given that couples of ranks ⌊np⌋

and ⌊np⌋ + r exogenously stay to the second period.

Step 3. Recursive argument: The third step is to show that π(r) converges to 0 as

r tends to infinity. This can be accomplished with a recursive argument exploiting the i.i.d.

gaps.

Let region A cover positions between ⌊np⌋ and ⌊np⌋+r; region B covers positions between

⌊np⌋ and ⌊np + r/2⌋; and region C covers positions between ⌊np + r/2⌋ and ⌊np⌋ + r. By

construction, region A is the union of region B and C.

If couples in region A settle on a pairwise-stable assortative arrangement, then the trun-

cated arrangement for couples in region B must be pairwise stable, and likewise for the

truncated arrangement for couples in region C. Since the gaps are i.i.d. exponential, couples

in region B admitting a pairwise-stable assortative arrangement is an event independent of

couples in region C admitting a pairwise-stable assortative arrangement. Therefore, a re-

cursive inequality in the spirit of π(r) ≤ π(r/2)2 must hold, which immediately implies that

π(r) goes to 0 as r tends to infinity.

The previous argument is not exactly correct, because we implicitly made the unjustified

assumption that the couple of rank ⌊np+ r/2⌋ stay to the second period. Nevertheless, with

high probability that in every pairwise-stable assortative arrangement some couple around

⌊np+ r/2⌋ would stay to the second period, and we simply sum over all possibilities. In the

end we get a weaker recursive inequality:

π(r) ≤
13

9
π(r/2)2 + ǫ, (5)

where ǫ > 0 is a small number.

Inequality (5), together with some exactly computed values of π(r) when r is small,

implies that limr→∞ π(r) = 0.

Step 4. Wrapping up: The final step is to remove the assumption that couples of

ranks ⌊np⌋ and ⌊np⌋ + r exogenously stay to the second period.

For a fixed integer s that is sufficiently large, we claim that in any pairwise-stable as-

sortative arrangement it is highly unlikely that every couple in between ranks ⌊np⌋ − s and

⌊np⌋ chooses to match early, because lots of consecutive couples matching early creates a

large upside (the right-hand side of (3) and (4)), which tempts agents who match early to

deviate by waiting for the second period and contradicts the stability of the arrangement.
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Therefore with high probability every pairwise-stable assortative arrangement has a cou-

ple (call them couple x) ranked between ⌊np⌋ and ⌊np⌋−s staying to the second period, and

likewise with high probability every pairwise-stable assortative arrangement has a couple

(call them couple y) ranked between ⌊np⌋ + r and ⌊np⌋ + r + s. Couples x and y, by con-

struction, are of at least r ranks apart, so as n gets big, the analysis in Step 2 and 3 implies

that the probability that couples in between x and y admitting a pairwise-stable assortative

arrangement is small, since we can choose any large value of r before sending n to infinity.

Therefore, the probability that first-period types admitting a pairwise-stable assortative

arrangement tends to 0 as n gets big. By Step 1, this means that the probability that

first-period types admitting a pairwise-stable early matching tends to 0 as n gets big.

5 Unraveling

We now turn to studying agents incentive when all other agents stay in the market for the

second period. This analysis of unraveling incentives is a useful benchmark, as having all

agents be matched together assortatively is the efficient choice for agents when there are

complementarities in types.

In this section we hold k fixed, but no longer assume k = 1. For the latter case, we

have seen that this choice of strategy by agents will not be pairwise-stable with a probability

which tends to 1 with n, and we conjecture that this also the case for any fixed k. Despite

this, it is of interest to ask how far this choice of strategies is from an equilibrium — does the

probability that a pair of agents wants to deviate away from this proposed set of strategies

tend to 0 with n? Does it depend on the type distributions F and G? Are agents in different

parts of the distribution more or less likely to deviate than others? And how many agents

would have incentive to deviate?

To answer these questions, we look at the incentives of agents to match early, assuming

that all other agents indeed wait for the second period. Specifically, we focus on deviations

by pairs of equally ranked men and women. These are obviously a strict subset of the possible

deviations agents can choose. However, if we can get a lower bound on the probability that

such deviations are profitable, this same bound will serve as a lower bound on the probability

that any deviation will be profitable.

Formally, suppose that L is the a random rank-ordered list of n pairs of types present

on the market in the first period, with a distribution determined by the distributions F and

G. For the j-th ranked couple in L, let us define the probability of unraveling qj,n to be the

ex-ante probability of both agents in the couple strictly wanting to match early, assuming
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everyone else stays on to the second period. We are interested in the asymptotic behavior

of qjn,n, where (jn)
∞
n=1 is a sequence of positions.

We can now present the main result regarding unraveling in this perturbed market.

Theorem 2. Fix any k ≥ 1:

1. for any fixed percentile p ∈ (0, 1), if the densities f and g are positive and continuous

at x and y, respectively, where F (x) = p = G(y), then the ex-ante probability of

unraveling for the couple at the p-th percentile obeys:

lim
n→∞

q⌊np⌋,n =
1

4

2. if the densities f and g are positive and continuous everywhere, then for any ǫ > 0,

with probability tending to 1 as n → ∞, a fraction of at least ( 1
8k

− ǫ) of all pairs have

strict incentive to match early.

Theorem 2 gives a definitive answer to unraveling question. The first part of the theorem

says that under mild regularity conditions on F and G, a couple at any percentile 0 < p < 1

will tend to prefer matching early, given that all the others are staying in the market, with

an ex-ante probability of 1/4. Thus, the incentives for unraveling for almost all pairs do not

go to 0 as markets get thick, and this behavior is distribution free. Note that this ex-ante

unraveling probability is independent of agents’ place within the distribution, as long as they

located in the interior of the support.

