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Abstract. Pose and illumination changes from picture to picture are two main 
barriers toward full automatic face recognition. In this paper, a novel method to 
handle both pose and lighting condition simultaneously is proposed, which cali-
brates the pose and lighting condition to a pre-set reference condition through 
an illumination invariant 3D face reconstruction. First, some located facial 
landmarks and a priori statistical deformable 3D model are used to recover an 
elaborate 3D shape. Based on the recovered 3D shape, the �texture image� cali-
brated to a standard illumination is generated by spherical harmonics ratio im-
age and finally the illumination independent 3D face is reconstructed com-
pletely. The proposed method combines the strength of statistical deformable 
model to describe the shape information and the compact representations of the 
illumination in spherical frequency space, and handle both the pose and illumi-
nation variation simultaneously. This algorithm can be used to synthesize vir-
tual views of a given face image and enhance the performance of face recogni-
tion. The experimental results on CMU PIE database show that this method can 
significantly improve the accuracy of the existed face recognition method when 
pose and illumination are inconsistent between gallery and probe sets. 

1   Introduction 

The face recognition problem has been studied for more than three decades. Cur-
rently, the accuracy of face recognition for frontal face under uniform lighting condi-
tion is pretty high [12]. However, in some more complicated cases, the recognition 
tasks suffer from the variations of poses and illuminations. 

The appearance of faces may looks quite different when pose or illumination 
change, and this issues an imperfect task for face recognition when only the 2-D ap-
pearance-based method is applied. Although some 2-D-based methods are proposed 
to tackle pose or illumination variation problem, we believe that 3-D-based method is 
the final killer of both pose and illumination blending problem.  

In the early years, using the low dimensional representation is the mainstream to 
tackle both pose and illumination problem in face recognition. Eigenfaces [11] and 
Fisherfaces [2] apply statistical learning to get the empirical low dimensional pose or 
illumination space of the faces. These methods have demonstrated their easy imple-
mentation and accuracy, but the performance decreased dramatically when the imag-
ing condition is dissimilar to those of the training images. The Fisher light-fields 
algorithm [7] proposed by Gross etc tackled the pose and illumination problem by 
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estimating the eigen light-fields of the subject�s head from the gallery or probe im-
ages, which was used as the set of features to do recognition finally. Extended this 
work, Kevin Zhou presented an illuminating light field algorithm [14], in which a 
Lambertian reflectance model was used to handle the illumination variation. This 
leads to a more powerful generalization to novel illuminations than the Fisher light 
field. However, lots of images under multi-poses and multi-lights are needed for the 
training of this algorithm.  

Since the pose and illumination variations are all related to the 3D face structure, 
the pose and illumination invariant face recognition can be easily achieved once the 
3D face is known. Some model-based approaches were proposed to treat the extrinsic 
parameters as separate variables and model their functional role explicitly. These 
methods commonly build an explicit generative model of the variations of the face 
images, to recover the intrinsic features of the face: shape and/or albedo. Georghiades 
proposed the Illumination Cone [6] to solve face recognition under varying lightings 
and poses. Sampling across pose changing, the corresponding illumination cone is 
approximated by a low-dimensional linear subspace whose basis vectors are estimated 
using generative model. This method needs at least seven images under different 
lighting condition for each subject, which is impractical for the most of the applica-
tions. Zhao introduce the symmetric constraint to shape from shading for 3D face 
reconstruction and proposed the SSFS (Symmetric Shape from Shading) method [13]. 
The most successful face recognition system across pose and lighting is the 3D 
morphable model [3]. In this method, the shape and the texture of a face are expressed 
as the barycentric coordinates as a linear combination of the shapes and textures of 
the exemplar faces respectively. The 3D faces can be generated automatically from 
one or more photographs by optimizing the shape parameters, the texture parameters 
and the mapping parameters. This morphable method has been used in FRVT 2002 
for its good performance [12]. However, the iterative optimization cost too much 
computational power and the fitting processing takes about 4.5 minutes on a work-
station with a 2Ghz P4 processor.  

