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Abstract.- We present a novel canonical description of the incompressible fluid dynamics. This de-
scription uses the dynamical constraints, in our case reflecting incompressibility assumption, and leads
to replacement of usual hydrodynamical Poisson brackets for density and velocity fields with Dirac
brackets. The resulting equations are then known nonlinear, and nonlocal in space, equations for
incompressible fluid velocity.
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1 Introduction

Canonical description of classical, compressible, isothermal fluid has been developed in the past
[1, 2, 3] for various purposes, for example description of superfluid 4He [1] or in kinetics of the first
order phase transformations [2, 3]. An attempt to extend this formulation for the adiabatic flows has
been proposed [4] and used to analyze dynamical properties of thermally driven flows. The isothermal
flow canonical description can be generalize for the case of viscous fluids [5] within the framework of the
metriplectic dynamics [6]. The Madelung representation for the wave function results in hydrodynamic
like picture of quantum mechanics, where the “only” differences from Euler equations are hidden in
the quantum pressure term, which is proportional to ~

2, and in the quantization of the circulation,
Γ = n(~/m). Apart of that the canonical description of the quantum fluid is then identical to that
of the classical one. The dissipative generalization of the Schrödinger equation [7] also allows for
metriplectic interpretation, which differs from the classical one [8].

The fundamental point in all of the above listed formulations of fluid dynamics is that the fluid
density ρ is one out of the pair of canonically conjugated variables. For potential flows the other
canonical variable is the velocity potential φ. In case of general flow the two additional Clebsh
potentials λ, µ [9] in the velocity field representation v = −∇φ − λ∇µ are canonically conjugated to
each other. None of these descriptions can be applied to the case of incompressible fluids.

The canonical description of incompressible flow is of considerable importance, for example in
formulation of statistical mechanics of turbulent flow [5]. Many attempts to provide such a canonical
formalism [10] failed to do so. The other important point is that real turbulent flow are hardly
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incompressible, and the issues like compressibility corrections to scaling laws for turbulent flows are
still open [11].

In this paper we propose a novel formulation of a canonical description of the incompressible fluid
based on the concept of the Dirac brackets [12]. The mathematical introduction to this formalism
valid for general dynamic system subject to some set of constraints {Θa = 0, a = 1 . . .N} can be
found in [13]. Dirac bracket approach to description of incompressible membranes, within Lagrangian
coordinates formulation of continuous mechanics of membranes, was given in [14]. We are unaware of
any other application of that formalism to continuum mechanics problems. In separate publication
we shall present other application of the Dirac constraints formalism in classical mechanics [15].

The Dirac brackets, for incompressible fluid, are presented, in what follows, within the Poisson
bracket formulation of fluid mechanics [2, 3, 5], which avoids cumbersome introduction of the Clebsh
potentials. Thus the state of fluid is described by specifying its density and velocity fields.

2 Compressible fluid

Consider infinite 3-dimensional volume of the isothermal fluid with density ̺(r, t) and velocity
v(r, t). The Hamiltonian for such a system is given as:

H{̺,v} =

∫

[

̺v2/2 + f(̺)
]

d3r , (1)

where f(̺) is the fluid Helmholtz free energy per unit volume, related to the fluid pressure by

p = ̺
∂f

∂̺
− f(̺). (2)

The Poisson bracket relations between fields ̺(r, t) and v(r, t) are [5]:

{̺(x, t), ̺(y, t)} = 0 ,
{

̺(x, t), vi(y, t)
}

= −
∂

∂xi
δ(x− y) ,

{

vi(x, t), vj(y, t)
}

= δ(x− y)
1

̺(x, t)
ǫijk(∇× v)k(x, t) . (3)

The continuity equation is obtained by evaluating the Poisson bracket {̺,H}, and the Euler equation
by {v,H}

∂t̺(r, t) = {̺,H} = −∇ · ̺v ,

∂tv(r, t) = {v,H} = −v · ∇v − (1/̺)∇p(̺) . (4)

The above formulation of fluid mechanics can be derived from the least action principle provided we
choose the proper lagrangian. As shown by Thellung [1] this lagrangian density is the local pressure.

The incompressible fluid, although an obvious simplification, is adequate for all the flows when the
local Mach number is small. The incompressibility condition then is that the density ̺(r, t) − ̺0 = 0
what also implies that ∇ · v = 0. Within the canonical formulation framework both these conditions
are regarded as Dirac constraints[12] Θa(r,v, t) = 0, a = 1, 2. Next section contains a brief overview
of the Dirac brackets theory.

