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Abstract: This paper studies Bayesian variable selection in linear models
with spherically symmetric error distributions. We give a series of proper
prior distributions which converge in a certain sense to an improper prior
distribution and for which the Bayes factor for each possible sub-model
converges to the Bayes factor for the improper prior. This convergence
justifies the use of the improper prior in variable selection. We also show
that the resulting improper Bayes factors are independent of the particular
sampling model when all sub-models are assumed to have the same error
distribution. This gives a surprising robustness to the procedure which is
analogous to that observed in certain Bayes estimation problems involving
spherically symmetric error distributions. We also show that our procedure
has model selection consistency as the sample size increases for fixed maxi-
mum number of predictors uniformly over the entire class of spherical error
distributions. A simulation study indicates that the procedure performs
well and stably relative to a BIC based alternative.
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1. Introduction

Suppose the linear regression model is used to relate Y to the p potential pre-
dictors x1, . . . , xp,

y = α1n +XFβF + εF , (1.1)

where the subscript F refers to the full model MF . In the model (1.1), α is an
unknown intercept parameter, 1n is an n× 1 vector of ones, XF = (x1, . . . ,xp)
is an n × p design matrix, and βF is a p × 1 vector of unknown regression
coefficients. The error term εF has a spherically symmetric distribution with
density σ−nF fF (‖ε‖2/σ2

F ), which satisfies∫
Rn

fF (‖ε‖2/σ2
F )

σnF
dε =

πn/2

Γ(n/2)

∫ ∞
0

sn/2−1fF (s)ds = 1, (1.2)

where ‖ε‖ denotes the Euclidean norm given by (ε21 + · · ·+ ε2n)1/2. In (1.2), σ2
F

is the variance of εi and hence fF (·) satisfies

πn/2

Γ(n/2)

∫ ∞
0

sn/2fF (s)ds = n (1.3)
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as well as (1.2). We assume that the columns of XF have been standardized so
that for 1 ≤ i ≤ p, x′i1n = 0 and x′ixi/n = 1.

We shall be particularly interested in the variable selection problem where
we would like to select an unknown subset of the effective predictors. It will be
convenient throughout to index each of these 2p possible subset choices by the
vector

γ = (γ1, . . . , γp)
′

where γi = 0 or 1. We use qγ = γ′1p to denote the size of the γth subset. The
problem then becomes that of selecting a submodel of (1.1)

Y = α1n +Xγβγ + εγ . (1.4)

In (1.4), Xγ is the n× qγ matrix whose columns correspond to the γth subset
of x1, . . . , xp, βγ is a qγ × 1 vector of unknown regression coefficients. Let Mγ

denote the submodel given by (1.4). We allow εγ to be distributed differently
from εF . In particular, the error term εγ has a spherically symmetric distribution
with the probability density σ−nγ fγ(‖ε‖2/σ2

γ) satisfying

πn/2

Γ(n/2)

∫ ∞
0

sn/2−1fγ(s)ds = 1,
πn/2

Γ(n/2)

∫ ∞
0

sn/2fγ(s)ds = n, (1.5)

but fγ is not necessarily equal to fF . By (1.5), σ2
γ is the variance of the compo-

nents of εγ . We note that, in almost all earlier studies, error terms εF and εγ
in linear models are assumed to have the same Gaussian distribution, that is,
fF = fγ = fG where

fG(t) =
1

(2π)n/2
exp(−t/2), (1.6)

as in George and Foster (2000) and Liang et al. (2008).
In this paper, we assume that n > p + 1 (the so called classical setup) and

{x1, . . . ,xp} are linearly independent, which implies that

rank XF = p, rank Xγ = qγ . (1.7)

We also assume that the null model (qγ = 0 or γ = (0, . . . , 0)′) is not a possible
model, that is, the number of possible models is 2p − 1, rather than, 2p. In the
following, we will sometimes omit γ in Xγ , qγ , and εγ when its absence should
not cause confusion.

A Bayesian approach to this problem entails the specification of prior distri-
butions on the models πγ = Pr(Mγ), and on the parameters p(α, β, σ2) of each
model. For each such specification, of key interest is the posterior probability of
Mγ given y,

Pr(Mγ |y) =
πγmγ(y)∑
γ πγmγ(y)

=
πγBF[Mγ ;MF ]∑
γ πγBF[Mγ ;MF ]

, (1.8)

where mγ(y) is the marginal density under Mγ . In (1.8), BF[Mγ ;MF ] is the
Bayes factor for comparing each of Mγ to the full model MF which is defined
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as

BF[Mγ ;MF ] =
mγ(y)

mF (y)
,

where mF (y) is the marginal density under the full model. In Bayesian model
selection, the Bayes factor is often used as a criterion instead of employing the
marginal density directly. A popular strategy is to select the model for which
Pr(Mγ |y) or πγBF[Mγ ;MF ] is largest.

Our main focus in this paper is to propose and study specifications for the
prior distribution of the parameters for the submodel Mγ . In particular, the
joint density we consider has the form

p(α,θ, σ2) ∝ {σ2}−a/2−1‖θ‖−q+a (1.9)

for θ = (θ1, . . . , θq)
′ = (X ′X)1/2β and 0 < a < 1. Since the term including θ

in the prior above, ‖θ‖−q+a for 0 < a < min(2, q), is known as a sub-harmonic
function, that is,

q∑
i=1

∂2

∂θ2i
‖θ‖−q+a > 0,

we call the prior given by (1.9) a sub-harmonic prior. Fundamentally, a proper
prior should be used for the calculation of the marginal density for all models
in Bayesian model selection. The validity of the improper prior given by (1.9)
will be discussed in Section 3.

