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SURVEY OF DYNAMICAL MATRICES THEORY

ZHANG LIN AND WU JUNDE

Abstract. In this note, we survey some elementary theorems and proofsof dynamical matrices theory

such that ones read them easily.

1. Introduction and preliminaries

Positive linear mapson some operator algebras are a very important subject of both the mathemat-

ical and the physical literature for several years. The images of positive operators acting on a given

Hilbert space under such a map are positive operators actingon the same Hilbert space. A mapΦ is

calledk-positive for somek ∈ N if the tensor productΦ ⊗ Idk is positive. We callΦ is acompletely

positive(CP) when it isk-positive for anyk ∈ N. Completely positive maps (CP maps, for short) de-

scribe the dynamics of open quantum systems. The structure of the set of CP maps is well understood

due to the theorems of Stinespring [12], Kraus [8], and Choi [3]. Choi’s theorem is also proved by

another simple approach in [11].

In this paper, only finite dimensional complex vector spacesare considered. An column vector in a

complex vector space is denoted by|φ〉, the symbolφ is a label, while|·〉 denotes that the object is a

complex column vector. This notation for complex vectors iscalledDirac notation. Throughout the

paper,†, t and∗ stand for Hermitian conjugate, transposition and complex conjugate, respectively, of

matrices with respect to a given orthonormal basis. Given a vector

|φ〉 = [φ1, φ2, . . . , φd]t,

its dual is defined as

〈φ| = [φ∗1 φ
∗
2 · · · φ∗d] ≡ (|φ〉)†.

Given the vectors|φ〉, |ϕ〉, the inner product between two vectors is denoted by〈φ|ϕ〉, which is defined

as follows:

〈φ|ϕ〉 ≡ ∑d
i=1 φ

∗
i ϕi = [φ∗1 φ

∗
2 · · · φ∗d][φ1, φ2, . . . , φd]t.

Thenormof a vector|φ〉 is defined as‖φ‖ =
√
〈φ|φ〉. Unite vectors are those vectors with unit norm.

Two vectors areorthogonalit they have zero product. Theouter productof the given vectors|φ〉 and

|ϕ〉 is given by

|φ〉〈ϕ| ≡



φ1

φ2
...

φd



[ϕ∗1 ϕ
∗
2 · · · ϕ∗d] =



φ1ϕ
∗
1 φ1ϕ

∗
2 · · · φ1ϕ

∗
d

φ2ϕ
∗
1 φ2ϕ

∗
2 · · · φ2ϕ

∗
d

...
...

...
...

φdϕ
∗
1 φdϕ

∗
2 · · · φdϕ

∗
d



.
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A set of vectors{|vk〉}nk=1 in a vector spaceV is orthonormalif the vectors are normalized and orthog-

onal, that is,〈vi |v j〉 = δi j . If, in addition, n = dimV, this set of vectors form an orthonormal basis

for V. Here we have a simple but useful fact that
∑n

k=1 |vk〉〈vk| = In for given an orthonormal basis

{|vk〉}nk=1 in a vector spaceV. This called thecompleteness relation.

Quantum stateswill now be introduced. Aquantum systemis a physical system that obeys the

laws of quantum mechanics. Let us assume that we are given twoquantum systems. The first one is

owned by Alice, and the second one by Bob. The physicalstatesof Alice’s system may be described

by states in a Hilbert spaceHA of dimensiondA = N, and in Bob’s system in a Hilbert spaceHB of

dimensiondB = M. The tensor productis a ubiquitous mathematical operation which can be used

to combine vector spaces to form a larger vector space. Giventwo vector spacesV andW, we can

combine them to form the vector spaceV⊗W, with dim(V⊗W) = dim(V)×dim(W). The bipartite

quantum system is then described by vectors in the tensor-product of the two spacesH = HA ⊗ HB,

and dim(H) = dAdB. A pure stateof dimensiond can be represented by ad-dimensional complex

unit vector|ψ〉. For realθ, the vectors|ψ〉 andeiθ |ψ〉 represent the same state. More generally, ad-