3 Dirac Brackets

The definition of the Dirac brackets we shall use in the following is a natural generalization for
the original construction proposed by Dirac [12] and discussed in detail in [13]. When the physical
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system with phase space P is subject to a set of constraints {Θa = 0} then its motion proceeds on

a submanifold P ⊃ S =
⋃N

a=1{zǫP|Θa(z) = 0}. If the Poisson bracket for two arbitrary (sufficiently
smooth etc.,) phase space functions F and G was {F,G}, then the Dirac bracket ⊑ F,G ⊒ is defined
as:

⊑ F,G ⊒= {F,G} = −

N
∑

a,b

{F,Θa}Mab{Θb, G} , (5)

where Mab is the inverse of the constraints Poisson bracket matrix Wab = {Θa,Θb}.
The generalization of the Dirac bracket to the case of continuous variables, like in hydrodynamics,

is straightforward. The sum over the indices a is replaced by sum and integration over the space
variables and the inverse of the matrix Wab(r, r

′) = {Θa(r),Θb(r
′)} is defined as:

∑

c

∫

dr′Wac(r, r
′)Mcb(r

′, r′′) = δabδ(r− r′′) . (6)

Dirac brackets, given by Eq.(5) replace the original Poisson brackets in the equation of motion for
the constrained system. Thus for a phase space function F the time evolution on the submanifold S
is governed by:

(

∂F

∂t

)

S

=⊑ F,H ⊒ , (7)

where H is system Hamiltonian. Next section will contain application of the Dirac brackets to the
description of the incompressible fluid.

4 Dirac Brackets for Incompressible Fluid

The constraints used in constructing the incompressible fluid dynamics are:

Θ1 ≡ ̺(r) − ̺0 = 0 ,

Θ2 ≡ ∇ · v(r) = 0 . (8)

The constraints Poisson bracket matrix Wab(r, r
′) can be evaluated using Eq.(3), and it reads:

Wab(r, r
′) = ∇i

r∇
j
r

([

0 −δij

δij ,
[

1
̺(r)ε

ijk(∇× v(r))k
]

]

δ(r− r′)

)

. (9)

In the Dirac formalism one needs the inverse of the matrix Wab(r, r
′) defined in(6). The matrix

elements Mab(r, r
′) obey the set of partial differential equations, written explicitly in the Appendix A.

Solving these equations we find matrix Mab(r, r
′) in the form:

Mab(r, r
′) =

[

M{G}, −G(r− r′)
G(r− r′), 0

]

, (10)

where G(r− r′) =| r− r′ | /4π is the Green function for the Laplace operator in the infinite volume,
and

M{G} = −

∫

dx′G(r− x′)∇x
′ ·

[

1

̺(x′)
∇x

′G(x′ − r′) × (∇× v(x′))

]

. (11)
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5 Dirac equations of motion for incompressible fluid

Using the definition and the explicit form of the Dirac brackets given in previous section and in
the Appendix A, we first calculate the Dirac bracket ⊑ ̺,H ⊒. From the definition (5), and (7) we
obtain:

∂̺(r, t)

∂t
=⊑ ̺(r, t),H ⊒= {̺(r, t),H} −

∑

ab

∫

dzdz′{̺(r, t),Θa(z)}Mab(z, z
′){Θb(z

′),H} . (12)

Explicit evaluation of the right hand side of Eq.(12) is a bit tedious, but using results from the
Appendix A and (23) one finds that it vanishes. Thus the continuity equation for incompressible
fluid, within the Dirac formalism reads ⊑ ̺(r, t),H ⊒= 0.

The algebra needed to derive equation of motion for the velocity field v is slightly more complex
than these leading to the continuity equation.

Following Dirac procedure we obtain:

∂v(r, t)

∂t
=⊑ v(r, t),H ⊒= {v(r, t),H} −

∑

ab

∫

dzdz′{v(r, t),Θa(z)}Mab(z, z
′){Θb(z

′),H} . (13)

Evaluation of the right hand side of (13), with use of expressions (23) gives: :

∂v(r, t)

∂t
= v(r, t) × (∇× v(r, t)) −∇r

[
∫

dzG(r − z)∇z · {v(z) × (∇× v(r, t))}

]

. (14)

Thus we have obtained nonlinear, nonlocal equation for the velocity field known from previous work
[3, 4].

The above exercise in the Dirac brackets calculation provides a novel formulation of the Euler
incompressible fluid. The viscous fluid equations can now easily be derived by replacing the Dirac
brackets by the metriplectic brackets discussed in [5]. We can also use the Dirac brackets as starting
point in the perturbation theory in which compressibility corrections are calculated. To do so one
formally associates small parameter κ to the matrix elements Mab and expresses the Poisson brackets
by the Dirac one. To the first order in κ the expression is identical to that in (5) with reversed role
of the Poisson and Dirac brackets.

In conclusion we have shown in the above that the Poisson brackets formulation of the fluid
dynamics can be used to derive the canonical theory of the incompressible fluid following the Dirac
prescription. The application of this theory will be discussed in following publication.