The organization of this paper is as follows. In Section 2, we give details of
the prior distribution. In Section 3, we show that the Bayes factor with respect
to the above prior is given by

BF[Mγ ;MF |a] =
E[‖εγ‖a]

E[‖εF ‖a]
BFG[Mγ ;MF |a] (1.10)

where

BFG[Mγ ;MF |a] =

∫∞
0
ga/2−1(1 + g)(n−qγ−1)/2{g(1−R2

γ) + 1}−(n−1)/2 dg∫∞
0
ga/2−1(1 + g)(n−p−1)/2{g(1−R2

F ) + 1}−(n−1)/2 dg
,

(1.11)
for 0 < a < 1 (we recommend a = 1/2 eventually). In (1.11), BFG[Mγ ;MF |a]
is the Bayes factor for a Gaussian distribution (1.6) and R2

γ and R2
F are the

coefficient of determination under the submodel Mγ and the full model MF ,
respectively. From (1.10), we see that if fγ = fF the Bayes factor does not de-
pend on the sampling density. Hence, even when there is no specific information
about the error distribution of each model (other than spherical symmetry),
but we assume they are all the same, it is not necessary to specify the exact
form of the sampling density. It suffices to assume they are all Gaussian, that
is, fγ = fF = fG. In the case where fγ and fF are assumed to be different,
the most typical choice of errors in linear model are probably multivariate-t
mainly because the tail behavior can be controlled by a single parameter from
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thin (Gaussian) to fat (Cauchy). We will show that even if the error distribu-
tions, fγ and fF , are multivariate-t with different (but > 3) degrees of freedom

BFG[Mγ ;MF |a] with a = 1/2 remains a good approximation to BF[Mγ ;MF |a]
with a = 1/2. As far as we know, in the area of Bayesian variable selection with
shrinkage priors, the sampling density has been assumed to be Gaussian and this
kind of robustness result has not yet been studied. Originally similar robustness
results were derived by Maruyama (2003) and Maruyama and Strawderman
(2005) in the problem of estimating regression coefficients with the Stein effect.
In Section 4, we approximate the Bayes factor given by (1.10). In Section 5, we
show that our Bayes factor BFG[Mγ ;MF |a] has model selection consistency as
n→∞ and p is fixed. In Section 6, we give some numerical results.

2. Prior distributions

In this section, we give a prior joint density of a form

p(α,β, σ2) = p(α)p(σ2)p(β|σ2).

Recall that we are suppressing the subscript on β, σ2 and q. The natural choice
of priors for location (α) and scale (σ2) are

pIα(α) = I(−∞,∞)(α), (2.1)

and
pIσ2(σ2) = (σ2)−1I(0,∞)(σ

2). (2.2)

In (2.1) and (2.2), the superscript I means that the prior density is improper.
Since (2.1) and (2.2) have invariance to location and scale transformation, re-
spectively, they are considered by many as non-informative objective priors.
The problem is that they are improper and hence determined only up to an
arbitrary multiplicative constant. In this paper, the use of improper priors is
justified through sequences of proper priors approaching the target improper
priors (2.1) and (2.2):

pα(α;hα) =
1

2hα
I(−hα,hα)(α) (2.3)

where hα →∞ and

pσ2(σ2;hσ) =
(σ2)−1∫ hσ

h−1
σ

(σ2)−1dσ2
I(h−1

σ , hσ)
(σ2) =

(σ2)−1

2 log hσ
I(h−1

σ , hσ)
(σ2) (2.4)

where hσ →∞. See the beginning of Section 3 for details of the justification.
Next we give a sequence of proper conditional priors of β given σ2, which

approach an improper conditional prior of β given σ2:

pβ|σ2(β|σ2;hg) =

{
a/2

h
a/2
g

}∫ hg

0

ga/2−1
|X ′X|1/2

(2πσ2g)q/2
exp

(
−β
′X ′Xβ

2σ2g

)
dg
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for 0 < a < q and hg > 0. Eventually we will recommend setting a = 1/2,
the midpoint of (0, 1), because we will have reason to choose the same a for all
submodels. Since this prior has the hierarchical structure

β|{σ2, g} ∼ Nq(0, gσ2(X ′X)−1), pg(g;hg) =
a/2

h
a/2
g

ga/2−1I[0,hg ](g),

it can be interpreted a scale mixture of Zellner’s g-priors. Similar priors have
been considered by Liang et al. (2008) and Maruyama and George (2008)
under the normal linear regression setup. For any fixed hg > 0, the prior
pβ|σ2(β|σ2;hg) is clearly a proper probability density, that is,∫

Rq pβ|σ2(β|σ2;hg)dβ = 1.

As hg →∞, the limit of a variant of pβ|σ2(β|σ2;hg) is given by

pIβ|σ2(β|σ2) = lim
hg→∞

{
h
a/2
g

a/2

}
pβ|σ2(β|σ2;hg)

=

∫ ∞
0

ga/2−1
|X ′X|1/2

(2π)q/2gq/2σq
exp

(
−β
′X ′Xβ

2σ2g

)
dg

=
Γ({q − a}/2)

2a/2πq/2
|X ′X|1/2(β′X ′Xβ)−(q−a)/2{σ2}−a/2.

In summary, the proper prior joint density, which we will use in this paper, is
given by

p(α,β, σ2;hα, hg, hσ) = pα(α;hα)pσ2(σ2;hσ)pβ|σ2(β|σ2;hg) (2.5)

which clearly satisfies∫ ∞
−∞

∫
Rq

∫ ∞
0

p(α,β, σ2;hα, hg, hσ)dαdβdσ2 = 1,

for any fixed hα, hg and hσ. In Section 3, we will also use the improper joint
density of α, β and σ2 given by

pI(α,β, σ2) = pIα(α)pIσ2(σ2)pIβ|σ2(β|σ2)

= {8/a} lim
hα→∞

lim
hσ→∞

lim
hg→∞

hα log hσh
a/2
g p(α,β, σ2;hα, hg, hσ)

=
Γ({q − a}/2)

2a/2πq/2
|X ′X|1/2(β′X ′Xβ)−(q−a)/2{σ2}−a/2−1.

(2.6)

In this presentation of the improper joint density pI(α,β, σ2), two facts,

1. (α,β) and σ2 are separable,
2. the part depending on σ2 is given by the power function {σ2}−a/2−1,
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will be the key for calculating the marginal density in the next section.
If, in the above joint prior for (α,β, σ2), we make the change of variables,

θ = (X ′X)1/2β, the joint prior of (α,θ, σ2) becomes

pI(α,θ, σ2) =
Γ({q − a}/2)

2a/2πq/2
‖θ‖−(q−a){σ2}−a/2−1. (2.7)

As noted in the introduction, the part depending on θ, ‖θ‖−(q−a) for 0 < a <
min(2, q), is known as a subharmonic function, that is,

q∑
i=1

∂2

∂θ2i
‖θ‖−(q−a) = (q − a)(2− a)‖θ‖−(q−a)−2 > 0.

