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Abstract

We describe new constructions of graphs which exhibit perfect state transfer on continuous-
time quantum walks. Our constructions are based on variants of the double cones [8, 3, 2] and
the Cartesian graph products (which includes the n-cube Qn) [11]. Some of our results include:

• If G is a graph with perfect state transfer at time tG, where tG Spec(G) ⊆ Zπ, and H
is a circulant with odd eigenvalues, their weak product G ×H has perfect state transfer.
Also, if H is a regular graph with perfect state transfer at time tH and G is a graph
where tH |VH | Spec(G) ⊆ 2Zπ, their lexicographic product G[H ] has perfect state transfer.
For example, these imply Q2n ×H and G[Qn] have perfect state transfer, whenever H is
any circulant with odd eigenvalues and G is any integral graph, for integer n ≥ 2. These
complement constructions of perfect state transfer graphs based on Cartesian products.

• The double coneK2+G on any connected graphG, has perfect state transfer if the weights
of the cone edges are proportional to the Perron eigenvector of G. This generalizes results
for double cone on regular graphs studied in [8, 3, 2].

• For an infinite family G of regular graphs, there is a circulant connection so the graph
K1 +G ◦G+K1 has perfect state transfer. In contrast, no perfect state transfer exists if a
complete bipartite connection is used (even in the presence of weights) [2]. Moreover, we
show that the cylindrical cone K1 + G +Kn + G + K1 has no perfect state transfer, for
any family G of regular graphs.

We also describe a generalization of the path collapsing argument [10, 11], which reduces ques-
tions about perfect state transfer to simpler (weighted) multigraphs, for graphs with equitable
distance partitions. Our proofs exploit elementary spectral properties of the underlying graphs.

Keywords: perfect state transfer, quantum walk, graph product, equitable partition.

1 Introduction

Recently, perfect state transfer in continuous-time quantum walks on graphs has received consider-
able attention. This is due to its potential applications for the transmission of quantum information
over quantum networks. It was originally introduced by Bose [7] in the context of quantum walks on
linear spin chains or paths. Another reason for this strong interest is due to the universal property
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Figure 1: The Cartesian product construction for perfect state transfer: (a) P2 ⊕ P2; (b) P3 ⊕ P3

(see Christandl et al. [11]).

of quantum walks as a computational model as outlined by Childs [9]. From a graph-theoretic per-
spective, the main question is whether there is a spectral characterization of graphs which exhibit
perfect state transfer. Strong progress along these lines were given on highly structured graphs by
Bernasconi et al. [5] for hypercubic graphs and by Bašić and Petković [4] for integral circulants.
Nevertheless, a general characterization remains elusive (see Godsil [15]).

Christandl et al. [12, 11] showed that the n-fold Cartesian product of the one-link P2 and two-
link P3 graphs admit perfect state transfer. This is simply because P2 and P3 have end-to-end
perfect state transfer and the Cartesian product operator preserves perfect state transfer. They
also drew a crucial connection between hypercubic networks and weighted paths using the so-called
path-collapsing argument. This argument was also used by Childs et al. [10] in the context of an
exponential algoritmic speedup for a black-box graph search problem via continuous-time quantum
walks. Christandl et al. [11] proved that, although the n-vertex path Pn, for n ≥ 4, has no end-
to-end perfect state transfer, a suitably weighted version of Pn has perfect state transfer (via a
path-collapsing reduction from the n-cube Qn). A somewhat critical ingredient of this reduction
is that each layer of Qn is an empty graph. We generalize this argument to graphs which have
equitable distance partitions (see Godsil and Royle [17]).

Bose et al. [8] observed an interesting phenomena on the complete graph Kn. Although Kn does
not exhibit perfect state transfer, they show that by removing an edge between any two vertices,
perfect state transfer is created between them. Note that the graph we obtain from removing an
edge from Kn is the double cone K2 +Kn−2 (where G +H denotes the join of graphs G and H).
This observation was generalized in Angeles-Canul et al. [3] where perfect state transfer was proved
for double cones {K2,K2}+G, where G is some regular graph (in place of complete graphs). The
analyses on these double cones showed that perfect state transfer need not occur between antipodal
vertices and that having integer eigenvalues is not a sufficient condition for perfect state transfer
(which answered questions raised in [15]).

Our goal in this work is to combine and extend both the Cartesian product and the double
cone constructions. The Cartesian product construction (which combines graphs with perfect
state transfer) has the advantage of producing large diameter graphs with antipodal perfect state
transfer. In fact, this construction provides the best upper bound for the order-diameter problem;
for a given d, let f(d) be the smallest size graph which has perfect state transfer between two
vertices of distance d. Then, the best known bounds are d ≤ f(d) ≤ αd, where α = 2, if d is odd,
and α =

√
3, if d is even; here, the upper bounds are achieved by P⊗n

2 and P⊗n
3 . On the other

hand, the double cone construction allows graphs whose quotients (modulo its equitable partition)
contain cells which are not independent sets. This can potentially allow for a broader class of
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Graph family PST Construction Source

{K2,K2}+ G yes join [8, 3]

{K2,K2}+ G̃ yes∗ join this work

Pn≥4 no path [11]
K1 + G ◦ G +K1 yes circulant half-join this work
K1 + G + G +K1 no∗ half-join [2]

K1 + G +Kn + G +K1 no join this work

Qn or P⊕n
3 yes Cartesian product [11]

{Q2n, P
⊕n
3 } ×ODD-CIRC yes weak product this work
INT[Qn≥2] yes lexicographic product this work

Figure 2: Summary of results on some graphs with perfect state transfer: n is a positive integer;
G denotes some family of regular graphs; G̃ denotes an arbitrary connected graph; Pn is the path
on n vertices; Qn is the n-dimensional cube; Kn is the complete graph on n vertices; ODD-CIRC
is the class of circulant graphs with odd eigenvalues; INT is the class of integral graphs. Asterisks
indicate results on weighted graphs.

graphs with perfect state transfer (see Bose et al. [8] and Angeles-Canul et al. [3, 2]).
In this work, we describe new constructions of families of graphs with perfect state transfer.

