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ABSTRACT 
Scalability considerations drive the switch fabric design to evolve 
from output queueing to input queueing and further to combined 
input and crosspoint queueing (CICQ). However, few CICQ 
switches are known with guaranteed quality of service, and credit-
based flow control induces a scalability bottleneck. In this paper, 
we propose a novel CICQ switch called the smoothed buffered 
crossbar or sBUX, based on a new design objective of smoothness 
and on a new rate-based  flow control scheme called the smoothed 
multiplexer or sMUX. It is proved that with a buffer of just four 
cells at each crosspoint, sBUX can utilize 100% of the switch 
capacity to provide deterministic guarantees of bandwidth and 
fairness, delay and jitter bounds for each flow. In particular, 
neither credit-based flow control nor speedup is used, and 
arbitrary fabric-internal latency is allowed between line cards and 
the switch core. 

Categories and Subject Descriptors 
C.2.6 [Computer-Communication Networks]: Internetworking – 
Routers; C.4 [Performance of Systems]: Performance attributes 

General Terms 
Performance, Design, Algorithms 
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1. INTRODUCTION 
Switches with an increasing number of faster ports are in high 
demand to cope with the ever increasing network traffic, and this 
scalability consideration drives the switch fabric design to evolve 
from output queueing (OQ) to input queueing (IQ) and further to 
combined input and crosspoint queueing (CICQ).  
A CICQ switch is implemented as a buffered crossbar with virtual 
output queues at the inputs and limited buffers at the crosspoints. 
It is scalable owing to its two features: distributed buffering and 
distributed scheduling. However, few CICQ switches are known 
with guaranteed quality of service. Besides, credit-based flow 
control is predominantly used till now to prevent overflow in 
crosspoint buffers; as a result, the size of each crosspoint buffer 
shall be at least the product of the line rate and the fabric-internal 
round-trip time so as to achieve work-conservation. For multi-
rack multi-terabit switches, which have large fabric-internal 

latency and high line rates, crosspoint buffers shall be quite large; 
this is a bottleneck to scalability of CICQ switches. 
In this paper we propose a novel CICQ switch called the 
smoothed buffered crossbar or sBUX, with three contributions: 
first, the design objective is shifted from work-conservation to 
smoothness so as to reduce buffer consumption and increase 
predictability; second, credit-based flow control is replaced with 
rate-based flow control through a smoothed multiplexer sMUX, 
which breaks the crosspoint buffer scalability bottleneck; third, 
comprehensive quality of service guarantees of sBUX are 
obtained, showing that sBUX is almost an OQ switch in terms of 
performance. 

2. SMOOTHNESS 
There are n flows of fixed-size cells sharing a link of bandwidth r; 
each flow fi has a reserved bandwidth ri, ri > 0 and Σi ri ≤ r. This 
specifies an instance (r; r1, r2, …, rn), which can be reduced to its 
normal form (1; w1, w2, …, wn), abbr. (w1, w2, …, wn), in which wi 
= ri/r > 0 and Σwi ≤ 1. Time is slotted, with slot t denoting the real 
interval [t, t + 1), and slot interval [t1, t2) denoting the slot set {t1, 
t1 + 1, …, t2 − 1}. A schedule is a mapping from slots to cells. 
The smooth multiplexing problem (SMP) is to generate a smooth 
schedule such that cells of each flow are smoothly or evenly 
distributed in the whole sequence. Intuitively, in an ideally 
smooth schedule for an SMP instance (w1, w2, …, wn), any 
interval of l consecutive slots should cover (l·wi), or in practice, 
either l·wi or l·wi number of cells of flow fi; in a complemen-
tary view, successive (s+1) number of cells of flow fi should be 
spacing (s/wi), or either s/wi or s/wi number of slots apart. 

Covering smoothness. Let Coveri(t, l) denote the number of cells 
of flow fi that are scheduled by a scheduler inside slot interval [t, t 
+ l). Given an arbitrary slot interval [t1, t2), t1 < t2, we measure the 
covering smoothness of the actual distribution of cells of flow fi 
within this interval by the following two worst-case covering 
deviations from the ideal:  
  cvr-devi  =  max{ l · wi − Coveri(t, l) | [t, t + l) ⊆ [t1, t2)};  
  CVR-devi = max{Coveri(t, l) − l · wi | [t, t + l)  ⊆ [t1, t2)}. 

Spacing smoothness. Let Posi(j) denote the slot of the j-th cell of 
flow fi scheduled by a scheduler, and let Spacei(j, s) denote an s-
step space between the positions of the j-th and (j+s)-th cells of 
flow fi: Spacei(j, s) = Posi(j+s) − Posi(j). Then given an interval 
[Posi(j1), Posi(j2) + 1), j1 ≤ j2, we measure the spacing smoothness 
of the actual distribution of cells of flow fi within this interval by 
the following two worst-case spacing deviations from the ideal: 
  spc-devi  =  max{ s / wi − Spacei(j, s)  | j1 ≤ j, j + s ≤ j2};  
  SPC-devi =  max{ Spacei(j, s) − s / wi |  j1 ≤ j, j + s ≤ j2}. 

Connection. As a further proof of rationality, covering and 
spacing smoothnesses are consistent and corresponding: 
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THEOREM 1. Given an SMP instance, then for any flow fi,  
(1) SPC-devi ≤ cvr-devi / wi, (2) spc-devi ≤ CVR-devi / wi, 
(3) cvr-devi ≤ SPC-devi · wi, (4) CVR-devi ≤ spc-devi · wi, 
where the left-hand side of ≤ is defined within the interval in 
which the right-hand side of ≤ is defined. 