3. Marginal density and Bayes factor

In this section we derive the marginal density under each submodel and the
Bayes factor for comparing eachMγ to the full modelMF . The marginal density
of y under Mγ , is given by

mγ(y;hα, hg, hσ) =

∫ ∞
−∞

∫
Rq

∫ ∞
0

1

σn
fγ(‖y − α1n −Xβ‖2/σ2)

× p(α,β, σ2;hα, hg, hσ)dα dβ dσ2,

(3.1)

where the proper joint prior p(α,β, σ2;hα, hg, hσ) is given by (2.5). In (3.1), hα,
hg, and hσ do not depend on the submodel, but are the same in all models. In
the following, instead of mγ(y) directly, we consider the limit of a variant of
mγ(y),

Mγ(y)

= {8/a} lim
hα→∞

lim
hσ→∞

lim
hg→∞

hα log hσh
a/2
g mγ(y;hα, hg, hσ)

=

∫ ∞
−∞

∫
Rq

∫ ∞
0

1

σn
fγ

(
‖y − α1n −Xβ‖2

σ2

)
pI(α,β, σ2)dα dβ dσ2,

(3.2)

which is the marginal density with respect to the improper joint prior pI(α,β, σ2)
given by (2.6). The second equality in (3.2) follows from the monotone conver-
gence theorem. We choose the same a in all submodels, and thus the Bayes fac-
tor mγ(y;hα, hg, hσ)/mF (y;hα, hg, hσ) approaches Mγ(y)/MF (y) as hα →∞,
hg →∞ and hσ →∞. Hence the use of the improper joint prior is justified as
long as Mγ(y)/MF (y) is well-defined. As remarked in Section 1, the null-model
is not a possible model. Since there is no β and hence no hg, MN (y)/MF (y) is
not well-defined.

Let MG
γ (y) be the marginal density underMγ with Gaussian errors εG, i.e.,

fγ = fG where fG is given by (1.6). Before proceeding with the entire calculation
of the marginal density, Mγ(y), we will provide a relationship between Mγ(y)
and MG

γ (y) as follows.
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Lemma 3.1. Let a be between 0 and qγ . Assume the existence of E[‖εγ‖a].
Then

Mγ(y) =
E[‖εγ‖a]

E[‖εG‖a]
MG
γ (y). (3.3)

Proof. See Appendix.

Hence Mγ(y) depends on the error distribution εγ only through the a-th
moment of εγ , E[‖εγ‖a]. Using some techniques from Strawderman (1971) and
Liang et al. (2008), we have the following result concerning MG

γ (y).

Lemma 3.2. Let a be between 0 and qγ . Then

MG
γ (y) =

n1/2Γ({n− 1}/2)

‖y − ȳ1n‖n−1π(n−1)/2

∫ ∞
0

ga/2−1(1 + g)(n−qγ−1)/2{
g(1−R2

γ) + 1
}(n−1)/2 dg, (3.4)

where R2
γ is the coefficient of determination under the submodel Mγ .

Proof. See Appendix.

Combining Lemmas 3.1 and 3.2, we have the main result of this paper.

Theorem 3.1. Let a be between 0 and qγ . Assume that the proper joint prior
density of (α,βγ , σ

2
γ) is given by (2.5) with parameters hα > 0, hσ > 0, hg > 0.

Assume also E[‖εγ‖a] < ∞. Then the limit of the Bayes factor for comparing
each of Mγ to the full model MF is given by

BF[Mγ ;MF |a] = lim
hα→∞

lim
hg→∞

lim
hσ→∞

mγ(y;hα, hg, hσ)

mF (y;hα, hg, hσ)

=
E[‖εγ‖a]

E[‖εF ‖a]
BFG[Mγ ;MF |a]

where

BFG[Mγ ;MF |a] =

∫∞
0
ga/2−1(1 + g)(n−qγ−1)/2{g(1−R2

γ) + 1}−(n−1)/2 dg∫∞
0
ga/2−1(1 + g)(n−p−1)/2{g(1−R2

F ) + 1}−(n−1)/2 dg
.

(3.5)

At this point, a has not been fixed, but has to be in the open interval (0, 1)
in order that all Bayes factors are well defined. As the default choice of a, we
recommend the midpoint

a∗ = 1/2. (3.6)

In Sub-Section 3.2 below, we will consider the “correction term”, E[‖εγ‖a]/E[‖εF ‖a]
for a = 1/2 and will demonstrate E[‖εγ‖a]/E[‖εF ‖a] is negligible in many cases.

In Section 4, we will approximate BFG[Mγ ;MF |a] by the Laplace method.

Remark 3.1. Expression (3.5) again shows why the null model is not allowed
as a possibility. For the null model MN , R2

N = 0 so the numerator of (3.5)
is infinite, and hence so would be BFG[MN ;MF |a]. This situation may be
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avoided at a slight cost in complexity and in interpretability of the expressions.
The required alteration in the prior distributions (proper and improper) is to
treat the intercept parameter α as another β, (and not give it a “uniform”
prior). This results in replacing the improper prior in (2.6) by

pI(α,β, σ2) =
Γ({q + 1− a}/2)

2a/2πq/2+1/2
|X̌ ′X̌|1/2(β̌′X̌ ′X̌β̌)−(q+1−a)/2{σ2}−a/2−1,

where β̌ = (α,β′)′ and X̌ = (1n|X). Similarly the marginal distribution in
(3.4) and the Bayes factor given by (3.5) are replaced by

M̌G
γ (y) =

Γ(n/2)

‖y‖nπn/2

∫ ∞
0

ga/2−1(1 + g)(n−qγ−1)/2{
g(1− Ř2

γ) + 1
}n/2 dg,

and

B̌F
G

[Mγ ;MF |a] =

∫∞
0
ga/2−1(1 + g)(n−qγ−1)/2{g(1− Ř2

γ) + 1}−n/2 dg∫∞
0
ga/2−1(1 + g)(n−p−1)/2{g(1− Ř2

F ) + 1}−n/2 dg
,

where Ř2
γ = 1−RSSγ/‖y‖2, (the “coefficient of determination” of the modelMγ

relative to the 0-intercept model). Hence with the substitutionR2
γ → Ř2

γ , n−1→
n, qγ → qγ + 1, y − ȳ1n → y, all expressions and results in the paper remains
valid and the result (Theorem 5.1) on model selection consistency in Section
5 holds also for the null model. Clearly Ř2

γ is unusual, but if model selection

consistency under the null-model is desirable, we can use B̌F
G

[Mγ ;MF |a].