First, we extend several of the double cone constructions and relax their diameter restrictions. We
show that the double cone K2 + G of an arbitrary connected graph G has perfect state transfer
if we use edge weights proportional to the Perron eigenvector of G. This extends results given in
[3] where G is required to be a regular graph. Then, we prove that the glued double cone graph
K1+G1◦G2+K1 has perfect state transfer whenever G1, G2 belongs to some class of regular graphs
and if they are connected using some matrix C which commutes with the adjacency matrices of G1

and G2. In contrast, Angeles-Canul et al. [2] proved that K1 + G + G + K1 has no perfect state
transfer, for any regular graph G, even if weights are allowed.

For cones with larger diameter, we consider the graph K1 +G1 +H +G2 +K1, where G1, G2

belong to the same class of regular graphs and H is another regular graph. This symmetry is a
necessary condition for perfect state transfer as shown by Kay [18]. Nevertheless, in contrast to
the previous positive results, we show there is no perfect state transfer whenever H is the empty
graph. The 4-dimensional cube Q4 (which has perfect state transfer) is an example of such a graph
but without the join (or complete bipartite) connection.

Our other contribution involves constructions of perfect state transfer graphs using alternative
graph products, namely the weak and lexicographic products. An interesting property of these
products is that they can create perfect state transfer graphs by combining graphs with perfect
state transfer and ones which lack the property. For example, we show that Q2n×K2m has perfect
state transfer, for any integers n and m. Recall that the complete graph has no perfect state
transfer (as observed by Bose et al. [8]). In comparison, the Cartesian product requires both of
its graph arguments to have perfect state transfer (with the same perfect state transfer times).
We also consider the lexicographic graph product (or graph composition) and its generalizations.
Our generalized lexicographic product of G and H using a connection matrix (or graph) C is a
graph whose adjacency matrix is AG ⊗ C + I ⊗ AH . Note we recover the Cartesian product by
letting C = I and the standard lexicographic product by letting C = J . So, this generalization
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interpolates between these two known graph products. For example, we show that G[Qn] has
perfect state transfer for any integral graph G and n ≥ 2.

The proofs we employ exploit elementary spectral properties of the underlying graphs. Some of
our results are summarized in Figure 2.

2 Preliminaries

Let [n] denote the set {0, 1, . . . , n− 1}. For a tuple of binary numbers (a, b) ∈ {0, 1}2 \ {(0, 0)}, let
Qa,b denote the set of rational numbers of the form p/q, with gcd(p, q) = 1, where p ≡ a (mod 2)
and q ≡ b (mod 2). These denote rational numbers (in lowest terms) that are ratios of two odd
integers or of an odd integer and an even integer, or vice versa. We denote the even and odd
integers as 2Z and 2Z + 1, respectively.

The graphs G = (V,E) we study are finite, simple, undirected, connected, and mostly un-
weighted. The adjacency matrix AG of a graph G is defined as AG[u, v] = 1 if (u, v) ∈ E and 0
otherwise; we also use u ∼ v to mean u is adjacent to v. The spectrum Spec(G) of G is the set
of eigenvalues of AG. The graph G is called integral if all of its eigenvalues are integers. A graph
G = (V,E) is called k-regular if each vertex u ∈ V has exactly k adjacent neighbors. For integers
n ≥ 1 and 0 ≤ k < n, let Gn,k be the set of all n-vertex k-regular graphs. The distance d(a, b)
between vertices a and b is the length of the shortest path connecting them.

Some standard graphs we consider include the complete graphs Kn, paths Pn, and circulants
graphs. An n-vertex circulant graph G on is a graph whose adjacency matrix is an n× n circulant
matrix; that is, there is a sequence (a0, . . . , an−1) so that AG[j, k] = ak−j, where arithmetic on the
indices is done modulo n. Alternatively, we may define a circulant graph G on [n] through a subset
S ⊆ [n] where j is adjacent to k if and only if k − j ∈ S; we denote such a circulant as Circ(n, S).
Known examples of circulants include the complete graphs Kn and cycles Cn.

Let G and H be two graphs with adjacency matrices AG and AH , respectively. The complement
of G = (V,E), denoted G = (V,E), is a graph where (u, v) ∈ E if and only if (u, v) 6∈ E, for u 6= v.
Some relevant binary graph operations are defined in the following:

• The Cartesian product G⊕H is a graph defined on V (G) × V (H) where (g1, h1) is adjacent
to (g2, h2) if either g1 = g2 and (h1, h2) ∈ EH , or (g1, g2) ∈ EG and h1 = h2. The adjacency
matrix of G⊕H is AG ⊗ I + I ⊗AH .

• The weak product G × H is a graph defined on V (G) × V (H) where (g1, h1) is adjacent to
(g2, h2) if (g1, g2) ∈ EG and (h1, h2) ∈ EH . The adjacency matrix of G×H is AG ⊗AH .

• The lexicographic product G[H] is a graph defined on V (G)×V (H) where (g1, h1) is adjacent
to (g2, h2) if either (g1, g2) ∈ EG or g1 = g2 and (h1, h2) ∈ EH . The adjacency matrix of
G[H] is AG ⊗ J + I ⊗AH .

• The join G+H is a graph defined on V (G)∪V (H) obtained by taking two disjoint copies of
G and H and by connecting all vertices of G to all vertices of H. The adjacency matrix of

G+H is

[

AG J
J AH

]

.

We assume appropriate dimensions on the identity I and all-one J matrices used above. The n-
dimensional hypercube Qn may be defined recursively as Q1 = K2 and Qn = K2⊕Qn−1, for n ≥ 2.
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Figure 3: A cylindrical cone with an equitable distance partition: K1 +K3 ◦K2 ◦K2 ◦K3 +K1.

The cone of a graph G is defined as K1+G. The double cone of G is K2+G, whereas the connected
double cone is K2 +G.