Inspired by the work of the 3D morphable model [3], we also take the 3D statistical 
deformable model to represent the 3D shape space of human face. But differ from it, 
only 2D shape vector of the given facial image and a sparse version of the 3D de-
formable model are used to get the optimal shape coefficients, which can recover the 
whole elaborate 3D shape. The face region is extracted directly from the input image. 
Based on the recovered 3D shape, we approximate the �texture image� by relighting 
the face region to the standard illumination. Then the illumination independent 3D 
face is recovered completely only from single face image under any pose with arbi-
trary illumination. This strategy is based on the assumption that the pose is relevant to 
the relative locations of some key feature points and independent to the intensity of 
the image. Then the complicated optimal procedure is avoided by separating the shape 
and texture. The finally match is performed between the pose and illumination nor-
malized facial images and the gallery images which have also been done the same 
normalization. 

The remaining parts of the paper are organized as follows: In Section 2, how to re-
alize the pose and illumination invariant face recognition is described in detail, in 
which two parts are included. In subsection 2.1, the 3D shape reconstruction algo-
rithm based on the sparse statistical deformable model is described. In subsection 2.2 
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the illumination independent �texture image� generation with spherical harmonic ratio 
image is presented. Some synthesized examples based on our algorithm and the ex-
perimental results of face recognition across pose and illumination are presented in 
Section 3, followed by short conclusion and discussion in the last section.  

2   Face Recognition Across Pose and Illumination 
The whole framework of pose and illumination calibration for face recognition is 
given in Fig. 1. First, the irises are located by a region growing searching algorithm 
[4] and the rude pose class is defined for labeling the sparse feature points in the 
given facial image. Then 3D shape is reconstructed based on a 2D geometry driven 
statistical deformable model. Recurring to the recovered 3D shape of the specific 
person, the illumination independent �texture image� is obtained by relighting the 
face region extracted from the given image with spherical harmonic ratio image strat-
egy. The pose and lighting calibrated image are used as the input of face recognition 
and get the identity result. Our algorithm can be regarded as a pre-process step of any 
face recognition system. 

In the following subsections, we will explain the two key issues of the proposed 
framework � the 3D shape reconstruction and the illumination independent �texture 
image� generation.  

 

Input image 

3D shape 
reconstruction

Original texture 
extraction 

Illumination invariant 
�texture image� 

generation 

Pose and illumination calibration 
 i.e. the reconstructing of the 3D face 

Recognition 
result 
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Statistical deformable model 
trained from the 3D shape vectors

 

Fig. 1. The framework of pose and illumination calibration for face recognition 

2.1   3D Shape Reconstruction from Single View 

It is well known that the most direct solution to do pose normalization for a single 
non-frontal face image is to recover the 3D structure of the specific face. However, 
without any assumptions, recovering 3D shape from single image is a typical ill-posed 
problem. The minimal number of the images necessary to reconstruct the 3D face is 
three [8]. To overcome this, we use the prior knowledge of the 3D face class to de-
scribe the specific 3D shape of any novel face. A 3D face data set is used for training 
to get the statistical deformable model. This training set is formed by 100 laser-
scanned 3D faces selected from the USF Human ID 3-D database [3]. All these faces 
are normalized to a standard orientation and position in space. The geometry of a face 
is represented by 75,972 vertices and down-sampled to 8,955 vertices in order to 
predigest computation. In the following paragraphs, the whole 3D facial shape recon-
struction procedure will be explained in detail. 

We represent the 3D geometry of a face with a shape-vector that is composed by 
concatenating the X , Y , and Z  coordinates of the n vertices as: 
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111 ),,,,,,( ℜ∈=  S . Supposing the number of the 3D face train-

ing collection is m , each face vector can then be written as iS , where mi ,,1  = . 
These 3D shape vectors have been full correspondence. Each novel 3D shape can be 
represented as the linear combination of the m  exemplar faces shapes by: 
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iiSS . Because all face shapes are similar in holistic with some small differ-

ences, PCA (Principle Component Analysis) is appropriate for capturing the variance 
in terms of the principle components and filtering the noise among these shape vec-
tors. Performing an eigen-decomposition to the matrix composed by these 3D shapes 
using PCA and we obtain )1( −≤ md eigen shape vectors according to the descending 
order, which constitute the projection matrix P . Therefore, the statistical deformable 
model is formed: PαSS += , where S  is the mean shape and α  is  the coefficient 
vector corresponding to the projection matrix P , whose dimension is d .  