dimensional quantum state is represented by ad × d complex matrixρ, also called adensity matrix,

which is a non-negative linear operator, acting on a complexHilbert spaceH , with trace 1. A pure

state can be represented either by its state vector|ψ〉, or by its density matrixρ = |ψ〉〈ψ|. States which

are not pure are calledmixed states. A simple test for whether a stateρ is pure or mixed is to take the

trace ofρ2: tr(ρ2) = 1 if ρ is pure and tr(ρ2) < 1 if ρ is mixed. A mixed state can be expressed as a

mixture of pure states in many different ways.

Suppose that|v〉 ∈ V, |w〉 ∈ W. The vector|v〉 ⊗ |w〉 ∈ V ⊗W. The vector|v〉 ⊗ |w〉 is computed as

follows:

|v〉 ⊗ |w〉 =



w1|v〉
...

wk|v〉
...

wn|v〉



if |w〉 =



w1
...

wk
...

wdB



and|v〉 =



v1
...

vk
...

vdA



.

Similarly, the tensor product of two given matrices will be explained as follows: with the orthonormal

bases{|m〉}(m = 1, . . . , dA) of HA and{|µ〉}(µ = 1, . . . , dB) of HB, respectively, the orthonormal basis

of H can be described as{|m〉 ⊗ |µ〉 ≡ |mµ〉}(m = 1, . . . , dA; µ = 1, . . . , dB) (throughout the present

paper, Roman indices correspond to the subsystemA and Greek indices to the subsystemB.) for which

two types of ordering are very important such as:

(i) Ordering of type-I:

{|11〉, |21〉, . . . , |dA1〉; . . . ; |1µ〉, |2µ〉, . . . , |dAµ〉; . . . ; |1dB〉, |2dB〉, . . . , |dAdB〉}.
(ii) Ordering of type-II:

{|11〉, |12〉, . . . , |1dB〉; . . . ; |m1〉, |m2〉, . . . , |mdB〉; . . . ; |dA1〉, |dA2〉, . . . , |dAdB〉}.
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B(H), B(HA) andB(HB) means that the set of all bounded linear operators onH ,HA andHB,

respectively. IfX ∈ B(HA) and Y ∈ B(HB), then X ⊗ Y ∈ B(H). Suppose that the matrix-

representationsX ≡ [xmn] and Y ≡ [yµν] for X andY with respect to the given orthonormal bases

{|m〉}dA
m=1 and{|µ〉}dB

µ=1 are given, respectively. Then there are several different matrix-representations of

X ⊗ Y with respect to the corresponding orthonormal bases of different orderings. For the ordering of

type-I, the matrix representation ofX ⊗ Y is

X ⊗ Y ≡



y11X y12X · · · y1dBX

y21X y22X · · · y2dBX
...

...
...

...

ydB1X ydB2X · · · ydBdBX



;

while for the ordering of type-II, the matrix representation of X ⊗ Y is

X ⊗ Y ≡



x11Y x12Y · · · x1dAY

x21Y x22Y · · · x2dAY
...

...
...

...

xdA1Y xdA2Y · · · xdAdAY



.

The ordering of type-I will be employed throughout the present paper if unspecified. For tensor prod-

uct, we have the following rules: given two matricesS andT acting on vector spacesV andW,

respectively, vectors|x〉 ∈ V and|y〉 ∈ W, then

(S ⊗ T)(|v〉 ⊗ |w〉) = (S|x〉) ⊗ (T |y〉),Tr(S ⊗ T) = tr(S)tr(T), (S ⊗ T)† = S† ⊗ T†.

If X,Y act also onV,W respectively, we have (S⊗ T)(X⊗Y) = S X⊗TY. Obviously, tensor product

is a bi-linear map.