The intuition for this part of the theorem draws on Step 2 of the roadmap for Theorem 1,

in the case of k = 1 — in the limit, a man prefers to leave the market early if his downside

from waiting, which is the distance between the type of the woman of his ranking and the

woman directly beneath her, is bigger than his upside, which is the distance between the

types of the woman of his ranking and the woman directly above her. For any regular

distribution, the probability of this happening tends to 1/2. A symmetric argument holds

for women, and since these two calculations are independent, the unraveling probability for

the pair converges to 1/4.

The second part of Theorem 2 extends the first and gives an asymptotic lower bound

on the portion of the population with simultaneous strict incentives to unravel. This lower

bound is strictly positive, meaning that as the market gets thicker a large percentage of

the population is likely to unravel given the benchmark of all agents waiting till the second

period. The intuition here draws on the the size of the market — when the market grows

thick, the realizations of ranked pairs far away from one another tend to be independent of
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each other. Thus, if each pair stands a chance of 1/4 to want to leave the market early, then

in probability, a positive percentage of pairs would like to unravel simultaneously.

The next proposition gives a complete account of the unraveling probabilities of lowest

and highest couples. As in Theorem 2, these asymptotic probabilities do not depend on the

fine details of distributions F and G.

Proposition 2. Fix any k ≥ 1:

1. Suppose that the densities f and g are continuous and positive atm and w, respectively.

Then the probability of unraveling for the r-th highest couple satisfies:

lim
n→∞

qn+1−r,n = ζr > 0 ,

with:

ζr = P

(

2(α + β)c > (2a+ b)b,

2(a+ b)γ > (2α+ β)β

)

,

where b, c, β, γ are independent exponential (with mean 1) random variables, and a, α

are independent Gamma Γ(r − 1, 1) random variables6.

2. Suppose that the densities f and g are continuous and positive atm and w, respectively.

Then the probability of unraveling for the r-th lowest couple satisfies:

lim
n→∞

qr,n = ηr > 0 ,

with:

ηr = P

(

(2a+ b)b > 2(α + β)c,

2(α+ β)β > 2(a+ b)γ

)

,

where b, c, β, γ are independent exponential (with mean 1) random variables, and a, α

are independent Gamma Γ(r − 1, 1) random variables.

3. lim
r→∞

ζr = 1/4 = lim
r→∞

ηr.

Proposition 2 reveals that the lowest and highest couples in the population also have a

strictly positive asymptotic probability of unraveling. To get a sense of these probabilities,

charted below in Table 1 are the values of ζr, ηr for r ≤ 10. These values are strictly

6The distribution of a Gamma random variable Γ(i, c) is defined by the pdf h(x) = xi−1 e
−

x

c

cr(i−1)! , i ≥ 1.

We define a Γ(0, 1) random variable to be the constant 0. Γ(i, c) is the sum of i i.i.d. exponential (with mean
c) random variables.
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lower than 1/4, the unraveling probability for couples in the middle of the distribution, but

converge to 1/4 as r tends to infinity.

r ζr ηr
1 0.217602 0.0760076
2 0.218555 0.127098
3 0.223682 0.154687
4 0.227859 0.170272
5 0.23102 0.177269
6 0.233436 0.181989
7 0.23533 0.186633
8 0.236848 0.189689
9 0.238072 0.198074
10 0.239086 0.189451

Table 1: Values of ζr and ηr.

Theorem 2 and Proposition 2 make an unambiguous empirical prediction: both high

ranked agents and low ranked agents are less likely to unravel than median ranked agents,

while high ranked agents are more likely to unravel than low ranked agents. Interestingly, this

is broadly consistent with the pattern of unraveling in law-clerk matching market [TODO -

need citation].

We note that Theorem 2 and Proposition 2 are not merely results in “asymptopia”:

Figure 4 plots the unraveling probabilities, {qi:25}1≤i≤25, for n = 25 and k = 1 and uniform

distributions F = G = U[0, 1]; the probabilities are computed by Monte Carlo simulations.

The probabilities in the plot comes quite close to the asymptotic probabilities predicted by

Proposition 2.

6 Conclusion

This paper shows that matching markets may be very sensitive to small uncertainties and

institutional details. Beyond unraveling, where a proportion of the agents in the market

choose to match early in equilibrium, we identify chaos as a dominant force in these perturbed

markets. Under chaos, where essentially the game where agents choose when to match has

no pure-strategy equilibrium, centralized and decentralized matching markets are likely to

collapse. This paper thus serves as message to market designers, emphasizing the point that

small details in matching mechanisms are of great importance to the future health of the
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Figure 4: Plot of unraveling probabilities, qi:25, for n = 25 and k = 1 and uniform distribution
F = G = U[0, 1].

market.

We conjecture that the negative results obtained in this paper are not unique to the

specific modeling choice made here – having the information perturbation be in the form of

new entrants into the market. Alternative modeling choices for noise, in the form of agents

leaving the market unexpectedly before the central match is held, or having agents’ types

be perturbed by shocks, should yield the similar instability results. These different types

of noise may be more fitting to some applications, but moreover, proving the validity of

our results to these settings would strengthen the point that the sensitivities of matching

markets to institutional details are indeed an inherent feature of these markets.
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7 Appendix

7.1 Proof of Theorem 1

In Step 1 of the Roadmap (Section 4.1), we argue that for the purpose of analyzing the

prevalence of chaotic realization (first-period types that do not admit any pairwise-stable

early matching), it is without loss of generality to restrict to pairwise-stable, assortative

early matching (i.e., pairwise-stable assortative arrangement, cf. Definition 3). Therefore, in

this section we will only work with assortative arrangement.