Expanding this denotation, if the face takes some rotation variation, then the above 
formulation can be written as: 

PRαRSSR += , (1) 

where R  is the rotation matrix, relevant with the three rotation angles around the 
corresponding three coordinate axes. SR  is the 3D face shape rotated around the 3D 
face coordinate center. We import a denotation RV , which represents the operator 
performing a transformation to a 3D vector V  by right multiplying a rotation matrix 
R . Therefore, equation (1) can be rewritten as:  

αPSS RRR +=  (2) 

Similarly, the vector concatenating the coordinates of k  landmarks 
( kiyx ii ,,2,1),,(  = ) in 2D image is denoted as IS . Each 2D landmark corresponds 
to a fixed point in 3D shape vector with the coincident mapping relation. These corre-
sponding 3D points constitute the sparse version of the 3D shape. The x and y coordi-
nates of this sparse 3D shape concatenated to a 2D shape vector called fS , that is 

kT
kk yxyx 2

11 ),,,,( ℜ∈=  fS . Because the fS can be regarded as the partial seg-

ment of the 3D shape S , the following equation approximately holds: αPSS fff += . 
Here fV  is imported to denote the 2D shape vector comes from extracting the x and y 

from the 3D vector V . So, fS  and fP  describe the corresponding parts to the 2D 

landmarks extracted from the 3D mean shape S and projection matrix P  respec-
tively. R

fS , which denotes the sparse 2D shape vector extracted from the 3D face 
under R  pose, can be represented inferentially by the following formula: 

αPSS RRR
fff += . (3) 

Our aim is to reconstruct the whole 3D shape information with the coefficient vec-
tor α , which can be computed from the following equation:  

)()( RRR SSPα fff −= + , (4) 
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where +)( RP f  is the pseudo-inverse matrix, which can be computed by 

( ) T
ff

T
ff )()()()(

1 RRRR PPPP
−+ = . So the crucial element is to compute the accurate RS f of 

the specific person from the feature landmarks IS . The relation between IS  and RS f  

can be represented by:  

( )cfI TSS R += . (5) 

For the rotation matrix R , we define it with the three rotation angles of the corre-
sponding coordinate axis. Making use of the 5 key landmarks in a face image and the 
corresponding 3D facial points of its 3D shape model S , the three rotation angle 
parameters can be inferred by projection computation. The 5 landmarks used to com-
pute the rotation matrix R are the left and right iris, the nose tip, the left and right 
mouth corner respectively.  

In the following, we will describe the iterative algorithm to compute the optimal 
shape coefficients vector α . In the first iteration, we set the fS to be the initial value 

of fS , and set S  to be initial 3D shape S of a specific person to get the initial values 

of the pose parameters. The iterative optimization procedure is given below:  

(a) Compute the rotation matrix R  by erecting equation group according to 5 points 
projection computation.  

(b) Then the translation T  and scale factor c  for the landmarks between IS  and RS f  

are calculated based on the computation between these two 2D shape vectors.  
(c) Refine RS f  through equation (5) using the T  and c  gained above. 

(d) Having the new RS f , we can get the coefficient vector α  easily by equation (4).  

(e) Reconstruct the 3D face shape S for the specific person by equation PαSS +=   
(f) Repeat the step (a) to (e) until the coefficients vector converges or a limit on the 

iteration times is reached.  

Finally, we get the optimal 3D shape for the given face. Then we transform the re-
sult 3D shape by multiplying the pose matrix R  to get the rotated 3D shape, which 
has the same pose to the input face. To get more elaborate 3D shape solution, we 
regulate the x  and y  coordinates of the vertices in 3D face according to the corre-
sponding landmarks in the given 2D image.  

2.2   Illumination Independent �Texture Image� Generation   
with Spherical Harmonic Ratio Image 

With the recovered 3D shape and the pose parameters in subsection 2.1, the face re-
gion is extracted from the given image. However, this face region image is influenced 
by the illumination condition. For the difficulty to get the really intrinsic texture, we 
transformed to compute the calibrated �texture image� under some standard illumina-
tion. Finally, this calibrated �texture image� can be mapped to the 3D shape and the 
illumination independent 3D face is reconstructed completely.  