A partition π of a graph G = (V,E) given by V =
⊎m

j=1 Vj is called equitable if the number of
neighbors in Vk of a vertex u in Vj is a constant dj,k, independent of u (see [17, 16]). The quotient
graph of G over π, denoted by G/π, is the directed graph with them cells of π as its vertices and dj,k
edges from the jth to the kth cells of π. The adjacency matrix of G/π is given by AG/π[j, k] = dj,k.

A graph G has an equitable distance partition π with respect to a vertex a if π =
⊎m

j=0 Vj is
such that G/π is a path and Vj = {x ∈ V : d(x, a) = j} where V0 = {a}; typically, we also require
that there is a vertex b, antipodal to a, so that Vm = {b}. We also call a graph a cylindrical cone
(see Figure 3) if it has an equitable distance partition and is denoted K1 ◦G1 ◦ . . . ◦Gm ◦K1, where
Gj are regular graphs and ◦ denote (semi-)regular bipartite connections (induced by the equitable
partition π).

Further background on algebraic graph theory may be found in the comprehensive texts of
Biggs [6], Godsil and Royle [17], and Godsil [16].

Next, we describe the continuous-time quantum walk as defined originally by Farhi and Gut-
mann [13]. For a graph G = (V,E), let |ψ(0)〉 ∈ C|V | be an initial amplitude vector of unit length.
Using Schrödinger’s equation, the amplitude vector of the quantum walk at time t is

|ψ(t)〉 = e−itAG |ψ(0)〉. (1)

Note since AG is Hermitian (in our case, symmetric), e−itAG is unitary (hence, an isometry). More
detailed discussion of quantum walks on graphs can be found in the excellent surveys by Kempe
[19] and Kendon [20]. The instantaneous probability of vertex a at time t is pa(t) = |〈a|ψ(t)〉|2. We
say G has perfect state transfer from vertex a to vertex b at time t if a continuous-time quantum
walk on G from a to b has unit fidelity or

|〈b|e−itAG |a〉| = 1, (2)

where |a〉, |b〉 denote the unit vectors corresponding to the vertices a and b, respectively. The graph
G has perfect state transfer if there exist vertices a and b in G and time t so that (2) is true.

3 Graph products

In this section, we describe constructions of perfect state transfer graphs using the weak and
lexicographic products. These complement the well-known Cartesian product constructions [11].
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Figure 4: Graph products with perfect state transfer: (a) the weak product K2 ×K4m, for m ≥ 1
(shown here with m = 1); (b) the lexicographic product (or composition) Km[Qn] (shown here with
m = n = 2).

3.1 Weak product

An interesting property of the weak product graph operator is that it can create graphs with perfect
state transfer by combining ones with perfect state transfer and ones which lack the property. In
contrast, the Cartesian graph product can only create perfect state transfer graphs from ones which
have the property. We start with the following simple observation.

Fact 1 Let G be an n-vertex graph and H be an m-vertex graph whose eigenvalues and eigenvectors
are given by AG|uk〉 = λk|uk〉, for k ∈ [n], and AH |vℓ〉 = µℓ|vℓ〉, for ℓ ∈ [m], respectively. Let
g1, g2 ∈ G and h1, h2 ∈ H. Then, the fidelity of a quantum walk on their weak product G × H
between (g1, h1) and (g2, h2) is given by

〈g2, h2|e−itAG×H |g1, h1〉 = 〈g2|
[

∑

k

{

∑

ℓ

〈h2|vℓ〉〈vℓ|h1〉e−itλkµℓ

}

|uk〉〈uk|
]

|g1〉. (3)

Proof Recall that the adjacency matrix of AG×H is AG⊗AH . Thus, the eigenvalues and eigenvectors
of the weak product G×H are

AG×H(|uk〉 ⊗ |vℓ〉) = λkµℓ(|uk〉 ⊗ |vℓ〉), where k ∈ [n] and ℓ ∈ [m]. (4)

So, the quantum walk on G×H from (g1, h1) to (g2, h2) is given by

〈g2, h2|e−itAG×H |g1, h1〉 =
∑

k,ℓ

〈g2|uk〉〈uk|g1〉〈h2|vℓ〉〈vℓ|h1〉e−itλkµℓ . (5)

After rearranging summations, we obtain the claim.

Proposition 2 Let G be a graph with perfect state transfer at time tG so that

tG Spec(G) ⊆ Zπ. (6)

Then, G×H has perfect state transfer if H is a circulant graph with odd eigenvalues.

Proof Suppose G is an n-vertex graph whose eigenvalues and eigenvectors are given by AG|uk〉 =
λk|uk〉, for k ∈ [n]. Assume that G has perfect state transfer at time tG from vertex g1 to g2. Also,
suppose H be an m-vertex graph whose eigenvalues and eigenvevtors are given by AH |vℓ〉 = µℓ|vℓ〉,
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for ℓ ∈ [m]. In Equation (3), if H is circulant on m vertices, we have 〈0|vℓ〉〈vℓ|0〉 = 1/m. Moreover,
if each eigenvalue of H is odd, say µℓ = 2mℓ + 1, with mℓ ∈ Z, then

〈g2, 0| exp(−itGAG×H)|g1, 0〉 =
1

m

∑

k,ℓ

〈g2|uk〉〈uk|g1〉e−itGλkµℓ (7)

=
1

m

∑

k

〈g2|uk〉〈uk|g1〉
∑

ℓ

e−itGλk(2mℓ+1) (8)

=
∑

k

〈g2|uk〉〈uk|g1〉e−itGλk , since tGλk ∈ Zπ . (9)

The last expression equals to 〈g2|e−itGAG |g1〉, by the spectral theorem. This proves the claim.

Remark: Note Q2n has eigenvalues λk = 2n− 2k, for k = 0, . . . , 2n, and perfect state transfer time
t = π/2. Also, P⊗n

3 has eigenvalues from λk ∈ Z
√
2 and perfect state transfer time t = π/

√
2. In

both cases, we have tλk ∈ Zπ, for all k. Thus, by Proposition 2, we get that {Q2n, P
⊗n
3 } ×H has

perfect state transfer for any circulant H with odd eigenvalues. For example, we may let H = Km

be the complete graph of order m, for an even integer m.