For any index set I ⊆ {1, . . . , n}, let CI ⊆ {(mi, wi)1≤i≤n | mn ≥ mn−1 ≥ . . . ≥ m1, wn ≥

wn−1 ≥ . . . ≥ w1} be the set of first-period types that admit I as a pairwise-stable assortative

arrangement.

A restatement of Theorem 1 is that under the stated regularity condition, we have

lim
n→∞

Pn





⋃

I⊆{1,...,n}

CI



 = 0,

where Pn is the measure associated with the order statistics of n i.i.d. random variables of

distribution F (men’s types) and of n i.i.d. random variables of distribution G (women’s

types).

By assumption (i), fix a p ∈ (0, 1) such that the densities f and g are continuous and

positive at x and y, respectively, where F (x) = G(y) = p.

For any two integers s > 0 and t > 0, let

I = {I | I ⊆ {1, . . . , n}}.

Ij,l =

{

I ∈ I |
min({i ∈ I : i ≥ ⌊np⌋ + t}) = ⌊np⌋ + t + j, and

max({i ∈ I : i ≤ ⌊np⌋ − t}) = ⌊np⌋ − t− l

}

. (6)

I ′ =

{

I ∈ I |
min({i ∈ I : i ≥ ⌊np⌋ + t}) > ⌊np⌋ + t+ s, or

max({i ∈ I : i ≤ ⌊np⌋ − t}) < ⌊np⌋ − t− s

}

.

Clearly,

I = I ′ ∪
⋃

0≤j≤s
0≤l≤s

Ij,l.
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We can further divide I ′ into I ′
1 and I ′

2: I = I ′
1 ∪ I ′

2, where

I ′
1 = {I ∈ I | min({i ∈ I : i ≥ ⌊np⌋ + t}) > ⌊np⌋ + t+ s} ,

I ′
2 = {I ∈ I | max({i ∈ I : i ≤ ⌊np⌋ − t}) < ⌊np⌋ − t− s} .

Let C(I ′′) =
⋃

I∈I′′ CI for I ′′ ⊆ I. Then,

Pn

(

⋃

I∈I

CI

)

≤ Pn(C(I ′
1)) + Pn(C(I ′

2)) +
∑

0≤j≤s
0≤l≤s

C(Ij,l)

Therefore,

lim sup
n→∞

Pn

(

⋃

I∈I

CI

)

≤ lim sup
n→∞

Pn(C(I ′
1)) + lim sup

n→∞
Pn(C(I ′

2))

+
∑

0≤j≤s
0≤l≤s

lim sup
n→∞

Pn(C(Ij,l)). (7)

In the next two subsections we show that for a fixed s, lim supn→∞ Pn(C(Ij,l)) goes to

0 as t goes to infinity for any j and l, at a rate independent of s (Section 7.1.1); and that

for a fixed t, lim supn→∞ Pn(C(I ′
1)) and lim supn→∞ Pn(C(I ′

2)) go to 0 as s goes to infinity,

at a rate independent of t (Section 7.1.2). This implies that by choosing s and t sufficiently

large, we can make the left hand side of (7), which is independent of s and t, as close to zero

as we want. Thus, the left hand side of (7) must be exactly zero, which proves Theorem 1.

7.1.1 Local Chaos

We first bound lim supn→∞ Pn(C(Ij,l)).

Definition 5. Given p ∈ (0, 1), integer r ≥ 2 and an ordered list of types {(mi, wi)}⌊np⌋≤i≤⌊np⌋+r,

an ordered list of indices {il}1≤l≤L ⊆ {⌊np⌋+ 1, . . . , ⌊np⌋+ r− 1} is a pairwise-stable assor-

tative arrangement if

1. for a couple of rank il who waits (1 ≤ l ≤ L), we have either

(1− F (mil))

∫ wil

wil−1

G(x) dx ≤ F (mil)

∫ wil+1

wil

(1−G(x)) dx,
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or

(1−G(wil))

∫ mil

mil−1

F (x) dx ≤ G(wil)

∫ mil+1

mil

(1− F (x)) dx,

2. for a couple of rank i who matches early (i 6∈ {i1, . . . , iL}, so il < i < il+1 for some l),

we have

(1− F (mi))

∫ wi

wil

G(x) dx > F (mi)

∫ wil+1

wi

(1−G(x)) dx,

and

(1−G(wi))

∫ mi

mil

F (x) dx > G(wi)

∫ mil+1

mi

(1− F (x)) dx,

where i0 = ⌊np⌋ and iL+1 = ⌊np⌋+ r.

For any index set I ⊆ {⌊np⌋ + 1, . . . , ⌊np⌋ + r − 1}, let CI ⊆ {(mi, wi)⌊np⌋≤i≤⌊np⌋+r |

m⌊np⌋+r ≥ . . . ≥ m⌊np⌋, w⌊np⌋+r ≥ . . . ≥ w⌊np⌋} be the set of couple types that admit I as a

pairwise-stable assortative arrangement.

For any index set I ⊆ {1, . . . , r − 1}, let GI ⊆ R
2r
+ be the set of gaps that admit I as

a pairwise-stable assortative arrangement (see Definition 4 in Section 4.1), where R+ is the

set of non-negative real numbers.

Proposition 3. Fix p ∈ (0, 1) and integer r ≥ 2. If the densities f and g are positive and

continuous at x and y, respectively, where F (x) = p = G(y). Then

lim
n→∞

Pn





⋃

I⊆{⌊np⌋+1,...,⌊np⌋+r−1}

CI



 = P̂r





⋃

I⊆{1,...,r−1}

GI



 ,

where P̂r is the measure of 2r i.i.d. exponential (with mean 1) random variables.