The description ofsubsystemsof a composite quantum system is provided by thereduced density

operator, which is so useful as to be virtually indispensable in the analysis of composite quantum

systems. Suppose we have physical systemsA andB, whose state is described by a density operator

ρAB. The state space of the composite quantum systemAB is denoted byD(H), similarly, D(HA) for

subsystemA andD(HB) for subsystemB. The reduced density operator for systemA is defined by

TrB(ρAB) ≡ ρA, where TrB is a map of operators know as thepartial traceover systemB. The partial

trace is defined by

TrB(|a1〉〈a2| ⊗ |b1〉〈b2|) = |a1〉〈a2|tr(|b1〉〈b2|),
where|a1〉 and|a2〉 are any two vectors in the state space ofA, and|b1〉 and|b2〉 are any two vectors in

the state space ofB. The trace operation appearing on the right hand side is the usual trace operation

for systemB, so tr(|b1〉〈b2|) = 〈b2|b1〉. In fact, TrA = tr⊗IdB, TrB = IdA⊗tr and Tr= tr⊗tr. We have de-

fined the partial trace operation only on a special subclass of operators onAB. More generally, for any

matrixZ acting onHA⊗HB, we have a block construction onZ: Z = [Zµν](µ, ν = 1, . . . , dB = dimHB),

where eachZµν is a scalar matrix of sizedA × dA(dA = dimHA). Therefore

Z =
∑dB
µ,ν=1 Zµν ⊗ |µ〉〈ν|.

Now the partial trace over systemA is provided by

TrA(Z) =
∑dB
µ,ν=1 tr(Zµν)|µ〉〈ν| ≡ [tr(Zµν)],

while the partial trace over systemB is given by



4 ZHANG LIN AND WU JUNDE

TrB(Z) =
∑dB
µ,ν=1 Zµνtr(|µ〉〈ν|) =

∑dB
µ=1 Zµµ.

The partial trace over the composite quantum systemAB is

Tr(Z) =
∑dB
µ=1 tr(Zµµ).

The quantum operations formalism is a general tool for describing the evolution of quantum sys-

tems in a wide variety of circumstances, including stochastic changes to quantum states. A simple

example of a state change in quantum mechanics is the unitaryevolution experienced by a closed

quantum system. The final state of the system is related to theinitial state by a unitary transformation

U,

ρ→ E(ρ) = UρU†.

Unitary evolution is not the most general type of state change possible in quantum mechanics. Other

state changes, described without unitary transformations, arise when a quantum system is coupled to

an environment or when a measurement is performed on the system. This formalism is described in

detail by Kraus. In this formalism there is an input state andan output state, which are connected by

a map

ρ→ E(ρ)
tr[E(ρ)] .

This map is determined by aquantum operationE, a linear, trace-decreasing map that preserves posi-

tivity. The trace in the denominator is included in order to preserve the trace condition tr(ρ) = 1. The

most general form forE that is physically reasonable, can be shown to be

E(ρ) =
∑

j Γ jρΓ
†
j .

The system operatorsΓ j , which must satisfy
∑

j Γ jΓ
†
j ≤ I , completely specify the quantum opera-

tion. Formally, every quantum operation has to be describedmathematically by a completely positive

complex-linear mappingE, which satisfies tr(E(ρ)) ≤ 1 for all stateρ. A quantum operation is called

quantum channelif it is trace-preserving.

Given quantum operationE,EA, andEB on corresponding bipartite quantum system with subsys-

temsA and B, subsystemsA, andB, respectively, owing to Jamiołkowski isomorphism, the notion

of entanglement can be extended from quantum states to quantum operations. A quantum operation

acting on two subsystems is said to beseparableif its action can be expressed in the Kraus form

E(·) = ∑k(Λ
A
k ⊗ ΛB

k ) · (ΛA
k ⊗ ΛB

k )†,

whereΛA
k andΛB

k are operators acting on each subsystem and they satisfy that
∑

k(Λ
A
k ⊗ Λ

B
k )†(ΛA

k ⊗ Λ
B
k ) ≤ IA ⊗ IB.

Otherwise, it is entangled. When the equality is valid, there is a concept ofseparable quantum chan-

nel.

