
Smooth Switching Problem in Buffered Crossbar Switches
Simin He1, Shutao Sun2, Wei Zhao3, Yanfeng Zheng1, 2, Wen Gao1, 2

1Institute of Computing Technologies, Chinese Academy of Sciences, Beijing 100080, China
2Graduate School of Chinese Academy of Sciences, Beijing 100039, China

3Compunicate Technologies Inc., Beijing 100081, China
smhe@ict.ac.cn, stsun@jdl.ac.cn, wzhao@cti.com.cn, yfzheng@jdl.ac.cn, wgao@ict.ac.cn

ABSTRACT
Scalability considerations drive the switch fabric design to evolve
from output queueing to input queueing and further to combined
input and crosspoint queueing (CICQ). However, few CICQ
switches are known with guaranteed quality of service, and credit-
based flow control induces a scalability bottleneck. In this paper,
we propose a novel CICQ switch called the smoothed buffered
crossbar or sBUX, based on a new design objective of smoothness
and on a new rate-based flow control scheme called the smoothed
multiplexer or sMUX. It is proved that with a buffer of just four
cells at each crosspoint, sBUX can utilize 100% of the switch
capacity to provide deterministic guarantees of bandwidth and
fairness, delay and jitter bounds for each flow. In particular,
neither credit-based flow control nor speedup is used, and
arbitrary fabric-internal latency is allowed between line cards and
the switch core.

Categories and Subject Descriptors
C.2.6 [Computer-Communication Networks]: Internetworking –
Routers; C.4 [Performance of Systems]: Performance attributes

General Terms
Performance, Design, Algorithms

Keywords
Switch, Scheduling, Smoothness, Buffered Crossbar, CICQ

1. INTRODUCTION
Switches with an increasing number of faster ports are in high
demand to cope with the ever increasing network traffic, and this
scalability consideration drives the switch fabric design to evolve
from output queueing (OQ) to input queueing (IQ) and further to
combined input and crosspoint queueing (CICQ).
A CICQ switch is implemented as a buffered crossbar with virtual
output queues at the inputs and limited buffers at the crosspoints.
It is scalable owing to its two features: distributed buffering and
distributed scheduling. However, few CICQ switches are known
with guaranteed quality of service. Besides, credit-based flow
control is predominantly used till now to prevent overflow in
crosspoint buffers; as a result, the size of each crosspoint buffer
shall be at least the product of the line rate and the fabric-internal
round-trip time so as to achieve work-conservation. For multi-
rack multi-terabit switches, which have large fabric-internal

latency and high line rates, crosspoint buffers shall be quite large;
this is a bottleneck to scalability of CICQ switches.
In this paper we propose a novel CICQ switch called the
smoothed buffered crossbar or sBUX, with three contributions:
first, the design objective is shifted from work-conservation to
smoothness so as to reduce buffer consumption and increase
predictability; second, credit-based flow control is replaced with
rate-based flow control through a smoothed multiplexer sMUX,
which breaks the crosspoint buffer scalability bottleneck; third,
comprehensive quality of service guarantees of sBUX are
obtained, showing that sBUX is almost an OQ switch in terms of
performance.

2. SMOOTHNESS
There are n flows of fixed-size cells sharing a link of bandwidth r;
each flow fi has a reserved bandwidth ri, ri > 0 and Σi ri ≤ r. This
specifies an instance (r; r1, r2, …, rn), which can be reduced to its
normal form (1; w1, w2, …, wn), abbr. (w1, w2, …, wn), in which wi
= ri/r > 0 and Σwi ≤ 1. Time is slotted, with slot t denoting the real
interval [t, t + 1), and slot interval [t1, t2) denoting the slot set {t1,
t1 + 1, …, t2 − 1}. A schedule is a mapping from slots to cells.
The smooth multiplexing problem (SMP) is to generate a smooth
schedule such that cells of each flow are smoothly or evenly
distributed in the whole sequence. Intuitively, in an ideally
smooth schedule for an SMP instance (w1, w2, …, wn), any
interval of l consecutive slots should cover (l·wi), or in practice,
either l·wi or l·wi number of cells of flow fi; in a complemen-
tary view, successive (s+1) number of cells of flow fi should be
spacing (s/wi), or either s/wi or s/wi number of slots apart.