Since the reflection equation can be viewed as a convolution, it is natural to ana-
lyze it in frequency-space domain. With spherical harmonics, Basri et al [1] proved 
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that most energy of the irradiance was constrained in the three low order frequency 
components and got its frequency formula as 
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where )4,32,( 210 πππ === AAAAl  [1] are the spherical harmonic coefficients of 
Lambertian reflectance, lmL are the coefficients of the incident light, and lmY  are the 
spherical harmonic functions. The spherical harmonics has already been used in face 
recognition across illumination, such as [15]. 

Given a face region image I , for each pixel ),( yx , this equation always holds up: 
( )),(),,(),(),( yxyxEyxyxI βαρ= . Here, the ),( yxα and ),( yxβ  can be gotten from the 

normal vector of the 3D face shape. We also assume the albedo ρ  is a constant. Let 

lmlAYElm =  denote the harmonic irradiance image and E is a 9×n  matrix of lmE , where 
n  is the pixel number of the texture image. Then the coefficients of the illumination 
L  can be gotten by solving the least squares problem: 

ILEL
L

−= )(minarg� ρ , (7) 

Once we have estimated the lighting condition of the given image, relighting it to a 
standard illumination is straightforward [16].  

For any given point P  at position ),( yx  on the image, whose normal is ),( βα , and 
albedo is ),( yxρ , then the intensities at P  in the original image and the canonical im-
age are respectively: 
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where ),( yx  ranges over the whole image.  
The ratio image of the two different illuminations is defined as:  
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Therefore, with the original image and the ratio image, the illumination canonical 
image is: 

),(),(),( yxIyxRyxI orgcan ×= . (10) 

After the elaborated 3D shape and illumination calibrated �texture image� are re-
covered, we can reconstruct the whole 3D face of the specific person. For the invisi-
ble points in the texture, the interpolation strategy is exploited. And the pose normali-
zation can be achieved by rotating the 3D face model to any predefined standard pose.  



962      Xiujuan Chai et al. 

3   Experiments and Results 

In this section, we evaluate the performance of the proposed algorithm through pose 
and illumination invariant face recognition. For a given non-frontal image under arbi-
trary illumination, we reconstruct its illumination independent 3D face. Pose normali-
zation is achieved by rotating the 3D face to a predefined (frontal) pose. Then the 
calibrated face image is used as the input of the general face recognition system to 
perform recognition.  

3.1   Experimental Results for Face Recognition Across Pose Only 

First, the experiment on face recognition across pose only is carried out on 4 pose 
subsets of CMU PIE database [10], which are pose set 05 (turn right 22.5 degree), 
pose set 29 (turn left 22.5 degree), pose set 37 (turn right 45 degree) and 11 (turn left 
45 degree) respectively, and the gallery images are from the pose set 27, which are all 
frontal images. Our face recognition method is Gabor PCA plus LDA, whose idea is 
similar to the GFC [9]. The training images are selected from the CAS-PEAL Data-
base [5], totally 300 persons, and each person has 6 pose images, 10 frontal images 
averagely. In our experiment the feature points are labeled manually. Some pose nor-
malization results based on the 3D face reconstruction are presented in Fig. 2 to give a 
visualize evaluation. The recognition results are listed in Fig. 3, which has intensively 
shows the good performance of the pose normalization based on our 3D face recon-
struction. The recognition match scores for the 4 pose sets are improved significantly 
compared with the original recognitions, and the rank-1 recognition rate reaches to 
94.85% averagely after pose normalization. 

 

Original 

Pose Normalization 

P11 P11 P29 P29 P05 P05 P37 P37 

P27 P27 

 
Fig. 2. The pose normalized images. The first row is the original masked images. The second 
row is the corresponding pose normalized images, and right to which are the gallery images in 
27 to be references 

3.2   Experimental Results for Face Recognition Across Pose and Illumination 

We verify the simultaneous effect of the pose and illumination normalization in this 
section. In our experiments, we used the �illum� subsets of the CMU PIE database, 
which provides the facial images under well-controlled poses and lightings. We take 
the experiment on 2856 images from the 2 pose subsets, 05 and 29, each subset in-
cluding 21 different kinds of illuminations and the flash numbers are 02-21. The fron-
tal pose set 27 under flash �11� is taken as the gallery, and the other probe images are 
all aligned to the frontal pose and the standard light as flash number �11�. Some ex-
amples of the pose and illumination normalized images are given in Fig.4. The nor-
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malized images in (b) are more similar to the gallery image as (c) in vision than the 
original images shown in (a). The experimental results of face recognition with corre-
lation matching strategy across pose and lighting are listed in Table 1.  