2. Vectorization and realignment of matrices

Definition 2.1. Representation of matrices as vectors on a higher dimensional Hilbert space is called

vectorization. It transforms ap× q matrix G into pq× 1 column vector denoted by|G〉〉, this is done

by ordering matrix elements, i.e., by stacking the columns of G to form a vector: for example, with a

p× q matrixG = [gi j ], |G〉〉 is described as
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|G〉〉 =



G(·, 1)
...

G(·, q)


, whereG(·, j) =



g1 j
...

gp j


( j = 1, . . . , q).

That is,G(·, j) is the jth column vector of matrixG. Dually, 〈〈G| is a 1× pq row vector defined as

(|G〉〉)†, i.e.,〈〈G| = (|G〉〉)†. (see [4])

Remark 2.2. (i) Vectorization is obviously linear: for matricesSk and scalarsλk,

|∑k λkSk〉〉 =
∑

k λk|Sk〉〉.

(ii) Vectorization is inner-product-preserving; i.e. isometry. The Hilbert-Schmidt inner product is

equivalent to the usual Euclidean inner product of vectors:for square matricesS,T of the same

size, 〈S,T〉 = tr(S†T) = 〈〈S|T〉〉. It is easily shown that vectorization is one-one and onto.

Therefore vectorization is a unitary transformation from Hilbert-Schmidt matrix space to Hilbert

vector space.

(iii) Vectorization is intrinsically related to the tensorproduct. Consider a square matrix of size

p× p, representing an operator acting on thep-dimensional Hilbert spaceK . Let {| j〉}pj=1 be the

orthonormal basis ofK for which | j〉 is column vector with all entries 0 except forjth entry 1. A

matrix T = [ti j ] =
∑p

i, j=1 ti j Ei j , whereEi j = |i〉〈 j|, is transformed to the vector

|T〉〉 = |
p∑

i, j=1

ti j Ei j 〉〉 =
p∑

i, j=1

ti j |Ei j 〉〉 =
p∑

i, j=1

ti j |i〉| j〉 =
p∑

j=1

(
p∑

i=1

ti j |i〉)| j〉

=

p∑

j=1

(T | j〉)| j〉 = (T ⊗ Ip)(
p∑

i=1

| j〉| j〉) = (T ⊗ Ip)(
p∑

j=1

|E j j 〉〉)

= (T ⊗ Ip)|
p∑

j=1

E j j 〉〉 = (T ⊗ Ip)|Ip〉〉 = (Ip ⊗ Tt)|Ip〉〉.(2.1)

Thus it follows from the identity above that, for any matrices Q,X andR of the same sizep× p,

|QXR〉〉 = (QXR) ⊗ Ip|Ip〉〉 = (Q⊗ Ip)(X ⊗ Ip)[(R⊗ Ip)|Ip〉〉]

= (Q⊗ Ip)(X ⊗ Ip)[(Ip ⊗ Rt)|Ip〉〉] = (Q⊗ Ip)[(X ⊗ Ip)(Ip ⊗ Rt)]|Ip〉〉

= (Q⊗ Ip)[(Ip ⊗ Rt)(X ⊗ Ip)]|Ip〉〉 = (Q⊗ Ip)(Ip ⊗ Rt)|X〉〉

= Q⊗ Rt|X〉〉(2.2)

and

|XY〉〉 = (X ⊗ Ip)|Y〉〉 = (Ip ⊗ Yt)|X〉〉.(2.3)

(iv) For any matrixY,

〈〈Y∗| = (|Y∗〉〉)† = (|Y〉〉)∗† = (|Y〉〉)t.(2.4)
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(v) For S ∈ B(HA) andT ∈ B(HB), whereHA = HB ared-dimensional Hilbert spaces. For the

matrix representationsS = [si j ] andT = [ti j ](i, j = 1, . . . , d), we have trB(|S〉〉〈〈T |) = S T† and

trA(|S〉〉〈〈T |) = StT∗. Indeed,

trB(|S〉〉〈〈T |) =
d∑

m,n,µ,ν=1

smnt
∗
µνtrB(|mn〉〈µν|) =

d∑

m,n,µ,ν=1

smnt
∗
µνtrB(|m〉〈µ| ⊗ |n〉〈ν|)