Covering smoothness. Let Coveri(t, l) denote the number of cells
of flow fi that are scheduled by a scheduler inside slot interval [t, t
+ l). Given an arbitrary slot interval [t1, t2), t1 < t2, we measure the
covering smoothness of the actual distribution of cells of flow fi
within this interval by the following two worst-case covering
deviations from the ideal:
 cvr-devi = max{ l · wi − Coveri(t, l) | [t, t + l) ⊆ [t1, t2)};
 CVR-devi = max{Coveri(t, l) − l · wi | [t, t + l) ⊆ [t1, t2)}.

Spacing smoothness. Let Posi(j) denote the slot of the j-th cell of
flow fi scheduled by a scheduler, and let Spacei(j, s) denote an s-
step space between the positions of the j-th and (j+s)-th cells of
flow fi: Spacei(j, s) = Posi(j+s) − Posi(j). Then given an interval
[Posi(j1), Posi(j2) + 1), j1 ≤ j2, we measure the spacing smoothness
of the actual distribution of cells of flow fi within this interval by
the following two worst-case spacing deviations from the ideal:
 spc-devi = max{ s / wi − Spacei(j, s) | j1 ≤ j, j + s ≤ j2};
 SPC-devi = max{ Spacei(j, s) − s / wi | j1 ≤ j, j + s ≤ j2}.

Connection. As a further proof of rationality, covering and
spacing smoothnesses are consistent and corresponding:


This work was supported in part by grants NSFC-69983008, KGCXZ-
103 and 863-2001AA112100 and by a basic research grant of ICT.

Copyright is held by the author/owner(s).
SIGMETRICS’05, June 6-10, 2005, Banff, Alberta, Canada.
ACM 1-59593-022-1/05/0006.

386

THEOREM 1. Given an SMP instance, then for any flow fi,
(1) SPC-devi ≤ cvr-devi / wi, (2) spc-devi ≤ CVR-devi / wi,
(3) cvr-devi ≤ SPC-devi · wi, (4) CVR-devi ≤ spc-devi · wi,
where the left-hand side of ≤ is defined within the interval in
which the right-hand side of ≤ is defined.

3. SMOOTHED MULTIPLEXER sMUX
Given an SMP instance (w1, w2, …, wn). Besides the proportion wi,
each flow fi is additionally associated with an initiation time Ii to
mark the earliest time slot a scheduler is ready to schedule flow fi.
This is to reflect the dynamic scheduling of newly admitted flows
in practical applications. Starting from time Ii, the j-th (j = 1, 2,
3…) cell service provided for flow fi is eligible at time ei, j = Ii +
(j−1)/wi and is expected to finish before deadline di, j = Ii + j/wi.

Algorithm sMUX: At each time slot t, among those flows that are
eligible for scheduling at time t, i.e., their cells to be serviced
have eligible times no later than t (ei, j ≤ t, equivalently, ei, j ≤ t),
allocate slot t to the flow with the earliest upper-rounded
deadline di, j; ties are broken arbitrarily. If no flow is eligible,
slot t is left idle.