Proof. The proof relies on the well-known Slutsky’s Theorem and is similar to the proof of

Theorem 2 and Proposition 2.

Proposition 4. For I 6= I ′ ⊆ {1, . . . , r − 1}, we have GI ∩GI′ = ∅.

Proof. This is a special case of Proposition 1.

Proposition 5. Suppose that I = {il | 1 ≤ l ≤ L}, where r > iL > . . . > i1 > 0. Then

P̂r(GI) =P̂r

(

∀i 6∈ I such that il < i < il+1,

∑il+1

j=1+i αj <
∑i

j=1+il
αj and

∑il+1

j=1+i aj <
∑i

j=1+il
aj

)

27



· P̂r

(

∀l ∈ {1, . . . , L},

∑il+1

j=1+il
αj ≥

∑il
j=1+il−1

αj or
∑il+1

j=1+il
aj ≥

∑il
j=1+il−1

aj

)

=
1

4r−L−1

∫

x1,y1,...,
xL+1,yL+1

≥0

1







(x2 ≥ x1 or y2 ≥ y1) and

. . . and

(xL+1 ≥ xL or yL+1 ≥ yL)







L+1
∏

l=1

e−xl−yl(xlyl)
il−i1−1−1

((il − il−1 − 1)!)2

d(x1, y1, . . . , xL−1, yL−1)

where i0 = 0 and iL+1 = r.

Proof. This exploits the memorylessness of exponential distribution. Proof to be added

later.

Proposition 6. π(r) := P̂r

(

⋃

I⊆{1,...,r−1}GI

)

tends to 0 as r → ∞.

Proof. We have for l ≤ ⌊n/2⌋:

π(r) ≤

⌊n/2⌋
∑

j=1

(

1

4

)l+1+j−1

+ π(⌊n/2⌋)π(n− ⌊n/2⌋) (8)

+

l
∑

i=1





l
∑

j=1

(

1

4

)i+j−1

π (⌊n/2⌋ − j)π(n− ⌊n/2⌋ − i) +

⌊n/2⌋
∑

j=l+1

(

1

4

)i+j−1




≤

(

1

4

)l
7

9
+

13

9
max

−1≤j≤l
π(⌊n/2⌋ − j)2.

Using Proposition 5 and Proposition 4, we can directly calculate π(r) when r is small. Our

calculations imply that π(7) ≈ 0.595 and that π(r) < 0.595 for 8 ≤ r ≤ 17. When r = 18,

let l = 2, then (8) implies that π(18) ≤ 13/9 ·0.5952+7/144 = 0.559981 < 0.595. In general,

when y is between the two roots 0.0526089 and 0.639699 of equation 13/9x2+7/144−x = 0,

then 13/9y2 + 7/144 < y.

For 18 < r, we can use progressively larger values of l in (8) to conclude that π(r) tends

to 0 as r → ∞.

Now going back to bounding (7): by Proposition 3 we have

lim sup
n→∞

Pn(C(Ij,l)) ≤ π(2t+ j + l)
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because positions ⌊np⌋+ t+j and ⌊np⌋− t− l are of distance 2t+j+ l apart (cf. Equation 6).

Therefore, Proposition 6 proves that lim supn→∞ Pn(C(Ij,l)) goes to 0 as t goes to infinity,

for any fixed s > 0, 0 ≤ j ≤ s and 0 ≤ l ≤ s.

7.1.2 Consecutively ranked couples matching early

In this subsection we give the required bounds for lim supn→∞ Pn(C(I ′
1)) and lim supn→∞ Pn(C(I ′

2)).

For this step we need assumption (2) of the theorem.

By combining assumptions (i) and (ii), it’s easy to verify that there exist an ǫ0 > 0 and

finite and positive a and a such that a ≤ f(m), g(w) ≤ a hold for all (m,w) such that

f(m), g(w) ≤ p+ ǫ0. Let p̄ = p+ ǫ0.

Let t̄ = t+ s+ 1. And let w0 = w and m0 = m.

Summing over all possible positions (i− 1 in the summation below) just below ⌊np⌋ + t

in which a couple stays in a pairwise-stable assortative arrangement, we have:

Pn(C(I ′
1))

≤

⌊np⌋+t
∑

i=1

Pn

(

(1− F (mi))
∫ wi

wi−1
G(x)dx > F (mi)

∫ w⌊np⌋+t̄

wi
(1−G(x))dx,

(1−G(wi))
∫ mi

mi−1
F (x)dx > G(wi)

∫ m⌊np⌋+t̄

mi
(1− F (x))dx

)

≤

⌊np⌋+t
∑

i=⌊np0⌋+1

Pn

(

∫ wi

wi−1
G(x)dx > F (m⌊np0⌋)

∫ w⌊np⌋+t̄

wi
(1−G(x))dx,

∫ mi

mi−1
F (x)dx > G(w⌊np0⌋)

∫ m⌊np⌋+t̄

mi
(1− F (x))dx

)

+

⌊np0⌋
∑

i=1

Pn

( ∫ wi

wi−1
G(x)dx > F (mi)

∫ w⌊np⌋+t̄

w⌊np0⌋
(1−G(x))dx,

∫ mi

mi−1
F (x)dx > G(wi)

∫ m⌊np⌋+t̄

m⌊np0⌋
(1− F (x))dx

)

≤

⌊np⌋+t
∑

i=⌊np0⌋+1

Pn

(

(wi − wi−1) > F (m⌊np0⌋)(1−G(w⌊np⌋+t̄))(w⌊np⌋+t̄ − wi),

(mi −mi−1) > G(w⌊np0⌋)(1− F (m⌊np⌋+t̄))(m⌊np⌋+t̄ −mi)

)

(9)

+

⌊np0⌋
∑

i=1

Pn

(

G(wi)(wi − wi−1) > F (mi)(1−G(w⌊np⌋+t̄))(w⌊np⌋+t̄ − w⌊np0⌋)

F (mi)(mi −mi−1) > G(wi)((1− F (m⌊np⌋+t̄)))(m⌊np⌋+t̄ −m⌊np0⌋)

)

,

(10)

where p0 < p is arbitrary.