3.2 Lexicographic products

The generalized lexicographic product GC [H] between a graph G and two graphs H and C, with
VH = VC , is a graph on VG×VH where (g1, h1) is adjacent to (g2, h2) if and only if either (g1, g2) ∈
EG and (h1, h2) ∈ EC , or, g1 = g2 and (h1, h2) ∈ EH . In terms of adjacency matrices, we have

AGC [H] = AG ⊗AC + I ⊗AH . (10)

We describe constructions of perfect state transfer graphs using generalized lexicographic products.
Again, we start with the following simple observation.

Fact 3 Let G be an n-vertex graph whose eigenvalues and eigenvectors are given by AG|uk〉 =
λk|uk〉, for k ∈ [n]. Let H and C be m-vertex graphs whose adjacency matrices commute, that is
[AH , AC ] = 0, and whose eigenvalues and eigenvectors are given by AH |vℓ〉 = µℓ|vℓ〉, and AC |vℓ〉 =
γℓ|vℓ〉, for ℓ ∈ [m], respectively. Suppose g1, g2 ∈ G and h1, h2 ∈ H. Then, the fidelity of a quantum
walk on the generalized lexicographic product GC [H] between (g1, h1) and (g2, h2) is given by

〈g2, h2| exp(−itAGC [H])|g1, h1〉 =
∑

k

〈g2|uk〉〈uk|g1〉
∑

ℓ

〈h2|vℓ〉〈vℓ|h1〉e−it(λkγℓ+µℓ) (11)

Proof The eigenvalues and eigenvectors of GC [H] are given by

AGC [H](|uk〉 ⊗ |vℓ〉) = (λkγℓ + µℓ)(|uk〉 ⊗ |vℓ〉), k ∈ [n] and ℓ ∈ [m]. (12)

So, the quantum walk on GC [H] from (g1, h1) to (g2, h2) is given by

〈g2, h2|e−itAGC [H]|g1, h1〉 =
∑

k,ℓ

〈g2|uk〉〈uk|g1〉〈h2|vℓ〉〈vℓ|h1〉e−it(λkγℓ+µℓ), (13)

which proves the claim.
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In the following, we show a closure property of perfect state transfer graphs using a generalized
lexicographic product with the complete graph as a connection matrix. This is similar to the weak
product construction from Proposition 2.

Proposition 4 Let G and H be perfect state transfer graphs with a common time t. Assume H is
a m-vertex graph which commutes with Km. Suppose that

t|VH |Spec(G) ⊆ 2Zπ. (14)

Then, the lexicographic product GKm [H] has perfect state transfer at time t.

Proof Suppose G has perfect state transfer from g1 to g2 at time t, where g1, g2 ∈ VG. Let the
eigenvalues and eigenvectors of G be given by AG|uk〉 = λk|uk〉, for k ∈ [n]. Also, suppose H is a
circulant with perfect state transfer from h1 to h2 at time t, where h1, h2 ∈ VH . Let the eigenvalues
and eigenvectors of H be given by AH |vℓ〉 = µℓ|µℓ〉, for ℓ ∈ [m]. Thus, Equation (11) becomes

〈g2, h2|e−itAGKm
[H]|g1, h1〉 (15)

=
∑

k

〈g2|uk〉〈uk|g1〉







e−it(λk(m−1)+µ0)〈h2|v0〉〈v0|h1〉+
∑

ℓ 6=0

e−it(−λk+µℓ)〈h2|vℓ〉〈vℓ|h1〉







(16)

= 〈g2|eitAG |g1〉〈h2|e−itAH |h1〉, (17)

since e−it(m−1)λk = eitλk , for all k. This shows that GKm [H] has perfect state transfer from (g1, h1)
to (g2, h2) at time t.

The standard lexicographic product G[H] is obtained when we let C = J in Equation (10). In this
case, Equation (11) decouples nicely and we have a similar result to Proposition 4 but without
requiring G to have perfect state transfer.

Lemma 5 Let G be an arbitrary graph and let H be a regular graph with perfect state transfer
at time tH from h1 to h2, for h1, h2 ∈ VH . Then, G[H] has perfect state transfer from (g, h1) to
(g, h2), for any g ∈ VG, if

tH |VH |Spec(G) ⊆ 2Zπ. (18)

Proof If H is an m-vertex regular graph, then [AH , Jm] = 0. The all-one matrix Jm has eigenvalues
m (with multiplicity one) and 0 (with multiplicity m− 1). Thus, Equation (11) becomes

〈g, h2|e−itHAG[H]|g, h1〉 (19)

=
∑

k

〈g|uk〉〈uk|g〉







e−itH (λkm+µ0)〈h2|v0〉〈v0|h1〉+
∑

ℓ 6=0

e−itHµℓ〈h2|vℓ〉〈vℓ|h1〉







(20)

= 〈h2|e−itHAH |h1〉, (21)

since e−itHmλk(G) = 1, for all k, and
∑

k |uk〉〈uk| = I. This proves the claim.

Remark: We will adopt the convention of scaling quantum walk time with respect to the size of the
underlying graphs. Moore and Russell [22] proved that a continuous-time quantum walk on the
n-cube Qn has a uniform mixing time of (2Z+1)π4n (which shows the time scaling with respect to
the dimension of the n-cube). They used H = 1

nAQn as their Hamiltonian – which is the probability
transition matrix of the simple random walk on Qn.
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Corollary 6 Suppose H is a kH-regular graph with perfect state transfer at time tH = π
2kH and

G is an integral graph (all of its eigenvalues are integers). Then, G[H] has perfect state transfer
provided kH |VH |Spec(G) ⊆ 4Z.

Proof Apply Lemma 5 by noting that e−itH |VH |λk(G) = 1, since tH = π
2kH and λk(G)kH |VH | is

divisible by 4, for all k.