Actually sMUX allocates the j-th cell of flow fi in [ei, j, di, j),
and provides the guaranteed smoothness bounds as follows.
THEOREM 2. Given an SMP instance (w1, w2,…, wn) with initiation
times (I1, I2, …, In) and a sMUX schedule. Then for any flow fi,
(1) cvr-devi ≤ 1, CVR-devi ≤ 1,
(2) spc-devi ≤ 1 / wi , SPC-devi ≤ 1 / wi .
The sMUX schedule for any SMP instance (w1, w2, …, wn) is
proved to have a covering deviation for at most one slot or cell,
which could be outperformed only by an ideal schedule if existing.
In this sense the sMUX schedule is almost ideal or optimal. When
an ideal schedule does not exist for the given problem instance,
which is the normal case, the sMUX schedule could be considered
optimal. Besides, the spacing jitter can be construed as delay jitter
introduced by sMUX into each ideally arriving flow. Assume cells
of flow fi arrive at sMUX at eligible times Ii, Ii + 1/wi, Ii +
2/wi, …, with all spacing and covering deviations equal to 0. If
sMUX only introduces a constant delay to each cell, then spacing
deviations of leaving cells should remain zero. Therefore, any
non-zero spacing deviations are actually the delay jitters, resulting
from variable delays introduced to cells by sMUX.

4. SMOOTHED CICQ SWITCH sBUX

Figure 1. The architecture of CICQ switch sBUX.

The CICQ switch sBUX uses sMUX as input and output
schedulers, which can be placed physically at anywhere in the
switch fabric, either in the line cards or in the switch core. The
fabric-internal latency can be arbitrary and variable for each
connection between a line card and the switch core (see Figure 1).
For each input-output pair (i, j), there is one flow fi, j of fixed-size
cells, with a reserved bandwidth ri, j, satisfying the admissible
condition: Σi ri, j ≤ 1 for all j and Σj ri, j ≤ 1 for all i.

Crosspoint buffer occupancy. What's unique to switch sBUX is
that between each virtual output queue and its corresponding
crosspoint buffer, credit-based flow control is replaced by rate-
based flow control through sMUX. Let's take the crosspoint
buffers as our point of view, and in all practical cases, initiation of
input scheduling never precedes that of output scheduling.
THEOREM 3. The occupancy of any crosspoint buffer in sBUX
never exceeds four cells, regardless of fabric-internal latency and
line rate.
Then a four-cell crosspoint buffer in sBUX guarantees no loss of
cells.

Guaranteed performances. The sBUX switch core, including
input and output schedulers and crosspoint buffers, when treated
as a whole, has the following smoothness and delay guarantees:
THEOREM 4. In a sBUX switch, flow fi, j is guaranteed a service
with the following smoothness bounds:
(1) cvr-devi, j ≤ 3, CVR-devi, j ≤ 1;
(2) SPC-devi, j ≤ 3/ri, j, spc-devi, j ≤ 1/ri, j.
THEOREM 5. In a sBUX switch, once a cell of flow fi, j goes to the
head of VOQi, j, it will wait at most 5/ri, j slots before it departs
from the crosspoint buffer XPBi, j (excluding the constant fabric-
internal propagation latency).
In summary, a sBUX CICQ switch has almost the same quality of
service guarantees as an OQ switch, yet with far superior
scalability. To our knowledge, no other CICQ or CIOQ
(combined input- and output-queued) switches have been proved
to hold such comprehensive quality of service guarantees.

5. CONCLUSIONS
The key design objective of sBUX is smoothness rather than
work-conserving-ness as most researches do. In principle, work-
conserving-ness aims to fully exploit the link bandwidth, which
was precious before but no longer now, yet at the cost of large
buffer, which is the major bottleneck to scalability both now and
in the foreseeable future. In contrast, smoothness aims at small
buffer and increased predictability. In some sense, the difference
between work-conserving-ness and smoothness can be traced back
to the difference between packet switching in the Internet and
circuit switching in telecom. Clearly sBUX adopts the latter
approach, and realizes a harmonious unification of scalability and
predictability.
The smooth switching problem, besides being novel, is actually a
general and kernel problem for all switch fabrics. While it has
been solved for the CICQ switch sBUX, the problem remains
open both for the more traditional switch fabrics, such as IQ
switches or CICQ switches with credit-based flow control, and for
the newly proposed ones. We believe the concepts defined and the
analyses conducted in this paper demonstrate that the study of the
smooth switching problem is feasible and promising.

387