=

d∑

m,n,µ,ν=1

smnt
∗
µνδnν|m〉〈µ| =

d∑

m,n,µ=1

smnt
∗
µn|m〉〈µ|

=

d∑

n=1

(
d∑

m=1

smn|m〉)(
d∑

µ=1

tµn|µ〉)† =
d∑

n=1

(S|n〉)(T |n〉)†

=

d∑

n=1

S|n〉〈n|T† = S T†.

The other identity goes similarly.

Definition 2.3. Let Z be andB × dB block matrix with each entry of sizedA × dA; i.e. Z = [Zµν]

represent an operator acting onHA ⊗ HB. We define a realigned matrixR(Z), acting fromHB ⊗ HB

toHA ⊗HA, of sized2
A × d2

B that contains the same elements asZ but in different position as

R(Z) = [|Z11〉〉, . . . , |ZdB1〉〉; . . . ; |Z1dB〉〉, . . . , |ZdBdB〉〉].
In fact, R(Z)mn

µν
= Zmµ

nν
. Similarly, we can also define another alignmentR′ asR′(Z)mn

µν
= Z νn

µm
. Note

that alignment of matrices is a one-one linear mapping from the matrix spaceMdAdB×dAdB(C) onto the

matrix spaceMd2
A×d2

B
(C).

Proposition 2.4. For a tensor matrix X⊗ Y with the factor matrix X of size dA × dA and the factor

matrix Y= [yµν] of size dB × dB, Z = [yµνX] = [Zµν]. We have:

R(X ⊗ Y) = |X〉〉〈〈Y∗|.(2.5)

Moreover, a nonzero matrix Z can be factorized as X⊗ Y if and only if rank[R(Z)] = 1.

Proof.

R(X ⊗ Y) = [|y11X〉〉, . . . , |ydB1X〉〉; . . . ; |y1dBX〉〉, . . . , |ydBdBX〉〉]

= [y11|X〉〉, . . . , ydB1|X〉〉; . . . ; y1dB |X〉〉, . . . , ydBdB |X〉〉]

= |X〉〉[y11, . . . , ydB1; . . . ; y1dB, . . . , ydBdB] = |X〉〉(|Y〉〉)t

= |X〉〉〈〈Y∗|.

�

For a general block matrixZ, it holds that

R(Z) = R(
dB∑

µ,ν=1

Zµν ⊗ |µ〉〈ν|) =
dB∑

µ,ν=1

R(Zµν ⊗ |µ〉〈ν|)

=

dB∑

µ,ν=1

|Zµν〉〉(|µν〉)t =
dB∑

µ,ν=1

|Zµν〉〉〈µν|.(2.6)
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Before the properties of realignment derived, we need to know one useful operator calledswap oper-

ator, defined asS =
∑N2

i, j=1 |i j〉〈 ji |, acting onHN ⊗HN. Then by simple computations, we have:

Proposition 2.5. For any X and Y of the same size N× N. We have:

(i) S is self-adjoint, unitary, symmetric, and orthogonal;

(ii) |Xt〉〉 = S|X〉〉, LT = S ;

(iii) S (X ⊗ Y)S = Y⊗ X.

Definition 2.6. With S as above, theflip transformation of matrices over a bipartite quantum system

is defined as

F (Z) = S ZSwith F (Z)mµ
nν
= Zµm

νn
.

Similarly, we can define twopartial flipsasFr(Z) = S ZwithFr (Z)mµ
nν
= Zµm

nν
andFc(Z) = ZSwithFc(Z)mµ

nν
=

Zmµ
νn

(where ‘r’ and ‘c’ mean that row and column, respectively). Later, we will see thatLF = S ⊗ S.