Our goal is then to bound (9) and (10). Before continuing let’s work out a large deviation

inequality in the context of order statistics that will immensely simplify our analysis.

Lemma 3 (Chernoff). Pn(|F (mi)− i/n| ≥ ǫ) ≤ 2 exp(−2ǫ2n) for any ǫ > 0.
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Proof. Without loss of generality suppose that F (mi) = ui, where ui is the ith order statistics

of n i.i.d. uniform (over [0, 1]) random variables.

Clearly,

Pn(|ui − i/n| ≥ ǫ) ≤ Pn(ui ≥ i/n+ ǫ) + Pn(ui ≤ i/n− ǫ).

By definition, we have

Pn(ui ≤ i/n− ǫ) = Pn

(

n
∑

j=1

1(zj ≤ i/n− ǫ) ≥ i

)

where z1, . . . , zn are n i.i.d. uniform [0, 1] random variables.

We now apply a standard Chernoff bound to i.i.d. random variables 1(zj ≤ i/n − ǫ)’s

(e.g., Alon and Spencer (2008), Theorem A.1.4):

Pn

(

n
∑

j=1

1(zj ≤ i/n− ǫ) ≥ i

)

= Pn

(

n
∑

j=1

(1(zj ≤ i/n− ǫ)− (i/n− ǫ)) ≥ nǫ

)

≤ exp(−2ǫ2n).

Similarly,

Pn(ui ≥ i/n+ ǫ) = Pn(ui > i/n + ǫ)

= Pn

(

n
∑

j=1

1(zj ≤ i/n+ ǫ) < i

)

= Pn

(

n
∑

j=1

(1(zj ≤ i/n + ǫ)− (i/n+ ǫ)) < −nǫ

)

≤ exp(−2ǫ2n).

Returning to bounding (9):

Pn

(

(wi − wi−1) > F (m⌊np0⌋)(1−G(w⌊np⌋+t̄))(w⌊np⌋+t̄ − wi),

(mi −mi−1) > G(w⌊np0⌋)(1− F (m⌊np⌋+t̄))(m⌊np⌋+t̄ −mi)

)
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≤Pn

(

(wi − wi−1) > F (m⌊np0⌋)(1−G(w⌊np⌋+t̄))(w⌊np⌋+t̄ − wi), G(w⌊np⌋+t̄) ≤ p̄, F (m⌊np0⌋) ≥ p0 − ǫ

(mi −mi−1) > G(w⌊np0⌋)(1− F (m⌊np0⌋+t̄))(m⌊np⌋+t̄ −mi), F (m⌊np⌋+t̄) ≤ p̄, G(w⌊np0⌋) ≥ p0 − ǫ

)

+ Pn(G(w⌊np⌋+t̄) > p̄) + Pn(F (m⌊np⌋+t̄) > p̄) + Pn(F (m⌊np0⌋) < p0 − ǫ) + Pn(G(w⌊np0⌋) < p0 − ǫ)

≤Pn

(

(wi − wi−1) > (p0 − ǫ)(1 − p̄)(w⌊np⌋+t̄ − wi), G(w⌊np⌋+t̄) ≤ p̄, F (m⌊np0⌋) ≥ p0 − ǫ

(mi −mi−1) > (p0 − ǫ)(1 − p̄)(m⌊np⌋+t̄ −mi), F (m⌊np⌋+t̄) ≤ p̄, G(w⌊np0⌋) ≥ p0 − ǫ

)

+ Pn(G(w⌊np⌋+t̄) > p̄) + Pn(F (m⌊np⌋+t̄) > p̄) + Pn(F (m⌊np0⌋) < p0 − ǫ) + Pn(G(w⌊np0⌋) < p0 − ǫ)

≤Pn

(

(a/a)(vi − vi−1) > (p0 − ǫ)(1 − p̄)(v⌊np⌋+t̄ − vi),

(a/a)(ui − ui−1) > (p0 − ǫ)(1− p̄)(u⌊np⌋+t̄ − ui)

)

+ Pn(G(w⌊np⌋+t̄) > p̄) + Pn(F (m⌊np⌋+t̄) > p̄) + Pn(F (m⌊np0⌋) < p0 − ǫ) + Pn(G(w⌊np0⌋) < p0 − ǫ),

where u1, . . . , un are the order statistics of n i.i.d. uniform (over [0, 1]) random variables

(let u0 = 0); and likewise v1, . . . , vn are the order statistics of n i.i.d. uniform (over [0, 1])

random variables, independent of u’s (let v0 = 0).

Since (mi, wi)1≤i≤n has the exact same distribution as (F−1(ui), G
−1(vi))1≤i≤n, it is w.l.o.g.

to assume that mi = F−1(ui), wi = G−1(vi).

By assumption, we have 0 < a ≤ f(m), g(w) ≤ a < ∞ for all m ∈ [m,F−1(p̄)] and

w ∈ [w,G−1(p̄)]. Thus, by the Mean Value Theorem, (ui − uj)/a ≤ mi −mj ≤ (ui − uj)/a

and (vi − vj)/a ≤ wi − wj ≤ (vi − vj)/a hold, for any i > j.