3.1. BIC under spherically symmetric error distributions

BIC (Schwarz (1978)) is a popular criterion for model selection. We will show in
this subsection that BIC has a similar distributional robustness property to the
above Bayes model selection procedure. In Section 4, we will develop a Laplace
approximation to our robust Bayes factors which relates them to BIC. In Section
5 we will show that both the BIC and robust Bayes model selection procedures
are consistent.

BIC for the model Mγ is defined as

BIC = −2 ln

{
max
α,βγ ,σ2

1

σn
fγ

(
‖y − α1n −Xγβγ‖2

σ2

)
n−q/2

}
, (3.7)

and is derived by eliminating O(1) terms from the approximate marginal den-
sities. Here we denote the function (3.7) by Mγ(y|BIC). In general, the maxi-
mization with respect to unknown parameters in (3.7) is not always tractable.
However when fγ is decreasing (i.e. εγ has a unimodal spherically symmetric

distribution), the maximization is achieved by α̂ = ȳ, β̂ = (X ′X)−1X ′y, and

σ̂2 = cγ‖y − α̂1n −Xβ̂‖2 = cγ‖y − ȳ1n‖2(1−R2
γ) (3.8)
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where cγ is the sole solution of

n/2 + cf ′γ(c)/fγ(c) = 0. (3.9)

Hence Mγ(y|BIC) may be expressed as

Mγ(y|BIC) =
c
−n/2
γ fγ(cγ)

c
−n/2
G fG(cG)

MG
γ (y|BIC) (3.10)

where MG
γ (y|BIC) is Mγ(y|BIC) with the Gaussian error, specifically

MG
γ (y|BIC) = c

−n/2
G fG(cG){‖y − ȳ1n‖2(1−R2

γ)}−n/2n−q/2

= n−n/2fG(n){‖y − ȳ1n‖2(1−R2
γ)}−n/2n−q/2

(3.11)

(since cG is given by n). Clearly (3.10) and (3.11) correspond to (3.3) and (3.4),
respectively. The Bayes factor based on the BIC is given by

BF[Mγ ;MF |BIC] =
Mγ(y|BIC)

MF (y|BIC)
=

c
−n/2
γ fγ(cγ)

c
−n/2
F fF (cF )

BFG[Mγ ;MF |BIC] (3.12)

where

BFG[Mγ ;MF |BIC] =
(1−R2

γ)−n/2n−q/2

(1−R2
F )−n/2n−p/2

, (3.13)

which corresponds to (3.5).
Hence the Bayes factor based on BIC is also independent of the sampling

distribution fγ(·) provided the unimodal error density fγ(·) is the same for all
models (c.f. Theorem 3.1).

3.2. Correction terms for Bayes factor

In this subsection, we will consider the correction terms, E[‖εγ‖a]/E[‖εF ‖a] in

(3.5) and {c−n/2γ fγ(cγ)}/{c−n/2F fF (cF )} in (3.12).

Case I εγ and εF have the same arbitrary distribution
Clearly both correction terms become 1 and hence we have

BF[Mγ ;MF |a] = BFG[Mγ ;MF |a]

and
BF[Mγ ;MF |BIC] = BFG[Mγ ;MF |BIC],

with unimodal εγ and εF . Hence, even when there is no specific infor-
mation about the error distribution of each model (other than spherical
symmetry), but we assume they are all the same, it is not necessary to
specify the exact form of the sampling density. It suffices to assume they
are all Gaussian, that is, fγ = fF = fG. As far as we know, in the area
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of Bayesian variable selection with shrinkage priors, the sampling den-
sity has been assumed to be Gaussian and this kind of robustness results
has not yet been studied. Similar robustness results have been derived by
Maruyama (2003) and Maruyama and Strawderman (2005) in the problem
of estimating regression coefficients with the Stein effect.

Case II εγ and εF are distributed differently
In the case where fγ and fF are assumed to be different, the most typical
choice of error distribution in linear models is probably a multivariate-t,
mainly because the tail behavior can be controlled by a single parameter
from thin (Gaussian) to fat (Cauchy).

Lemma 3.3. Let εγ have a multivariate-t with m degrees of freedom, with
the density given by

Γ({m+ n}/2)

πn/2mn/2Γ(m/2)
(1 + ‖ε2‖/m)−{m+n}/2. (3.14)

Then
E[‖εγ‖a]

E[‖εG‖a]
=
(m

2

)a/2 Γ({m− a}/2)

Γ(m/2)
≡ g(m, a)

and

c
−n/2
γ fγ(cγ)

c
−n/2
G fG(cG)

=
Γ({m+ n}/2)

{(m+ n)/2}(m+n)/2

{m/2}m/2

Γ(m/2)
en/2 ≡ h(m,n).

Proof. See Appendix.

From the properties of the Gamma function, g(m, a) is decreasing in m,
for example in the case a = 1/2, g(m, a) varies from g(3, 0.5) ≈ 1.132 to
g(∞, 0.5) = 1. On the other hand, h(m,n) for any fixed n is increasing in
m, for example, in the case n = 30, h(m,n) varies from h(3, 30) ≈ 0.287
to h(∞, 30) = 1.
The next result uses the above lemma to give bounds on the ratios of
Bayes factors for the case of t-distributions with at least three degrees
of freedom (so that the second moments exist) and for default choice of
a = 1/2.

Theorem 3.2. Let εγ and εF have multivariate-t distributions with dif-
ferent degrees of freedom, each of which is greater than 3, and a = 1/2.
Then

C−1 <
BF[Mγ ;MF |1/2]

BFG[Mγ ;MF |1/2]
< C (3.15)

where C ≈ 1.132 and

C−1BIC(n) <
BF[Mγ ;MF |BIC]

BFG[Mγ ;MF |BIC]
< CBIC(n) (3.16)

where CBIC(30) ≈ 3.486, CBIC(50) ≈ 4.426 and something.
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Hence BFG[Mγ ;MF |a] with a = 1/2 remains a good approximation to
BF[Mγ ;MF |a] with a = 1/2 even if the error distributions, fγ and fF , are
multivariate-t with different (but > 3) degrees of freedom. On the other
hand, the correction term for BIC is not negligible in this case.