Lemma 2.7. ([6]) Given any two square matrices X,Y of the same size, we have the following equa-

tion:

|X ⊗ Y〉〉 = (I ⊗ S ⊗ I )|X〉〉|Y〉〉.(2.7)

Proposition 2.8. (i) If X,Y are matrices of the same size N× N, then

|R(X ⊗ Y)〉〉 = |X〉〉|Y〉〉;(2.8)

i.e., the vectorization of the matrix|X〉〉〈〈Y∗| is |X〉〉|Y〉〉.

(ii) Let Z be a matrix of size N2 × N2. Then: |R(Z)〉〉 = I ⊗ S ⊗ I |Z〉〉, thus LR = I ⊗ S ⊗ I.

(iii) If Ω(·) = ∑N
i, j=1(I ⊗ |i〉〈 j|) · (|i〉〈 j| ⊗ I ), then: for any matrices X,Y of the same size N× N,

Ω(|X〉〉〈〈Y|) = X ⊗ Y∗ andΩ(X ⊗ Y∗) = |X〉〉〈〈Y| = R(X ⊗ Y∗).(2.9)

More generally, we haveΩ(Z) = R(Z) for any matrix Z of size N2 × N2.

Proof. (i) and (ii) follow easily from Lemma 2.7.

(iii) Together with Lemma 2.7, it follows from (i) that

|Ω(X ⊗ Y∗)〉〉

= |
N∑

i, j=1

(I ⊗ |i〉〈 j|)X ⊗ Y∗(|i〉〈 j| ⊗ I )〉〉 =
N∑

i, j=1

|(I ⊗ |i〉〈 j|)X ⊗ Y∗(|i〉〈 j| ⊗ I )〉〉

=

N∑

i, j=1

(I ⊗ |i〉〈 j|) ⊗ (| j〉〈i| ⊗ I )|X ⊗ Y∗〉〉 =
N∑

i, j=1

(I ⊗ |i j〉〈 ji | ⊗ I )|X ⊗ Y∗〉〉

= (I ⊗ S ⊗ I )|X ⊗ Y∗〉〉 = |X〉〉|Y∗〉〉 = |R(X ⊗ Y∗)〉〉.
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HenceΩ(X⊗Y∗) = R(X⊗Y∗) = |X〉〉〈〈Y|. By simple computations, we have alsoΩ(|X〉〉〈〈Y|) = X⊗Y∗.

Since〈mµ|R(Z)|nν〉 = R(Z)mµ
nν
= Zmn

µν
and

〈mµ|∑N
i, j=1(I ⊗ |i〉〈 j|)Z(|i〉〈 j| ⊗ I )|nν〉 = ∑N

i, j=1 δµiδn j〈m j|Z|iν〉 = 〈mn|Z|µν〉 = Zmn
µν

,

i.e.,Ω(Z) = R(Z). In such a way, we obtain the explicit expression for the realignment transformation:

R(Z) =
N∑

i, j=1

(I ⊗ |i〉〈 j|)Z(|i〉〈 j| ⊗ I )(2.10)

for any matrixZ of sizeN2 × N2. �

Next the relationship amongthe realignment, the transposition, and the flipover a bipartite quantum

system will be discussed. First recall that the transpositionT over bipartite quantum systemHA⊗HB

are defined asT (Z) ≡ TA ⊗ TB(Z) with T (Z)mµ
nν
= Z nν

mµ
, whereTA andTB are the transpositions with

respect to subsystems A and B, respectively. Apparently,TA(Z)mµ
nν
= Z nµ

mν
andTB(Z)mµ

nν
= Zmν

nµ
.

Proposition 2.9. (i) T ,R andF all are involution; i.e.,T ◦ T = R ◦ R = F ◦ F = Id.

(ii) F ◦ T = T ◦ F , T ◦ R , R ◦ T andF ◦ R , R ◦ F , where◦ stands for the composite of

transformations.

(iii) T ◦ R = R ◦ F andR ◦ T = F ◦ R.

(iv) R′ = T ◦ R ◦ T = F ◦ R ◦ F .