By Lemma 3, we have

lim
n→∞

n(Pn(G(w⌊np⌋+t̄) > p̄) + Pn(F (m⌊np⌋+t̄) > p̄)

+ Pn(F (m⌊np0⌋) < p0 − ǫ) + Pn(G(w⌊np0⌋) < p0 − ǫ)) = 0,

therefore, to bound lim supn→∞ Pn(C(I ′
1)) we can replace (9) by

⌊np⌋+t
∑

i=⌊np0⌋+1

Pn

(

(a/a)(vi − vi−1) > (p0 − ǫ)(1− p̄)(v⌊np⌋+t̄ − vi),

(a/a)(ui − ui−1) > (p0 − ǫ)(1− p̄)(u⌊np⌋+t̄ − ui)

)

. (11)

Similarly, we can replace (10) by

⌊np0⌋
∑

i=1

Pn

(

(a/a)vi(vi − vi−1) > ui(1− p̄)(p̄− p0),

(a/a)ui(ui − ui−1) > vi(1− p̄)(p̄− p0)

)

(12)
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The following lemma takes care of (12):

Lemma 4.

lim
n→∞

⌊np0⌋
∑

i=1

Pn

(

(a/a)vi(vi − vi−1) > ui(1− p̄)(p̄− p0),

(a/a)ui(ui − ui−1) > vi(1− p̄)(p̄− p0)

)

= 0.

Proof. For any 1 ≤ i ≤ ⌊np0⌋, we have:

Pn

(

(a/a)vi(vi − vi−1) > ui(1− p̄)(p̄− p0),

(a/a)ui(ui − ui−1) > vi(1− p̄)(p̄− p0)

)

≤Pn

(

(vi − vi−1)(ui − ui−1) > ((a/a)(1− p)(p− p0))
2)

≤Pn

(

(vi − vi−1) > ((a/a)(1− p)(p− p0))
2)

≤
(

1− ((a/a)(1− p)(p− p0))
2)n .

The last line uses an elementary property of the order statistics of uniform distribution.

The following lemma is a classic result in statistics:

Lemma 5. (1 − un, un − un−1, un−1 − un−2, . . . , u2 − u1, u1) has the same distribution as

(x1/x, x2/x, . . . , xn+1/x), where x1, . . . , xn+1 are i.i.d. exponential (with mean 1) random

variables and x =
∑n+1

i=1 xi.

Lemma 6. Suppose that x1, . . . xl, y are i.i.d. exponential (with mean 1) random variables.

Then for any a > 0,

P

(

a

l
∑

i=1

xi ≥ y

)

= (1 + a)−l.

These two lemmas imply:

lim sup
n→∞

⌊np⌋+t
∑

i=⌊np0⌋+1

Pn

(

(a/a)(vi − vi−1) > (p0 − ǫ)(1− p̄)(v⌊np⌋+t̄ − vi),

(a/a)(ui − ui−1) > (p0 − ǫ)(1− p̄)(u⌊np⌋+t̄ − ui)

)

≤ lim sup
n→∞

⌊np⌋+t
∑

i=⌊np0⌋+1

Pn

(

(a/a)(vi − vi−1) > (p0 − ǫ)(1− p̄)(v⌊np⌋+t̄ − vi),

(a/a)(ui − ui−1) > (p0 − ǫ)(1− p̄)(u⌊np⌋+t̄ − ui)

)

≤ lim sup
n→∞

⌊np⌋+t
∑

i=⌊np0⌋+1

(

1 +
a(p0 − ǫ)(1− p̄)

a

)−(⌊np⌋+t̄−i)(

1 +
a(p0 − ǫ)(1 − p̄)

a

)−(⌊np⌋+t̄−i)

≤

(

1−

(

1 +
a(p0 − ǫ)(1 − p̄)

a

)−1(

1 +
a(p0 − ǫ)(1− p̄)

a

)−1
)−1
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·

((

1 +
a(p0 − ǫ)(1− p̄)

a

)(

1 +
a(p0 − ǫ)(1− p̄)

a

))−s

Therefore, we have

lim sup
n→∞

Pn(C(I ′
1)) ≤

(

1−

(

1 +
a(p0 − ǫ)(1− p̄)

a

)−1(

1 +
a(p0 − ǫ)(1− p̄)

a

)−1
)−1

(13)

·

((

1 +
a(p0 − ǫ)(1− p̄)

a

)(

1 +
a(p0 − ǫ)(1− p̄)

a

))−s

.

By exact same argument, we have

lim sup
n→∞

Pn(C(I ′
2)) ≤

(

1−

(

1 +
a(p0 − ǫ)(1− p̄)

a

)−1(

1 +
a(p0 − ǫ)(1− p̄)

a

)−1
)−1

(14)

·

((

1 +
a(p0 − ǫ)(1− p̄)

a

)(

1 +
a(p0 − ǫ)(1− p̄)

a

))−s

.

7.2 Proof of Theorem 2

7.2.1 Part (1)

For a weakly-increasing list of i numbers x1 ≤ . . . ≤ xi and a distributionD, let h+({x1, . . . , xi}, j, D)

be the expected ith lowest value among x1, . . . , xi and j i.i.d. D distributed random variables.

Likewise, for a weakly-increasing list of i numbers x−i ≤ . . . ≤ x−1 and a distribution D,

let h−({x−i, . . . , x−1}, j, D) be the expected ith highest value among x1, . . . , xi and j i.i.d.

D distributed random variables.

Fix a p ∈ (0, 1) such that f and g are continuous and positive at m̂ and ŵ, respectively,

where F (m̂) = G(ŵ) = p. We are interested in the asymptotic probability of unraveling of

the ⌊np⌋th highest couple (m⌊np⌋, w⌊np⌋).