4. The Laplace approximation

In this section, we will approximate the function BFG[Mγ ;MF ] by the so-called
Laplace approximation. First we provide a summary of Laplace approximations
to the integral based on Tierney and Kadane (1986). For integrals of the form∫ ∞

−∞
exp(h(τ, n))dτ,

we make the use of the fully exponential Laplace approximation, based on ex-
panding a smooth unimodal function h(τ, n) in a Taylor series expansion about
τ̂ , the mode of h(τ, n). The Laplace approximation is given by

lim
n→∞

∫∞
−∞ exp(h(τ, n))dτ

(2π)1/2σ̂h exp(h(τ̂ , n))
= 1 (4.1)

where

σ̂h =

{
−∂

2h(τ, n)

∂τ2

∣∣∣
τ=τ̂

}−1/2
.

In the following, we will use the symbol f(n) ≈ g(n) (n→∞) if

lim
n→∞

f(n)

g(n)
= 1. (4.2)

Hence the approximation given by (4.1) is written as∫ ∞
−∞

exp(h(τ, n))dτ ≈ (2π)1/2σ̂h exp(h(τ̂ , n)), (n→∞). (4.3)

The next result gives approximations of the Bayes factor (3.5) in terms of the
Bayes factor based on BIC given in (3.13).

Proposition 4.1.

BFG[Mγ ;MF |a]

≈

{
(qγ − a)qγ−a−1(1−R2

γ)−n+1+qγ−a{nR2
γe}a−qγ

(p− a)p−a−1(1−R2
F )−n+1+p−a{nR2

F e}a−p

}1/2

=

{
c(qγ − a,R2

γ)

c(p− a,R2
F )

}1/2

BFG[Mγ ;MF |BIC]

(4.4)

where c(s,R2) = ss−1(1− R2)s+1{eR2}−s and BFG[Mγ ;MF |BIC] is given by
(3.13).

Proof. See Appendix.
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5. Model selection consistency

In this section, we consider model selection consistency in the case where p is
fixed and as n approaches infinity. Let MT be the true model,

y = αT1n +XTβT + ε.

The consistency for model choice is defined as

plim
n→∞

Pr(MT |y) = 1,

where plim denotes convergence in probability and the probability distribution
is the sampling distribution under the true model MT . We will show that our
criterion of general form, BFG[Mγ ;MF |a] given by (3.5), has a model selection
consistency. The consistency property is clearly equivalent to

plim
n→∞

BFG[Mγ ;MF |a]

BFG[MT ;MF |a]
= 0 ∀Mγ 6=MT . (5.1)

For the model selection consistency, we assume as follows.

A1. Un = ‖ε‖2/{nσ2} is bounded in probability from below and from above,
that is, for any c > 0 and any positive integer n, there exists an M such
that

Pr
(
M−1 < Un < M

)
> 1− c.

A2. The correlation coefficient of xi and xj , x
′
ixj/n, for any i 6= j has a limit

as n→∞.
A3. The limit of the correlation matrix of x1, . . . , xp, limn→∞X

′
FXF /n, is pos-

itive definite.

A1 seems more general than necessary. It appears that, by the law of large num-
bers, Un ought to converge to 1 in probability, but this is not necessarily true if
the error distribution is not Gaussian. In the case of a scale mixture of Gaussian,
Un approaches, in law, a random variable g which has the distribution of the
mixing variable of the variance. Even when the error distribution is not a scale
mixture of normals, A1 appears to be a reasonable and minimal assumption.
A2 is the standard assumption which also appears in Knight and Fu (2000) and
Zou (2006). A3 is natural because the columns of XF are assumed to be lin-
ear independent. Under these mild assumptions, we have following preliminary
results for proving the consistency.

Lemma 5.1. Assume A1, A2 and A3.

1. For any k > 0 and any positive integer n, there exists a c1(γ, k) > 1 such
that

Pr

(
1

c1(γ, k)
< R2

γ < 1− 1

c1(γ, k)

)
> 1− k. (5.2)
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2. Let γ ) T . Then (1− R2
T )/(1− R2

γ) ≥ 1. Further for any k > 0 and any
positive integer n, there exists a c2(γ, T, k) > 0 such that

Pr

(
1 ≤

(
1−R2

T

1−R2
γ

)n
< 1 + c2(γ, T, k)

)
> 1− k. (5.3)

3. Let γ + T . Then for any k > 0 and any positive integer n, there exists a
c3(γ, T, k) > 1 such that

Pr

(
1−R2

T

1−R2
γ

< 1− 1

c3(γ, T, k)

)
> 1− k. (5.4)

Proof. See Appendix.

The main theorem on the consistency is as follows.

Theorem 5.1. Assume A1, A2 and A3. Then the Bayes factor BFG[Mγ ;MF |a]
for 0 < a < 1 is consistent for model selection.

Proof. By Lemma 5.1, c(qγ − a,R2
γ) for 0 < a < 1 goes to a constant in proba-

bility for all models and hence (5.1) is equivalent to

plim
n→∞

BFG[Mγ ;MF |BIC]

BFG[MT ;MF |BIC]
= plim
n→∞

{
nqT−qγ

(
1−R2

T

1−R2
γ

)n}1/2

= 0. (5.5)

Consider the following two situations:

1. γ ) T : By the lemma, {(1 − R2
T )/(1 − R2

γ)}n is bounded in probability.
Since qγ > qT , (5.5) is satisfied.

2. γ + T : By the lemma, (1 − R2
T )/(1 − R2

γ) is strictly less than 1 in
probability. Hence {(1−R2

T )/(1−R2
γ)}n converges to zero in probability

exponentially fast with respect to n. Therefore, no matter what value
qT − qγ takes, (5.5) is satisfied.

These complete the proof.