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5
Rank 

(a) Pose Set 29 

C
um

ul
at

iv
e 

m
at

ch
 s

co
re

 

Original Images
Pose Normalized Images

0.95

0.96

0.97

0.98

0.99

1

1 2 3 4 5 
Rank

(b) Pose Set 05

C
um

ul
at

iv
e 

m
at

ch
 s

co
re

 

Original Images

Pose Normalized Images 

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5
Rank 

(c) Pose Set 11

C
um

ul
at

iv
e 

m
at

ch
 s

co
re

 

Original Images
Pose Normalized Images

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 
Rank

(d) Pose Set 37

C
um

ul
at

iv
e 

m
at

ch
 s

co
re

 

Original Images
Pose Normalized Images 

 
Fig. 3. The recognition results on the original and the pose normalized images in the 4 different 
pose sets of CMU PIE database with Gabor PCA plus LDA recognition strategy 

 

 
 (a) (b) (c)  

Fig. 4. The pose and illumination calibrated results. (a) the original images. (b) the correspond-
ing pose and lighting calibrated results. (c) the gallery image 

4   Conclusion 

In this paper a novel illumination independent 3D face reconstruction is proposed to 
recognize facial images across pose and illumination. The 3D shape is recovered from 
single non-frontal facial image based on a statistical deformable model regressed 
through 2D geometry formed by some facial landmarks. Recurring to the recon-
structed 3D shape, the illumination independent facial �texture image� is achieved 
with spherical harmonic ratio image. The experimental results show that the pose and 
illumination calibrating strategy largely improves the performance of the general face 
recognition for the probe images under uncontrolled pose and lighting.  
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Table 1. Recognition results on 2 pose subsets under 21 different lightings in CMU PIE Data-
base with the correlation matching strategy 

F\C Pose 05 
(original) 

Pose 05 
(calibrated)

Increase Pose 29 
(original) 

Pose 29 
(calibrated)

Increase 

02 0.044 0.206 0.162 0.015 0.235 0.230 
03 0.059 0.412 0.353 0.029 0.324 0.295 
04 0.103 0.735 0.632 0.059 0.612 0.553 
05 0.397 0.897 0.500 0.103 0.882 0.779 
06 0.735 0.882 0.147 0.162 0.926 0.764 
07 0.676 0.912 0.236 0.118 0.912 0.794 
08 0.544 0.897 0.353 0.588 0.956 0.368 
09 0.235 0.897 0.662 0.676 0.985 0.309 
10 0.324 0.912 0.588 0.088 0.838 0.750 
11 0.676 0.912 0.236 0.838 0.971 0.133 
12 0.309 0.926 0.617 0.765 0.941 0.176 
13 0.074 0.868 0.794 0.221 0.882 0.661 
14 0.088 0.897 0.809 0.235 0.912 0.677 
15 0.029 0.750 0.721 0.059 0.750 0.691 
16 0.029 0.368 0.339 0.044 0.471 0.427 
17 0.015 0.221 0.206 0.029 0.279 0.250 
18 0.250 0.838 0.588 0.074 0.750 0.676 
19 0.647 0.912 0.265 0.118 0.926 0.808 
20 0.662 0.912 0.250 0.838 0.971 0.133 
21 0.265 0.926 0.661 0.706 0.941 0.235 
22 0.074 0.838 0.764 0.118 0.824 0.706 

Average 0.296 0.768 0.472 0.280 0.776 0.496 

Accurate alignment would facilitate the 3D shape recovery and the subsequent rec-
ognition. Therefore, one of our future efforts will be the accurate alignment, espe-
cially under the non-ideal lighting environment.  

Acknowledgements 

This research is partially sponsored by Natural Science Foundation of China under 
contract No.60332010, "100 Talents Program" of CAS, ShangHai Municipal Sciences 
and Technology Committee (No.03DZ15013), and ISVISION Technologies Co., Ltd. 