The n-cube Qn is a n-regular graph on 2n vertices which has perfect state transfer at time nπ
2 (with

time scaling) (see [5]). Thus, for any integral graph G, the composition graph G[Qn] has perfect
state transfer if n ≥ 2.

4 Cones

In this section, we explore some constructions of perfect state transfer graphs which generalize the
double cones studied by Bose et al. [8] and Angeles-Canul et al. [3, 2]. The goal behind these
constructions is to understand the types of intermediate graphs which allow perfect state transfer
between the two antipodal vertices. For the double cones {K2,K2}+Gn,k, the intermediate graphs
are n-vertex k-regular graphs and sufficient conditions for perfect state transfer on n and k were
derived in [3].

Here, we consider more complex cones by allowing irregular graphs (on double cones), by
increasing the number of intermediate layers, and by varying the connectivity structure (using
semi-regular bipartite connections). We show new perfect state transfer graphs for irregular double
cones and for double half-cones with circulant connections, and also prove negative results for longer
diameter cones on join connections.

4.1 Irregular double cones

We recall the Perron-Frobenius theory of nonnegative matrices. A matrix is called nonnegative
if it has no negative entries. The spectral radius of a matrix A, denoted ρ(A), is the maximum
eigenvalue of A (in absolute value). The Perron-Frobenius theorem for nonnegative matrices states
that if A is a real nonnegative n×nmatrix whose underlying directed graph G is strongly connected,
then ρ = ρ(A) is a simple eigenvalue of A; moreover, the unique eigenvector corresponding to ρ has
no zero entries and all entries have the same sign.

In what follows, we denote Kb
2 as the two-vertex graph which equals K2 if b = 1, and equals

K2 if b = 0.

Theorem 7 Let G be any connected graph whose maximum (simple) eigenvalue is λ0 with a cor-
responding positive (normalized) eigenvector |x0〉. Consider the double cone G = Kb

2 + G, for
b ∈ {0, 1}, where the edges adjacent to the vertices of Kb

2, say A and B, are weighted proportional
to α|x0〉. Then, the fidelity between A and B is given by

〈B|e−itAG |A〉 = 1

2

{

e−itλ̃+
0

[

cos(t∆) + i
λ−0
∆

sin(t∆)

]

− 1

}

, (22)

where λ̃±0 = (λ0 ± b)/2 and ∆ =
√

(λ̃−0 )
2 + 2α2. Thus, perfect state transfer is achieved if λ̃+0 /∆ ∈

Q0,1 ∪Q1,0.

9



Figure 5: Irregular weighted double cones have perfect state transfer: (a) K2 + P3; (b) K2 + P5.

Proof Let AG be the adjacency matrix of G. The adjacency matrix of G is

AG =





0 b α〈x0|
b 0 α〈x0|

α|x0〉 α|x0〉 AG



 . (23)

For 1 ≤ k ≤ n−1, let λk and |xk〉 be the other eigenvalues and eigenvectors of AG. Next, we define
the following quantities:

λ̃±0 =
λ0 ± b

2
, ∆ =

√

(λ̃−0 )
2 + 2α2, λ± = λ̃+0 ±∆. κ± = λ̃−0 ±∆. (24)

The eigenvalues of AG are given by λ0 = 0, λ±, and λk, 1 ≤ k ≤ n − 1, with corresponding
eigenvectors

|z0〉 =
1√
2





+1
−1
|0n〉



 , |z±〉 =
1

L±





α/κ±
α/κ±
|x0〉



 , |zk〉 =





0
0

|xk〉



 (25)

where L2
± = 2α2/κ2± + 1. Note (κ±L±)

2 = 2α2 + κ2± = 2∆(∆ ± λ̃−0 ). The fidelity between A and
B, namely 〈B|e−itAG |A〉, is given by

∑

±

α2e−itλ±

(κ±L±)2
− 1

2
=

1

2

{

(∆ − λ̃−0 )e
−it(λ̃+

0 +∆) + (∆ + λ̃−0 )e
−it(λ̃+

0 −∆)

2∆
− 1

}

(26)

=
1

2

{

e−itλ̃+
0

[

cos(t∆) + i
λ̃−0
∆

sin(t∆)

]

− 1

}

. (27)

For perfect state transfer to occur, it is sufficient to have λ̃+0 /∆ ∈ Q0,1 ∪Q1,0.

Corollary 8 Let G be any connected graph whose maximum (simple) eigenvalue is λ0 with corre-
sponding positive eigenvector |x0〉. Consider the double cone G = K2 +G where the edges adjacent
to the two vertices of K2, say A and B, are weighted according to

√
n|x0〉. Then, perfect state

transfer exists from A to B if
λ0

√

λ20 + 8n
∈ Q0,1 ∪Q1,0. (28)

Proof In Theorem 7 with b = 0, let α =
√
n and note λ̃±0 = λ0/2. Thus, λ̃+0 /∆ = λ0/

√

λ20 + 8n,
which proves the claim.
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Remark: Given n, we may choose λ0 =
√

8n/3 so the sufficient condition λ0/
√

λ20 + 8n = 1/2 is
satisfied for perfect state transfer. Moreover, we can find a uniform edge weighting for G so that
√

8n/3 is a dominant eigenvalue. Thus, in the presence of weights, any double cone K2 + G has
perfect state transfer.

4.2 Glued double cones

Analogous to the construction of glued-(binary)trees in Childs et al. [10], we consider gluing two
double cones using a semi-regular bipartite connection to obtain a perfect state transfer graph. In
contrast, gluing two double cones using the join (full bipartite) connection yields no perfect state
transfer (even with weights) as proved in [2].

Theorem 9 Let G ∈ Gn,k and let C be a symmetric Boolean matrix which commutes with the
adjacency matrix of G. Suppose that C|1n〉 = γ|1n〉. Let k± = 1

2(k ± γ) and ∆± =
√

k± + n.
Then, the graph G = K1 +G ◦G+K1, formed by taking two copies of K1 +G and connecting the
copies of G using C, has perfect state transfer if ∆+/∆− ∈ Q0,1 ∪ Q1,0 and at least one of γ/∆+

or γ/∆− is in Q0,1.