Acknowledgments.-
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Appendix A

Matrix M:

The matrix elements Mab satisfy the following system of partial differential equations:

∇z ·

[

∇zM21(x, z) +
1

ρ(z)
∇zM22(x, z) × (∇× v(z))

]

= δ(x− z), (15)

−∇x ·

[

∇xM12(x, z) +
1

ρ(x)
∇xM22(x, z) × (∇× v(x))

]

= δ(x− z), (16)
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△zM12(x, z) = −δ(x− z), (17)

△xM21(x, z) = δ(x− z), (18)

∇z ·

[

∇zM11(x, z) +
1

ρ(z)
∇zM12(x, z) × (∇× v(z))

]

= 0, (19)

∇x ·

[

∇xM11(x, z) +
1

ρ(x)
∇xM21(x, z) × (∇× v(x))

]

= 0, (20)

△zM22(x, z) = 0, (21)

△xM22(x, z) = 0. (22)

It is easy to check that these equations are satisfied by matrix elements given below:

M11(x, z) = −

∫

dx′G(x− x′)∇x
′ ·

[

1

̺(x′)
∇x

′G(x′ − z) × (∇× v(x′))

]

≡ M{G} ,

M12(x, z) = −M21(x, z) = −G(x− z) ,

M22(x, z) = 0 , (23)

Details of the Dirac brackets evaluation for the ideal fluid:

Consider the Hamiltonian (1), the Dirac bracket ⊑ ρ(x), H ⊒ reads:

⊑ ρ(x), H ⊒ = {ρ(x), H} −
∑

i,j

∫

dz1dz2 {ρ(x),Θi(z1)}Mij(z1, z2) {Θj(z2), H}

= ∇x · ~J(x) −

∫

dz△xM21(x, z)
[

∇z · ~J(z)
]

+ △xM22(x, z) [∇z · (v(z) × (∇× v(z))) −△z (µ(v, ̺))] = 0 . (24)

One sees immediately that the right hand side of (24) vanishes due to (18,22,23). Here J = ̺v
denotes the fluid particle current and µ(v, ̺) = |v|2/2 + ∂f(ρ(z))/∂̺ is the moving fluid chemical
potential.

The continuity equation is then

∂

∂t
ρ(x, t) =⊑ ρ(x, t), H ⊒= 0 , (25)

as expected.
Evaluating Dirac bracket ⊑ vi(x), H ⊒ we obtain:

⊑ vi(x), H ⊒ =
{

vi(x), H
}

−
∑

a,b

∫

dz1dz2
{

vi(x),Θa(z1)
}

Mab(z1, z2) {Θb(z2), H}

= Ai
0 −

∑

a,b

Ai
ab. (26)

After straightforward but lengthy calculations we obtain:
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Ai
0 =

{

vi(x), H
}

= [v(x) × (∇× v(x))]
i
−∇i [µ(v, ̺)] ,

Ai
11 = −∇i

x

∫

dzM11(x, z)
[

∇z · ~J(z)
]

,

Ai
22 = 0 ,

Ai
12 = ∇i

x

∫

dzG(x− z) {∇z · [v(z) × (∇× v(z))] −△z [µ(v, ̺)]} ,

Ai
21 = −

∫

dz
1

ρ(x)
[∇xG(x − z) × (∇× v(x))]

i
[

∇z · ~J(z)
]

,

(27)

Using above, together with equations (17) and (21) we obtain:

∂

∂t
v(x, t) = v(x) × (∇× v(x))

+

∫

dz

[

∇xM11(x, z) +
1

ρ(x)
∇xG(x − z) × (∇× v(x))

]

[

∇z · ~J(z)
]

−

∫

dz [∇xG(x− z)] {∇z · [v(z) × (∇× v(z))]} . (28)

Acting on both sides of equation (28) with operator div = ∇x·, and using equations (16,20) one
gets:

∂

∂t
[∇x · v(x, t)] =⊑ ∇x · v(x, t), H ⊒= ∇x· ⊑ v(x, t), H ⊒= ∇x ·

∂v

∂t
(x, t) = 0. (29)

Thus Θ2(x) = ∇x · v(x, t) is a constant of motions, as expected. Condition ρ = ρ0 implies that

∇x · ~J(x, t) is also a constant of motions, and ∇x · ~J(x, t) = 0.
Now, using equations (23,29) one easily sees that equation (28) reduces to

∂v(x, t)

∂t
= v(x, t) × (∇× v(x, t)) −∇x

[
∫

dzG(x− z) ∇z · [v(z, t) × (∇× v(z, t))]

]

, (30)

which is exactly the Euler equation for an ideal, incompressible fluid in its integral form.
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