By staying to the second period, assuming everyone else does so as well, man m⌊np⌋’s

expected payoff is

∑

0≤i<j≤k

(

k

i

)

F (m⌊np⌋)
i(1− F (m⌊np⌋))

k−i

(

k

j

)

G(w⌊np⌋)
j(1−G(w⌊np⌋))

k−j

× h−({w⌊np⌋−(j−i), . . . , w⌊np⌋−1}, j, G(x|x ≤ w⌊np⌋))
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+
∑

0≤j<i≤k

(

k

i

)

F (m⌊np⌋)
i(1− F (m⌊np⌋))

k−i

(

k

j

)

G(w⌊np⌋)
j(1−G(w⌊np⌋))

k−j

× h+({w⌊np⌋+1, . . . , w⌊np⌋+(i−j)}, k − j, G(x|x ≥ w⌊np⌋))

+
∑

0≤i≤k

(

k

i

)

F (m⌊np⌋)
i(1− F (m⌊np⌋))

k−i

(

k

i

)

G(w⌊np⌋)
i(1−G(w⌊np⌋))

k−i

× w⌊np⌋.

Comparing this to w⌊np⌋, we see that man m⌊np⌋ strictly prefers to match early with

woman w⌊np⌋ if and only if:

n
∑

0≤i<j≤k

(

k

i

)

F (m⌊np⌋)
i(1− F (m⌊np⌋))

k−i

(

k

j

)

G(w⌊np⌋)
j(1−G(w⌊np⌋))

k−j

× (w⌊np⌋ − h−({w⌊np⌋−(j−i), . . . , w⌊np⌋−1}, j, G(x|x ≤ w⌊np⌋)))

> n
∑

0≤j<i≤k

(

k

i

)

F (m⌊np⌋)
i(1− F (m⌊np⌋))

k−i

(

k

j

)

G(w⌊np⌋)
j(1−G(w⌊np⌋))

k−j

× (h+({w⌊np⌋+1, . . . , w⌊np⌋+(i−j)}, k − j, G(x|x ≥ w⌊np⌋))− w⌊np⌋), (15)

where we have multiplied both sides by n.

Notice that

G(w⌊np⌋)
j(w⌊np⌋ − h−({w⌊np⌋−(j−i), . . . , w⌊np⌋−1}, j, G(x|x ≤ w⌊np⌋)))

=G(w⌊np⌋−(j−i))
j(w⌊np⌋ − w⌊np⌋−(j−i))

+ (G(w⌊np⌋)
j −G(w⌊np⌋−(j−i))

j)Op(w⌊np⌋ − w⌊np⌋−(j−i))

Since

n(G(w⌊np⌋)
j −G(w⌊np⌋−(j−i))

j)Op(w⌊np⌋ − w⌊np⌋−(j−i))

tends to 0 in probability, we can ignore this term.

Similarly, we can simplify

(1−G(w⌊np⌋))
k−j(h+({w⌊np⌋+1, . . . , w⌊np⌋+(i−j)}, k − j, G(x|x ≥ w⌊np⌋))− w⌊np⌋)
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to

(1−G(w⌊np⌋+(i−j)))
k−j(w⌊np⌋+(i−j) − w⌊np⌋).

We can change variables to order statistics of i.i.d. uniform [0, 1] random variables: mi =

F−1(ui), wi = G−1(vi) (where by convention un+1 = vn+1 = 1); since g is continuous and

positive at ŵ, the function G−1(v) is differentiable in a neighborhood (p − ǫ, p + ǫ), ǫ > 0,

with derivative 1
g(G−1(v))

.

Therefore,
w⌊np⌋+(i−j) − w⌊np⌋

(v⌊np⌋+(i−j) − v⌊np⌋)g(ŵ)

and
w⌊np⌋ − w⌊np⌋−(j−i)

(v⌊np⌋ − v⌊np⌋−(j−i))g(ŵ)

converge in probability to 1, while G(w⌊np⌋−i) and F (m⌊np⌋−i) converge in probability to p

for any fixed i.

Finally, it’s well-known that (see Pyke (1965))

(n(v⌊np⌋+k − v⌊np⌋+k−1), . . . , n(v⌊np⌋−k+1 − v⌊np⌋−k)) →D (ai)1≤i≤2k,

where (ai)−k≤i≤k are 2k i.i.d. exponential (with mean 1) random variables, and the conver-

gence is in distribution.

Therefore, by Slutsky’s Theorem, the probability that (15) holds converges, as n → ∞,

to 1/2. Combining this analysis with a symmetric analysis for woman w⌊np⌋’s incentive to

match early with man m⌊np⌋, it can be easily seen that the probability of unraveling for

couple (m⌊np⌋, w⌊np⌋) converges to 1/4.

7.2.2 Part (2)

To be added later.

7.3 Proof of Proposition 2

7.3.1 Part (1) and (2)

We will prove only part (1); part (2) is completely analogous.

Suppose that f and g are positive and continuous at m and w, respectively. And fix a

positive integer r. We are interested in the asymptotic probability of unraveling of the rth

highest couple (mn−r+1, wn−r+1).
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As in Section 7.2.1 (where the h+ and h− functions are defined), man mn−r+1 has strict

incentive to match early with woman wn−r+1 if and only if

n2
∑

0≤i<j≤k

(

k

i

)

F (mn−r+1)
i(1− F (mn−r+1))

k−i

(

k

j

)

G(wn−r+1)
j(1−G(wn−r+1))

k−j

× (wn−r+1 − h−({wn−r+1−(j−i), . . . , wn−r+1−1}, j, G(x|x ≤ wn−r+1)))

> n2
∑

0≤j<i≤k

(

k

i

)

F (mn−r+1)
i(1− F (mn−r+1))

k−i

(

k

j

)

G(wn−r+1)
j(1−G(wn−r+1))

k−j

× (h+({wn−r+1+1, . . . , wn−r+1+(i−j)}, k − j, G(x|x ≥ wn−r+1))− wn−r+1), (16)

where we have multiplied both sides by n2.