References 

1. R. Basria and D. Jacobs, "Lambertian Reflectance and Linear Subspaces", Proc. ICCV� 
2001, pp. 383-390. 

2. P.N. Belhumeur, J.P. Hespanha and D.J. Kriegman, �Eigenfaces vs Fisherfaces: recognition 
using class specific linear projection�. IEEE Trans. on PAMI, 1997.7, vol.20, No.7. 

3. V. Blanz and T. Vetter, �Face Recognition based on Fitting a 3D Morphable Model�, IEEE 
Transactions on PAMI 2003, vol. 25, pp. 1063-1074. 

4. B.Cao, S.Shan and W.Gao, �Localizing the Iris Center by Region Growing Search�, Pro-
ceeding of the ICME2002. 2002, vol. 2, pp. 129-132. 



Pose Invariant Face Recognition Under Arbitrary Illumination      965 

5. W. Gao, B. Cao, S.G. Shan, D.L. Zhou, X.H. Zhang and D.B. Zhao, �The CAS-PEAL 
Large-Scale Chinese Face DataBase and Evaluation Protocols�, Technique Report No. 
JDL-TR_04_FR_001, Joint Research & Development Laboratory, CAS, 2004. 

6. A.S. Georghiades, P.N. Belhumeur and D.J. Keiegman, �From Few to Many: Illuminition 
Cone Models for Face Recognition under Variable Lighting and Poses�, IEEE Transactions 
on PAMI, 2001, vol. 23, pp.643-660. 

7. R. Gross, I. Matthews and S. Baker, �Eigen Light-Fields and Face Recognition Across 
Pose�, Proc. FG�02, 2002. 

8. T.S. Huang and C.H. Lee, �Motion and Structure from Orthorgraphic Projections�, IEEE 
Transactions on PAMI, 1989, vol. 2, no. 5: pp. 536-540. 

9. C. Liu and H. Wechsler, "Gabor Feature Based Classification Using the Enhanced Fisher 
Linear Discriminant Model for Face Recognition", IEEE Trans. Image Processing, 2002, 
vol. 11, no. 4, pp. 467-476. 

10. T. Sim, S. Baker, and M. Bsat, "The CMU Pose, Illumination, and Expression (PIE) Data-
base", Proc. the 5th IEEE International Conference on Automatic Face and Gesture Recog-
nition (FG'02), Washington, DC, May 2002. 

11. M. Turk and A. Pentland, �Eigenfaces for Recognition� Journal of cognitive neuroscience, 
1991, vol. 3, no. 1, pp. 71-86. 

12. P. Phillips, P. Grother, R. Micheals, D. Blackburn, E. Tabassi and M. Bone, �Face Recog-
nition Vendor Test 2002: Evaluation Report�, FRVT, 2002. 

13. W. Zhao and R. Chellappa, �SFS Based View Synthesis for Robust Face Recognition�, In 
Proceedings of the International Conference on Automatic Face and Gesture Recognition, 
Grenoble, 2000, pp. 285-292. 

14. K. Zhou and R. Chellappa, �Illuminating Light Field: Image-based Face Recognition across 
Illuminations and Poses�, Proc. FG�04, 2004. 

15. L. Zhang, D. Samaras. �Face Recognition Under Variable Lighting using Harmonic Image 
Exemplars�, In Proc. CVPR 2003, pp. I: 19-25. 

16. L. Y. Qing, S. G. Shan, W. Gao, �Face Recognition under Generic Illumination based on 
Harmonic Relighting�, International Journal of Pattern Recognition and Artificial Intelli-
gence, 2005 (To Appear). 


	Pose Invariant Face Recognition Under Arbitrary Illumination Based on 3D Face Reconstruction 
	1 Introduction 
	2 Face Recognition Across Pose and Illumination 
	2.1 3D Shape Reconstruction from Single View 
	2.2 Illumination Independent "Texture Image" Generation with Spherical Harmonic Ratio Image 

	3 Experiments and Results 
	3.1 Experimental Results for Face Recognition Across Pose Only 
	3.2 Experimental Results for Face Recognition Across Pose and Illumination

	4 Conclusion
	References 