Proof Suppose the eigenvalues and eigenvectors of G are λk and |vk〉, respectively, where k = λ0 >
λ1 ≥ . . . ≥ λn−1. The adjacency matrix of G is given by

AG =









0 0 〈1n| 〈0n|
0 0 〈0n| 〈1n|

|1n〉 |0n〉 AG C
|0n〉 |1n〉 C AG









. (29)

Let k± = 1
2 (k ± γ) and ∆2

± = k2± + n. Let α± = k+ ±∆+ and β± = k− ±∆−. The eigenvalues of
AG are given by α±, β±, and ±λk, for k 6= 0, with corresponding eigenvectors:

|α±〉 =
1

L±









1
1

1
nα±|1n〉
1
nα±|1n〉









, |β±〉 =
1

M±









+1
−1

+ 1
nβ±|1n〉

− 1
nβ±|1n〉









, |λk〉 =
1√
2









0
0

|vk〉
±|vk〉









, (30)

where L2
± = 2

n(n+α2
±) and M

2
± = 2

n(n+β2±) are the normalization constants. The quantum walks
between involving the cone vertices, say A and B, are given by

〈B|e−itAG |A〉 =
∑

±

e−itα±

L2
±

−
∑

±

e−itβ±

M2
±

(31)

〈A|e−itAG |A〉 =
∑

±

e−itα±

L2
±

+
∑

±

e−itβ±

M2
±

(32)

At time t = 0, the second equation yields 1 =
∑

± L
−2
± +

∑

±M
−2
± . To achieve perfect state transfer,

it suffices to require
e−itα± = +1, e−itβ± = −1, e−itγ/2 = ±1. (33)

We may restate these conditions as ∆+/∆− = Q0,1 ∪Q1,0 and {γ/∆+, γ/∆−} ∩Q0,1 6= ∅.
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Figure 6: Glued cones (a)K1+G◦G+K1 has perfect state transfer, with (b) G = Circ(15, {1, 2, 4});
(c) C = Circ(15, {1, 2, 4, 7}). The connection ◦ is defined by C.

Remark: In Theorem 9, the result also holds if we replace G with two distinct graphs G1 and G2

from the same family Gn.k.

In the following corollary, we describe an explicit family of glued double cones which exhibit
perfect state transfer. The construction uses a pair of circulant families of graphs (see Figure 6).

Corollary 10 For a ≥ 2, let n = 15 × 22(a−2), k = 3 × 2a−1, and γ = 4 × 2a−1. Consider two
circulant graphs G = Circ(n, [k/2]) and C = Circ(n, [γ/2]). Then, the graph G = K1 +G ◦G+K1

has perfect state transfer, where the connection ◦ is specified by C.

Proof Note we have k± = 1
2 (k ± γ) = 2a−2(3 ± 4) and ∆± = 2a−2((3 ± 4)2 + 15) ∈ 2a−2{8, 4}.

Thus, ∆+/∆− = 2 ∈ Q0,1 and γ/∆− = 2 ∈ Q0,1, which satisfy the sufficiency conditions for perfect
state transfer in Theorem 9.

4.3 Cylindrical cones

In this section, we consider graphs of the form K1 +G1 +H +G2 +K1, where G1, G2 ∈ Gn,k and
H ∈ Gm,ℓ. We show a negative result for perfect state transfer whenever H is the empty graph.
This generalizes known negative results on P4 and K1 +G+G+K1 (see [11, 2]).

Theorem 11 For any integers n, k,m where n ≥ 1, 0 ≤ k < n, and m ≥ 1, the graph K1 +G1 +
Km +G2 +K1 has no perfect state transfer, whenever G1, G2 ∈ Gn,k.

Proof Let G be the graph K1 +G1 +H +G2 +K1, where G1, G2 ∈ Gn,k and H ∈ Gm,ℓ. Let AG1

be the adjacency matrix of G1 with eigenvalues αr and eigenvectors |ur〉; similarly, let AG2 be the
adjacency matrix of G2 with eigenvalues βr and eigenvectors |vr〉, for r ∈ [n]. Note k = α0 = β0
are the simple maximum eigenvalues of both G1 and G2. Let AH be the adjacency matrix of H
with eigenvalues ρs and eigenvectors |ws〉, where ℓ = ρ0 is the simple maximum eigenvalue of H.
Thus, the adjacency matrix of G is given by

AG =













0 0 〈1n| 〈0n| 〈0n|
0 0 〈0n| 〈0n| 〈1n|

|1n〉 |0n〉 AG1 Jn,m On,n

|0m〉 |0m〉 Jm,n AH Jm,n

|0n〉 |1n〉 On,n Jn,m AG2













. (34)
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In our case, we have AH = Om,m is the zero m×m matrix and ℓ = 0.
Let λ± be the roots of quadratic polynomial λ2 − kλ− n = 0; thus λ± = k̃±∆, where k̃ = k/2

and ∆2 = k̃2 + n. Consider roots of the cubic polynomial (µ− ℓ)(µ2 − kµ− (2m+ 1)n)− 2ℓmn =
0. For ℓ = 0, zero is a root of this cubic along with the two roots of the quadratic equation
µ2 − kµ− (2m+ 1)n = 0. Let µ± = k̃ ± Γ, where Γ2 = k̃2 + (2m+ 1)n. The eigenvalues of AG are

given by λ±, µ±, 0, and λ
(1)
r , λ

(3)
r , for r 6= 0, and λ

(2)
s , for s 6= 0, with corresponding eigenvectors:

|λ±〉 =
1

L±













+1
−1

+ 1
nλ±|1n〉
|0n〉

− 1
nλ±|1n〉













, |µ±〉 =
1

M±













1
1

1
nµ±|1n〉
2|1n〉

1
nµ±|1n〉













, |v0〉 =
1

N













1
1

|0n〉
−1/m|1n〉

|0n〉













, (35)

and

|λ(1)r 〉 =













0
0

|ur〉
|0m〉
|0n〉













, |λ(2)s 〉 =













0
0

|0n〉
|ws〉
|0n〉













, |λ(3)r 〉 =













0
0

|0n〉
|0m〉
|vr〉













, (36)

where 1 ≤ r < n and 1 ≤ s < m. Here L±, M± and N are normalization factors. We have the
following fidelities:

〈B|e−itAG |A〉 = −
∑

±

e−itλ±

L2
±

+
∑

±

e−itµ±

M2
±

+
1

N2
(37)

〈A|e−itAG |A〉 =
∑

±

e−itλ±

L2
±

+
∑

±

e−itµ±

M2
±

+
1

N2
. (38)

At time t = 0, Equation (38) yields

1 =
∑

±

1

L2
±

+
∑

±

1

M2
±

+
1

N2
. (39)

So, to achieve perfect state transfer in Equation (37), we require that

e−itλ± = −1, e−itµ± = +1. (40)

This implies t(k̃ ±∆) ∈ (2Z+ 1)π and t(k̃ ± Γ) ∈ (2Z)π. We restate these conditions as

k̃ ±∆

k̃ ± Γ
∈ Q1,0,

k̃ ±∆

k̃ ∓ Γ
∈ Q1,0. (41)

Clearly it is necessary to have ∆,Γ ∈ Z, else the above quotients are not even rational.
Observe that if both k̃ and n are odd, both quotients lie in Q1,1. If k̃ is even and n is odd, the

same is true. If k̃ is odd and n is even, then the numerator and denominator of at least one of the
quotients must be congruent to 2 modulo 4, and so one lies in Q1,1. If both k̃ and n are even, than
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Figure 7: Cylindrical cones of diameter five with no perfect state transfer: (a) K1 + K3 + K1 +
K3 +K1; (b) K1 +K3 +K2 +K3 +K1.

we can divide the numerator and denominator of each quotient by 2 (clearly, then, 4 divides n as
well), rewriting the conditions as:

k̃′ ±∆′

k̃′ ± Γ′
∈ Q1,0,

k̃′ ±∆′

k̃′ ∓ Γ′
∈ Q1,0, (42)

where k̃′ = k̃/2, ∆′ = ∆/2, and Γ′ = Γ/2. Since this is in essence the same set of conditions as
before, we argue by infinite descent that there can be no solutions of this form. Since we have ruled
out all parity combinations for k̃ and n, there can be no solutions and no perfect state transfer in
this case.

5 Equitable partitions

The path-collapsing argument was used by Christandl et al. [11] to show that weighted paths have
perfect state transfer. This follows because the (unweighted) n-dimensional hypercube Qn has
perfect state transfer and it can be collapsed to a weighted path. On the other hand, this argument
was used in the opposite direction by Childs et al. [10] to show that a continuous-time quantum
walk on an unweighted layered graph has polynomial hitting time by observing its behavior on a
corresponding weighted path.

A natural way to view this reduction is by using equitable distance partitions and their quotient
graphs (for example, see [16, 21]). But, most quotient graphs derived this way are directed and
hence not suitable for quantum walks. The path-collapsing reduction offers a way to symmetrize
these directed quotient graphs into undirected graphs. In what follows, we formalize and generalize
this argument using the theory of equitable partitions (see Godsil [16]).

Lemma 12 Let G = (V,E) be a graph with an equitable distance partition π =
⊎m−1

j=0 Vj with
respect to vertices a and b. Then, the fidelity of a quantum walk on G between vertices a and b is
equivalent to the fidelity of a quantum walk on a symmetrized quotient graph G/π between π(a) = V0
and π(b) = Vm−1; namely, if BG/π[j, k] =

√

dj,kdk,j, for all j, k ∈ [m], then

|〈b|e−itAG |a〉| = |〈π(b)|e−itBG/π |π(a)〉|. (43)

Proof For j, k ∈ [m], let dj,k be the number of vertices in Vk adjacent to each vertex x in Vj . Let P
be the characteristic partition n×m matrix of π; namely, P [j, ℓ] = 1 if vertex j belongs to partition
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Vℓ, and 0 otherwise. Suppose Q be the matrix P after we normalize each column; so QTQ = In.
Then, we have

AGQ = QBG/π, (44)

where
BG/π[j, k] =

√

dj,kdk,j. (45)

The matrix BG/π is defined implicitly in [11] through the columns of Q (viewed as basis states in
a new graph)1. The following spectral correspondences between AG and BG/π can be shown:

• If AG|y〉 = λ|y〉, then BG/π|x〉 = λ|x〉, where |x〉 = QT |y〉, provided QT |y〉 6= 0.

• If BG/π|x〉 = λ|x〉, then AG|y〉 = λ|y〉, where |y〉 = Q|x〉.
Suppose that E(AG) = {|yk〉 : k ∈ [n]} is the (orthonormal) set of eigenvectors of AG; similarly, let
E(BG/π) = {|xk〉 : k ∈ [m]} be the (orthonormal) set of eigenvectors of BG/π. Since π(a) = {a}
and π(b) = {b} are singleton partitions, we have QT |a〉 = |π(a)〉 and QT |b〉 = |π(b)〉. Thus, we have

〈π(b)|e−itBG/π |π(a)〉 = 〈π(b)|
m−1
∑

k=0

(

e−itλk |xk〉〈xk|
)

|π(a)〉 (46)

= 〈b|
m−1
∑

k=0

(

e−itλkQ|xk〉〈xk|QT
)

|a〉 (47)

= 〈b|e−itAG |a〉. (48)

The last step holds since the orthonormal eigenvectors of AG can be divided into two types: those
that are constant on cells of π (the ones of the form |yk〉 = Q|xk〉, for some eigenvector |xk〉 of
BG/π) and those that sum to zero on each cell of π. The eigenvectors of the latter type do not
contribute to the quantum walk between the antipodal vertices a and b.