Remark 5.1. The issue of model selection consistency in our setup, is somewhat
complicated by the wide choice of possible error distributions. If all errors are
normally distributed, then under our assumptions A2 and A3 on the design
matrix XF , imply that each R2

γ approaches a constant, and that ‖ε‖2/n →
σ2 <∞. If on the other hand, all models are variance mixtures of normals with
mixture variance distributed as a positive random variable g, then ‖ε‖2/n→ g
a random variable, and R2

γ also approaches a random variable which is bounded
above and below in probability provided that g is similarly bounded.

In general philosophical terms, it might be better to assume that the se-
quence of error terms ε = (ε1, . . . , εn)′ are exchangeable for all n. By De finetti’s
Theorem, this would imply that the error terms all have a variance mixture
of normal distributions. We have chosen a slightly weaken requirement on the
sequence of error distributions, namely, that ‖ε‖2/n remains bounded above
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and below in probability, which extracts the necessary limiting behavior of the
error terms to ensure consistency of model selection. Interestingly, although we
attain model selection consistency with these assumptions, it is not necessarily
true that σ2 = varεi = varg is consistently estimated by ‖ε‖2/n.

6. Simulation Study

In this section, we compare numerical performance of our BFG[Mγ ;MF |a] with
BIC in a small simulation study. We generated 16 possible correlated predictors
(p = 16) as follows:

cor=0.5︷ ︸︸ ︷
x1, x2 , x3, x4︸ ︷︷ ︸

cor=−0.4

,

cor=0.3︷ ︸︸ ︷
x5, x6 , x7, x8︸ ︷︷ ︸

cor=−0.2

,

cor=0.1︷ ︸︸ ︷
x9, x10 ∼ N(0, 1)

x11, x12, x13, x14, x15, x16 ∼ N(0, 1).

Here “cor” denotes the correlation of two normal random variables. Also (x1, x2),
(x3, x4), (x5, x6), (x7, x8), (x9, x10), x11, x12, x13, x14, x15, x16 are assumed to
be independent. After generating pseudo random x1, . . . , x16, we centered and
scaled them as noted in Section 1. We assume n = 30 and consider 4 cases where
the true predictors are

qT = 16 x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16
qT = 12 x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12
qT = 8 x1, x2, x5, x6, x9, x10, x11, x12
qT = 4 x1, x2, x5, x6

(where qT denotes the number of true predictors) and the true model is given
by

y = 130 + 2
∑

i∈{true}

xi + σ ×

{
N30(0, I30),

Multi-t(0, I30; 3, 30),
(6.1)

with σ = 0.5, 1, 2. In (6.1), the density of Multi-t(0, In;m,n) is given by
(3.14). The Table 1 and 2 show that how often the true model is in the top
3 among 216 − 1 candidates when the number of replication is N = 200. The
error distributions are normal (Table 1) and multivariate-t with 3 degrees of
freedom (Table 2). For the case of normally distributed errors (See Table 1), the
Bayes factor method performed well and stably for σ = 0.5 and σ = 1 and did
reasonably well for σ = 2 for the smaller true models (qT = 4, 8). BIC seemed,
generally, to have a preference for larger models, and performed much less well
than the Bayes factor method for σ = 0.5 and σ = 1 for models of smaller size
(qT = 4, 8, 12) For σ = 2, BIC did substantially better than BF for the largest
model (qT = 16) and somewhat better for qT = 12.

Interestingly, for the case of a multivariate-t error distribution with 3 degrees
of freedom (the minimum so that a variance exists), the numerical results were
quite similar to those in the normal case for both BF and BIC, both quantita-
tively and qualitatively.
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Table 1
Frequency of the true model (normal error)

qT 16 12 8 4

rank 1st 1st-3rd 1st 1st-3rd 1st 1st-3rd 1st 1st-3rd

σ = 0.5
BF 1.00 1.00 0.96 1.00 0.90 1.00 0.89 0.98
BIC 1.00 1.00 0.43 0.66 0.31 0.53 0.23 0.44

σ = 1
BF 0.82 0.90 0.89 0.99 0.85 0.95 0.80 0.93
BIC 1.00 1.00 0.43 0.66 0.31 0.53 0.23 0.44

σ = 2
BF 0.05 0.08 0.22 0.39 0.54 0.74 0.56 0.74
BIC 0.58 0.78 0.31 0.50 0.27 0.47 0.23 0.43

Table 2
Frequency of the true model (multi-t with d.f. 3 error)

qT 16 12 8 4

rank 1st 1st-3rd 1st 1st-3rd 1st 1st-3rd 1st 1st-3rd

σ = 0.5
BF 0.95 0.95 0.96 0.98 0.92 0.99 0.88 0.99
BIC 0.99 0.99 0.46 0.66 0.30 0.48 0.26 0.43

σ = 1
BF 0.89 0.93 0.94 0.98 0.90 0.98 0.84 0.98
BIC 0.98 0.99 0.44 0.66 0.29 0.48 0.26 0.43

σ = 2
BF 0.13 0.16 0.27 0.39 0.43 0.57 0.42 0.61
BIC 0.44 0.55 0.28 0.42 0.18 0.35 0.17 0.33
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Appendix A: Proof of Lemma 3.1

Under the submodelMγ , the conditional marginal density of y with respect to
improper prior (σ2)−a/2−1 given α and β is∫ ∞

0

σ−nfγ

(
‖y − α1n −Xβ‖2

σ2

)
(σ2)−a/2−1dσ2

= ‖y − α1n −Xβ‖−n−a
∫ ∞
0

t{n+a}/2−1fγ(t)dt

=

∫∞
0
t(n+a)/2−1fγ(t)dt∫∞

0
t(n+a)/2−1fG(t)dt

∫ ∞
0

fG

(
‖y − α1n −Xβ‖2

σ2

)
(σ2)−a/2−1

σn
dσ2

=
E[‖εγ‖a]

E[‖εG‖a]

∫ ∞
0

fG

(
‖y − α1n −Xβ‖2

σ2

)
(σ2)−a/2−1

σn
dσ2

(A.1)

where

fG(t) =
1

(2π)n/2
exp(−t/2)

provided ∫ ∞
0

t(n+a)/2−1fγ(t)dt <∞ ⇔ E[‖εγ‖a] <∞. (A.2)

Therefore, we have

Mγ(y) =
E[‖εγ‖a]

E[‖εG‖a]
MG
γ (y)

where

MG
γ (y) =

∫ ∞
−∞

∫
Rq

∫ ∞
0

1

(2πσ2)n/2
exp

(
−‖y − α1n −Xβ‖

2

2σ2

)
× pI(α,β, σ2)dα dβ dσ2.