3. SMOOTHED MULTIPLEXER sMUX 
Given an SMP instance (w1, w2, …, wn). Besides the proportion wi, 
each flow fi is additionally associated with an initiation time Ii to 
mark the earliest time slot a scheduler is ready to schedule flow fi. 
This is to reflect the dynamic scheduling of newly admitted flows 
in practical applications. Starting from time Ii, the j-th (j = 1, 2, 
3…) cell service provided for flow fi is eligible at time ei, j =  Ii + 
(j−1)/wi and is expected to finish before deadline di, j  = Ii + j/wi. 

Algorithm sMUX: At each time slot t, among those flows that are 
eligible for scheduling at time t, i.e., their cells to be serviced 
have eligible times no later than t (ei, j ≤ t, equivalently, ei, j ≤ t), 
allocate slot t to the flow with the earliest upper-rounded 
deadline di, j; ties are broken arbitrarily. If no flow is eligible, 
slot t is left idle. 

Actually sMUX allocates the j-th cell of flow fi in [ei, j, di, j), 
and provides the guaranteed smoothness bounds as follows. 
THEOREM 2. Given an SMP instance (w1, w2,…, wn) with initiation 
times (I1, I2, …, In) and a sMUX schedule. Then for any flow fi,  
(1) cvr-devi ≤ 1, CVR-devi ≤ 1,  
(2) spc-devi ≤ 1 / wi , SPC-devi ≤ 1 / wi . 
The sMUX schedule for any SMP instance (w1, w2, …, wn) is 
proved to have a covering deviation for at most one slot or cell, 
which could be outperformed only by an ideal schedule if existing. 
In this sense the sMUX schedule is almost ideal or optimal. When 
an ideal schedule does not exist for the given problem instance, 
which is the normal case, the sMUX schedule could be considered 
optimal. Besides, the spacing jitter can be construed as delay jitter 
introduced by sMUX into each ideally arriving flow. Assume cells 
of flow fi arrive at sMUX at eligible times Ii, Ii + 1/wi, Ii + 
2/wi, …, with all  spacing and covering deviations equal to 0. If 
sMUX only introduces a constant delay to each cell, then spacing 
deviations of leaving cells should remain zero. Therefore, any 
non-zero spacing deviations are actually the delay jitters, resulting 
from variable delays introduced to cells by sMUX. 

4. SMOOTHED CICQ SWITCH sBUX 

 
Figure 1. The architecture of CICQ switch sBUX. 

The CICQ switch sBUX uses sMUX as input and output 
schedulers, which can be placed physically at anywhere in the 
switch fabric, either in the line cards or in the switch core. The 
fabric-internal latency can be arbitrary and variable for each 
connection between a line card and the switch core (see Figure 1). 
For each input-output pair (i, j), there is one flow fi, j of fixed-size 
cells, with a reserved bandwidth ri, j, satisfying the admissible 
condition: Σi ri, j ≤ 1 for all j and Σj ri, j ≤ 1 for all i. 

Crosspoint buffer occupancy. What's unique to switch sBUX is 
that between each virtual output queue and its corresponding 
crosspoint buffer, credit-based flow control is replaced by rate-
based flow control through sMUX. Let's take the crosspoint 
buffers as our point of view, and in all practical cases, initiation of 
input scheduling never precedes that of output scheduling. 
THEOREM 3. The occupancy of any crosspoint buffer in sBUX 
never exceeds four cells, regardless of fabric-internal latency and 
line rate. 
Then a four-cell crosspoint buffer in sBUX guarantees no loss of 
cells. 

Guaranteed performances. The sBUX switch core, including 
input and output schedulers and crosspoint buffers, when treated 
as a whole, has the following smoothness and delay guarantees: 
THEOREM 4. In a sBUX switch, flow fi, j is guaranteed a service 
with the following smoothness bounds:  
(1) cvr-devi, j ≤ 3, CVR-devi, j ≤ 1;  
(2) SPC-devi, j ≤ 3/ri, j, spc-devi, j ≤ 1/ri, j. 
THEOREM 5. In a sBUX switch, once a cell of flow fi, j goes to the 
head of VOQi, j, it will wait at most 5/ri, j slots before it departs 
from the crosspoint buffer XPBi, j (excluding the constant fabric-
internal propagation latency). 
In summary, a sBUX CICQ switch has almost the same quality of 
service guarantees as an OQ switch, yet with far superior 
scalability. To our knowledge, no other CICQ or CIOQ 
(combined input- and output-queued) switches have been proved 
to hold such comprehensive quality of service guarantees. 

5. CONCLUSIONS 
The key design objective of sBUX is smoothness rather than 
work-conserving-ness as most researches do. In principle, work-
conserving-ness aims to fully exploit the link bandwidth, which 
was precious before but no longer now, yet at the cost of large 
buffer, which is the major bottleneck to scalability both now and 
in the foreseeable future. In contrast, smoothness aims at small 
buffer and increased predictability. In some sense, the difference 
between work-conserving-ness and smoothness can be traced back 
to the difference between packet switching in the Internet and 
circuit switching in telecom. Clearly sBUX adopts the latter 
approach, and realizes a harmonious unification of scalability and 
predictability. 
The smooth switching problem, besides being novel, is actually a 
general and kernel problem for all switch fabrics. While it has 
been solved for the CICQ switch sBUX, the problem remains 
open both for the more traditional switch fabrics, such as IQ 
switches or CICQ switches with credit-based flow control, and for 
the newly proposed ones. We believe the concepts defined and the 
analyses conducted in this paper demonstrate that the study of the 
smooth switching problem is feasible and promising. 
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