Remark: Lemma 12 shows that the double cones K2 +G, for regular graphs G ∈ Gn,k, which have
diameter two, are equivalent (in the sense of the fidelity of quantum walks between the antipodal
vertices) to a weighted P3 with adjacency matrix Ã1 (shown below).

Ã1 =





0
√
n 0√

n k
√
n

0
√
n 0



 Ã2 =





0
√
n 1√

n k
√
n

1
√
n 0



 (49)

The case of the connected double cone K2+G, where G ∈ Gn,k, can also be shown to be equivalent
to the weighted graph with adjacency matrix Ã2 (shown above). This simplifies the analyses on
values of n and k which allows perfect state transfer (see [3]).

In what follows, we use the generalized path-collapsing argument above to revisit (unweighted)
graphs of diameter three and compare them to (weighted) paths of length four. Then, we compare
a family of symmetrically weighted paths P4 (without self-loops) with a construction based on weak
products. This symmetry restriction on the weights can be made without loss of generality; see
Kay [18].

1Note BG/π is different from AG/π (as defined in [16]), since BG/π is symmetric and represents an undirected
weighted graph whereas AG/π represents a directed graph.
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Lemma 13 Let P4(γ;κ) denote a weighted path whose middle edge has weight γ while the other
two edges have unit weights and whose two internal vertices have self-loops with weight κ each. Let
∆± = 1

2

√

(κ± γ)2 + 4. Then, P4(γ;κ) has perfect state transfer if:

1. Case κ 6= 0: ∆+/∆− ∈ Q0,1 ∪Q1,0 and {γ/∆+, γ/∆−} ∩ (Q0,1 ∪Q1,1) 6= ∅; or

2. Case κ = 0: {γ/∆+, γ/∆−} ⊆ Q1,1 or {γ/∆+, γ/∆−} ⊆ Q1,0.

Proof Let k± = (κ± γ)/2, ∆2
+ = k2+ + 1, and ∆2

− = k2− + 1. The adjacency matrix A of P4(γ;κ),
whose eigenvalues are α± = k+ ±∆+ and β± = k− ±∆−, and its corresponding eigenvectors |α±〉
and |β±〉 are given by:

A =









0 1 0 0
1 κ γ 0
0 γ κ 1
0 0 1 0









, |α±〉 =
1

L±









1
1
α±

α±









, |β±〉 =
1

M±









+1
−1
+β±
−β±









, (50)

where L2
± = 4∆+(∆+ ± k+) and M2

± = 4∆−(∆− ± k−). The end-to-end fidelity of the quantum
walk on P4(γ;κ) is given by

〈3|e−itP4(γ;κ)|0〉 =
∑

±

e−itα±

L2
±

−
∑

±

e−itβ±

M2
±

(51)

At time t = 0, 〈0|e−itP4(γ;κ)|0〉 equals
∑

± 1/L2
± +

∑

± 1/M2
± = 1. Thus, to achieve unit fidelity

when κ 6= 0, it suffices to have e−itγ/2 = ±1, cos(t∆+) = ±1, and cos(t∆−) = ∓1 where t∆+ and
t∆− differ in their parities (as a multiple of π) while tγ is of even parity. But, when κ = 0, and
thus ∆+ = ∆−, it suffices to simply have tγ be of odd parity.

Note Theorem 9 forms a special case of Lemma 13 when κ 6= 0. The fact that the analyses are
equivalent follows from Lemma 12.

Remark: Let P4(γ) denote P4(γ; 0); that is, a weighted path with no self-loops. In this case,
∆+ = ∆− and a sufficient perfect state transfer condition is ∆+/γ ∈ Q1,1 ∪ Q0,1. So, P4(γ) has
end-to-end perfect state transfer if either:

• for odd integer K and even integer L, with L > K, we have γ = 2
√

K2/(L2 −K2); or

• for odd integers K and L, with 2L > K, we have γ = 2
√

K2/(4L2 −K2).

The weak productK2×K4k, for k ≥ 1, has perfect state transfer ifm is divisible by 4, by Proposition
2 (see Figure 4(a)). The path collapsing argument shows K2 × K4k is equivalent to P4(τ) where
τ = (4k−2)/

√
4k − 1 > 1. Thus, for perfect state transfer, the weak product construction K2×K4k

yields edge weights greater than 1, whereas P4(γ) can yield edge weights smaller than 1 (with longer
PST times). We are not aware of unweighted constructions which can emulate the latter property.
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6 Conclusions

Using the Cartesian graph product, Christandl et al. [11] constructed two families of perfect state
transfer graphs with large diameter, namely, Qn and P⊕n

3 . They also showed that weighted paths
have perfect state transfer by a path-collapsing reduction from Qn. This argument was used
specifically on graphs with equitable distance partitions whose cells are empty graphs. Our original
motivation was to generalize the Cartesian product construction and extend the path-collapsing
argument to larger classes of graphs.

In this work, we described new families of graphs with perfect state transfer using the weak
graph product and a generalized lexicographic product (which includes the Cartesian graph product
as a special case). We also considered constructions involving double cones which allow the cell
partitions to be non-empty graphs (unlike the Cartesian product graphs). Here, we prove perfect
state transfer on double cones of irregular graphs and on double half-cones connected by circulants.
These generalized results in [8, 3] on double cones of regular graphs and complement the negative
result on double half-cones in [2]. Although these cone constructions involve small diameter graphs,
they provided insights into which intermediate graphs allow antipodal perfect state transfer. Non-
antipodal perfect state transfer can also be derived from certain cones (as shown in [3]).

We also generalized the path-collapsing argument using the theory of equitable partitions. This
can be used to show that certain weighted paths with self-loops have perfect state transfer. A
possible interesting direction is to study random graphs with equitable distance partitions (as in
the Anderson model [1]). A weighted path-collapsing argument would also be interesting since it
can be used to analyze graphs produced in Feder’s intriguing construction [14]. The most elusive
graph not covered by this framework is P⊕n

3 since none of the path-collapsing arguments apply.
This is because the connections are irregular (see Figure 1(b)). We leave these as open questions.
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