Likewise, woman wn−r+1 has strict incentive to match early with man mn−r+1 if and only

if

n2
∑

0≤i<j≤k

(

k

i

)

G(wn−r+1)
i(1−G(wn−r+1))

k−i

(

k

j

)

F (mn−r+1)
j(1− F (wn−r+1))

k−j

× (mn−r+1 − h−({mn−r+1−(j−i), . . . , mn−r+1−1}, j, F (x|x ≤ mn−r+1)))

> n2
∑

0≤j<i≤k

(

k

i

)

G(wn−r+1)
i(1−G(wn−r+1))

k−i

(

k

j

)

F (mn−r+1)
j(1− F (mn−r+1))

k−j

× (h+({mn−r+1+1, . . . , mn−r+1+(i−j)}, k − j, F (x|x ≥ mn−r+1))−mn−r+1).

(17)

We use the convention that wn+i = w for all 1 ≤ i ≤ k, so that

h+({wn−r+1+1, . . . , wn−r+1+k}, G(x|x ≥ wn−r+1))

is always sensibly defined. Likewise, mn+i = m for all 1 ≤ i ≤ k.

Notice that in the LHS of (16), all of the terms converge in probability to 0, except for

j = k and i = k − 1. Likewise, in the RHS of (16), all of the terms converge in probability

to 0, except for j = k − 1 and i = k. Therefore, we can concentrate on

n2kF (mn−r+1)
k−1(1− F (mn−r+1))G(wn−r+1)

k(wn−r+1 − h−({wn−r+1−1}, k, G(x|x ≤ wn−r+1)))
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>n2kF (mn−r+1)
kG(wn−r+1)

k−1(1−G(wn−r+1))(h+({wn−r+1+1}, 1, G(x|x ≥ wn−r+1))− wn−r+1).

(18)

We have

(1−G(wn−r+1))(h+({wn−r+1+1}, 1, G(x|x ≥ wn−r+1))− wn−r+1)

=(1−G(wn−r+1+1))wn−r+1+1 +

∫ wn−r+2

wn−r+1

xg(x) dx− (1−G(wn−r+1))wn−r+1

=

∫ wn−r+2

wn−r+1

(1−G(x)) dx.

and

G(wn−r+1)
k(wn−r+1 − h−({wn−r+1−1}, k, G(x|x ≤ wn−r+1)))

=G(wn−r)
k(wn−r+1 − wn−r) + kG(wn−r)

k−1

∫ wn−r+1

wn−r

(wn−r+1 − x)g(x) dx

+Op((G(wn−r+1)−G(wn−r))
2)(wn−r+1 − wn−r).

It’s easy to show that

n2kF (mn−r+1)
k−1(1− F (mn−r+1))

·

(

kG(wn−r)
k−1

∫ wn−r+1

wn−r

(wn−r+1 − x)g(x) dx+Op((G(wn−r+1)−G(wn−r))
2)(wn−r+1 − wn−r)

)

converges in probability to 0 as n → ∞.

Therefore, Equation (18) becomes

n2kF (mn−r+1)
k−1(1− F (mn−r+1))G(wn−r)

k(wn−r+1 − wn−r)

>n2kF (mn−r+1)
kG(wn−r+1)

k−1

∫ wn−r+2

wn−r+1

(1−G(x)) dx.

By changing variables to order statistics of i.i.d. uniform [0, 1] random variables: mi =

F−1(ui), wi = G−1(vi) (where by convention un+1 = vn+1 = 1), we have

n2k(un−r+1)
k−1(1− un−r+1)(vn−r)

k(G−1(vn−r+1)−G−1(vn−r))

>n2k(un−r+1)
k(vn−r+1)

k−1

∫ vn−r+2

vn−r+1

(1− v)
1

g(G−1(v))
dv, (19)
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since g is continuous and positive at w, the functionG−1(v) is differentiable in a neighborhood

(1− ǫ, 1), ǫ > 0, with derivative 1
g(G−1(v))

.

We have un−r+1, vn−r+1 and vn−r converge to 1 in probability, and so do

G−1(vn−r+1)−G−1(vn−r)

(vn−r+1 − vn−r)/g(w)

and
∫ vn−r+2

v=vn−r+1
(1− v) 1

g(G−1(v))
dv

(2− vn−r+1 − vn−r+2)(vn−r+2 − vn−r+1)/(2g(w))
.

On other other hand,

(n(1− un), . . . , n(un−r+1 − un−r), n(1− vn), . . . , n(vn−r+1 − vn−r)) →D (αi, ai)1≤i≤r+1,

where (αi, ai)1≤i≤r+1 are 2(r+1) i.i.d. exponential (with mean 1) random variables, and the

convergence is in distribution.

Decomposing (19) into the above parts, and do the analogous analysis on (17), we con-

clude by Slutsky’s Theorem that the probability that both (16) and (17) hold converges, as

n tends to infinity, to

ζi = P

(

2(α + β)c > (2a+ b)b,

2(a+ b)γ > (2α+ β)β

)

,

where α =
∑r−1

i=1 αi, β = αr, γ = αr+1, a =
∑r−1

i=1 ai, b = ar, and c = ar+1.

7.3.2 Part (3)

By the weak law of large number, α/(r−1) and a/(r−1) converge to 1 as r tends to infinity.

On the other hand, βc/(r− 1), b2/(r− 1), bγ/(r− 1) and β2/(r− 1) converge in probability

to 0. The conclusion then follows by Slusky’s Theorem.
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