(A.3)

Appendix B: Proof of Lemma 3.2

As in (A.3), MG
γ (y) is given by

MG
γ (y) =

∫ ∞
−∞

∫
Rq

∫ ∞
0

1

(2πσ2)n/2
exp

(
−‖y − α1n −Xβ‖

2

2σ2

)
× pI(α,β, σ2)dα dβ dσ2

=

∫ ∞
−∞

∫
Rq

∫ ∞
0

∫ ∞
0

1

(2πσ2)n/2
exp

(
−‖y − α1n −Xβ‖

2

2σ2

)
× ga/2−1{σ2}−1 |X ′X|1/2

(2πσ2)q/2gq/2
exp

(
−β
′X ′Xβ

2σ2g

)
dα dβ dσ2 dg.

(B.1)

In the following, we calculate the integration of MG
γ (y) with respect to α, β,

σ2, and g, in this order.
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By the simple relation

y − α1n −Xβ = (−α+ ȳ)1n + v −Xβ

where ȳ is the mean of y and v = y − ȳ1n, we have the Pythagorean relation,

‖y − α1n −Xβ‖2 = n(−α+ ȳ)2 + ‖v −Xβ‖2,

since X has been already centered. Then we have∫ ∞
−∞

1

(2πσ2)n/2
exp

(
−‖y − α1n −Xβ‖

2

2σ2

)
dα

=

∫ ∞
−∞

1

(2πσ2)n/2
exp

(
−n(α− ȳ)2

2σ2
− ‖v −Xβ‖

2

2σ2

)
dα

=
n1/2

(2πσ2)(n−1)/2
exp

(
−‖v −Xβ‖

2

2σ2

)
.

Next we consider the integration with respect to β. Note the relation of com-
pleting squares with respect to β

‖v −Xβ‖2 + g−1β′X ′Xβ

=
1 + g

g

(
β − g

1 + g
β̂

)′
X ′X

(
β − g

1 + g
β̂

)
− g

1 + g
‖Xβ̂‖2 + ‖v‖2

=
1 + g

g

(
β − g

1 + g
β̂

)′
X ′X

(
β − g

1 + g
β̂

)
+
‖v‖2

1 + g

{
g(1−R2) + 1

}
where β̂ = (X ′X)−1X ′v and R2 = ‖Xβ̂‖2/‖v‖2 is the coefficient of determi-
nation under the submodel Mγ . Hence we have∫ ∞

−∞

∫
Rq

1

(2πσ2)n/2
exp

(
−‖y − α1n −Xβ‖

2

2σ2

)
× |X ′X|1/2

(2πσ2)q/2gq/2
exp

(
−β
′X ′Xβ

2σ2g

)
dα dβ

=
n1/2(1 + g)−q/2

(2πσ2)(n−1)/2
exp

(
−‖v‖

2{g(1−R2) + 1}
2σ2(g + 1)

)
.

(B.2)

Then we consider the integration with respect to σ2. By (B.2), we have∫ ∞
−∞

∫
Rq

∫ ∞
0

1

(2πσ2)n/2
exp

(
−‖y − α1n −Xβ‖

2

2σ2

)
× |X ′X|1/2

(2πσ2)q/2gq/2
exp

(
−β
′X ′Xβ

2σ2g

)
1

σ2
dα dβ dσ2

=
n1/2Γ({n− 1}/2)

π(n−1)/2‖v‖n−1
(1 + g)(n−q−1)/2

{
g(1−R2) + 1

}−(n−1)/2
.

(B.3)

Finally we consider the integration with respect to g. By (B.3) we have

MG
γ (y) =

n1/2Γ({n− 1}/2)

π(n−1)/2‖v‖n−1

∫ ∞
0

ga/2−1(1 + g)(n−q−1)/2

{g(1−R2) + 1}(n−1)/2
dg. (B.4)
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Appendix C: Proof of Lemma 3.3

Since the Jacobian for the change of variables ‖ε‖2 = t is proportional to tn/2−1,
E[‖εγ‖a]/E[‖εG‖a] is written as∫

tn/2+a−1(1 + t/m)−{m+n}/2dt∫
tn/2+a−1(1 + t/m)−{m+n}/2dt

∫
tn/2−1 exp(−t/2)dt∫
tn/2+a−1 exp(−t/2)dt

= maB(n/2 + a,m/2− a)

B(n/2,m/2)
× 2−a

Γ(n/2)

Γ(n/2 + a)

= {m/2}a Γ(m/2− a)

Γ(m/2)
.

Note cγ is defined as the solution of (3.9). The solution of

n

2
+ c
{d/dc}(1 + c/m)−(m+n)/2

(1 + c/m)−(m+n)/2
= 0

is c = n. Since cG is also n, the last half of the lemma follows.

Appendix D: Proof of Proposition 4.1

Denote the numerator of BFG[Mγ ;MF |a] in (3.5) by H(n). When approximat-
ing H(n), make the change of variables τ = log g. See Liang et al. (2008) for
details. With this transformation, the integral becomes

H(n) =

∫ ∞
−∞

e(a/2−1)τ (1 + eτ )−q/2+(n−1)/2

{eτ (1−R2) + 1}(n−1)/2
eτ dτ, (D.1)

where the extra eτ comes from the Jacobian of the transformation of variables.
Denote the logarithm of the integrand function in (D.1) by h(τ, n). We have

∂

∂τ
h(τ, n) =

1

2

{
−(q − a)− n− q − 1

1 + z
+

n− 1

1 +Az

}
∂2

∂τ2
h(τ, n) =

1

2

{
(n− q − 1)

z

(1 + z)2
− (n− 1)

Az

(1 + zA)2

}
where z = eτ and A = 1 − R2. Setting {∂/∂τ}h(τ, n) = 0 gives a quadratic
equation in z = eτ :

(q − a)Az2 + (A{n− a− 1} − n+ q − a+ 1)z − a = 0.

Since 0 < a < 1, only one of the roots is positive, ẑ = eτ̂ , which is given by

ẑ =
1

2(q − a)A

{
−A{n− a− 1}+ n− q + a− 1

+ {(A{n− a− 1} − n+ q − a+ 1)2 + 4A(q − a)a}1/2
}
.
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The mode τ̂ = log ẑ satisfies

lim
n→∞

ẑ

n
=

1−A
(q − a)A

=
R2

(q − a)(1−R2)
. (D.2)

Hence we have

eh(τ̂ ,n)

=
{
ẑa(1 + ẑ)n−q−1(1 +Aẑ)−n+1

}1/2
=

{
ẑ−q+a

An−1

(
1 +
{n/ẑ}
n

)n−q−1(
1 +
{n/Aẑ}

n

)−n+1
}1/2

≈

{(
(q − a)A

n(1−A)

)q−a
A−n+1e

(q−a)A
1−A −

(q−a)
1−A

}1/2

=

{(
(q − a)(1−R2)

nR2e

)q−a
(1−R2)−n+1

}1/2

,

(D.3)

and

{∂2/∂τ2}h(τ, n)|τ=τ̂ =
1

2

{
(n− q − 1)

ẑ

(1 + ẑ)2
− (n− 1)

Aẑ

(1 + ẑA)2

}
=

1

2

{
n− q − 1

1 + ẑ

ẑ

1 + ẑ
− n− 1

1 + ẑA

Aẑ

1 + ẑA

}
≈ 1

2

{
A(q − a)

1−A
− q − a

1−A

}
= −(q − a)/2.

(D.4)

Therefore we have

H(n) ≈ (2π)1/2eh(τ̂ ,n)
(
{−∂2/∂τ2}h(τ, n)|τ=τ̂

)−1/2
≈

{
4π

q − a

(
(q − a)(1−R2)

nR2e

)q−a
(1−R2)−n+1

}1/2 (D.5)

as n→∞. Hence the proposition follows.

Appendix E: Proof of Lemma 5.1

Let MT be the true submodel y = αT1n +XTβT + ε where XT is the n× qT
true design matrix and βT is the true (qT × 1) coefficient vector.

For the submodel Mγ , 1−R2
γ is given by ‖Qγ(y − ȳ1n)‖2/‖y − ȳ1n‖2 with

Qγ = I −Xγ(X ′γXγ)−1X ′γ . The numerator and denominator are rewritten as

‖Qγ(y − ȳ1n)‖2 = ‖QγXTβT +Qγ ε̌‖2

= β′TX
′
TQγXTβT + 2β′TX

′
TQγε+ ε̌′Qγ ε̌

(E.1)
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where ε̌ = ε− ε̄1n and similarly

‖y − ȳ1n‖2 = β′TX
′
TXTβT + 2β′TX

′
T ε+ ‖ε̌‖2.

Since ε̌′Qγ ε̌ ≤ ‖ε̌‖2, 1−R2
γ is bounded as

β′T {X ′TQγXT /n}βT + 2β′T {X ′TQγε/n}+ σ2WγVn
β′T {X ′TXT /n}βT + 2β′T {X ′T ε/n}+ σ2WγVn

≤ 1−R2
γ ≤

β′T {X ′TQγXT /n}βT + 2β′T {X ′TQγε/n}+ σ2Vn
β′T {X ′TXT /n}βT + 2β′T {X ′T ε/n}+ σ2Vn

(E.2)

where Vn = ε̌′ε̌/{nσ2} and Wγ = ε̌′Qγ ε̌/‖ε̌‖2 ∼ Be({n − qγ − 1}/2, qγ/2). In
(E.2), we have the following.

• Since E[ε] = 0 and var[ε] = σ2In, E[X ′T ε/n] = 0 and

var (X ′T ε/n) = n−1σ2{X ′TXT /n} → 0. (E.3)

Therefore β′TX
′
T ε/n approaches 0 in probability.

• When γ ⊇ T , QγXT is a zero matrix. When γ + T , β′T {X ′TQγε/n} → 0
in probability can be proved as (E.3).

• By the assumption A3, X ′TXT /n −X ′TQγXT /n is positive-definite for
any n and hence

β′T {X ′TXT /n}βT > β′T {X ′TQγXT /n}βT , for βT 6= 0.

• Wγ converges to 1 in probability.
• By the assumption A1 on ε′ε/{nσ2}, Vn is also bounded in probability

from below and from above.

Combining these facts, we see 0 < R2
γ < 1 with strict inequalities in probability.

Since QγXT = 0 for γ ⊇ T and using (E.1), (1 − R2
T )/(1 − R2

γ) is given by
‖QT ε̌‖2/‖Qγ ε̌‖2. Further we easily have

1 ≤ 1−R2
T

1−R2
γ

=
‖QT ε̌‖2

‖Qγ ε̌‖2
≤ ‖ε̌‖2

‖Qγ ε̌‖2
=

1

Wγ
.

Note Wγ ∼ Be({n − qγ − 1}/2, qγ/2) is distributed as (1 + χ2
qγ/χ

2
n−qγ−1)−1

where χ2
n−qγ−1 and χ2

qγ are independent. Hence{
1 + χ2

qγ/χ
2
n−qγ−1

}−n
=
{

1 +
{
n/χ2

n−qγ−1

}{
χ2
qγ/n

}}−n
∼ exp(−χ2

qγ ) as n→∞

since χ2
n−qγ−1/n → 1 in probability. Therefore W−nγ is bounded in probability

from above and hence the theorem follows.
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(1−R2
T )/(1−R2

γ) is written as

1−R2
T

1−R2
γ

=
‖QT ε̌‖2

β′TX
′
TQγXTβT + 2β′TX

′
TQγε+ ε̌′Qγ ε̌

≤ ‖ε̌‖2

β′TX
′
TQγXTβT + 2β′TX

′
TQγε+ ε̌′Qγ ε̌

=

(
β′T {X ′TQγXT /n}βT + 2β′T {X ′TQγε/n}

σ2Vn
+Wγ

)−1
.

(E.4)

Clearly Wγ → 1 in probability. Also since γ + T , β′T {X ′TQγXT /n}βT > 0 for
any n. Further as {X ′TQγε/n} → 0 in probability, (1−R2

T )/(1−R2
γ) is strictly

smaller than 1 in probability.
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