(v) Fr = R ◦ TA ◦ R andFc = R ◦ TB ◦ R.

Proof. It is trivially by some computations. For example, [T ◦ R(X)]mµ
nν
= [T (X)]mn

µν
= X µν

mn
and

[R ◦ F (X)]mµ
nν
= [R(X)]µm

νn
= X µν

mn
; i.e., [T ◦ R(X)]mµ

nν
= [R ◦ F (X)]mµ

nν
which means thatT ◦ R = R ◦ F .

Others go similarly. �

3. Dynamical matrices for quantum operations

A density matrix

ρ =



ρ11 · · · ρ1dB

...
...

...

ρdB1 · · · ρdBdB


= [ρµν](3.1)

of sizedB × dB may be treated as a vector

|ρ〉〉 =



ρ(·, 1)
...

ρ(·, dB)


,whereρ(·, ν) =



ρ1ν
...

ρdBν


(ν = 1, . . . , dB).(3.2)

Suppose thatρ andσ act onHB andHA, respectively. The action of a linear super-operatorΦ : ρ →
σ = Φ(ρ) = [σmn] may thus be represented by a matrixLΦ ≡ L of sized2

A × d2
B:

|σ〉〉 = |Φ(ρ)〉〉 = L|ρ〉〉 or σmn =

dB∑

µ,ν=1

Lmn
µν
ρµν.(3.3)
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It can be written concretely as the equation of multiplicityof asupermatrixand asupervector:


σ(·, 1)
...

σ(·, n)
...

σ(·, dA)



=



L11 · · · L1ν · · · L1dB

...
...

...
...

...

Ln1 · · · Lnν · · · LndB

...
...

...
...

...

LdA1 · · · LdAν · · · LdAdB





ρ(·, 1)
...

ρ(·, ν)
...

ρ(·, dB)



,(3.4)

where

Lnν = [Lmn
µν

] =



L1n
1ν
· · · L 1n

dBν
...

...
...

LdAn
1ν
· · · LdAn

dBν


.(3.5)

One must be caution here thatn andν stand for the block row index and the block column index,

respectively; whilem andµ stand for row index and column index of each block. Now we givea

simple example for a qubit map for later use as follows:



σ11

σ21

σ12

σ22


=



L 11
11

L 11
21

L 11
12

L 11
22

L 21
11

L 21
21

L 21
12

L 21
22

L 12
11

L 12
21

L 12
12

L 12
22

L 22
11

L 22
21

L 22
12

L 22
22





ρ11

ρ21

ρ12

ρ22


.(3.6)

Theorem 3.1. The requirement that the imageσ is a density matrix, so it is Hermitian, positive with

unit trace, impose constraints on the matrix L:

(i) σ† = σ =⇒ L∗mn
µν
= Lnm

νµ
.

(ii) σ ≥ 0 =⇒ [
∑dB
µ,ν=1 Lmn

µν
ρµν] ≥ 0 for any stateρ = [ρµν].

(iii) tr (σ) = 1 =⇒ ∑dA
m=1 Lmm

µν
= δµν.

Proof. (i) Step 1:For stateρ = |γ〉〈γ|(γ ∈ {1, . . . , dB}),

ρµν = 〈µ|ρ|ν〉 = 〈µ|γ〉〈γ|ν〉 = δµγδνγ.(3.7)

Then

σmn =

dB∑

µ,ν=1

Lmn
µν
δµγδνγ = Lmn

γγ
.(3.8)

Since σ† = σ, it implies thatσmn = σ
∗
nm; i.e.,Lmn

γγ
= L∗nm

γγ
(γ ∈ {1, . . . , dB}).

Step 2: Setting

ρ =
1
2

[|α〉〈α| + |β〉〈β| + |α〉〈β| + |β〉〈α|](α, β = 1, . . . , dB;α , β),(3.9)

we have

ρµν =
1
2

[δµαδνα + δµβδνβ + δµαδνβ + δµβδνα].(3.10)



10 ZHANG LIN AND WU JUNDE

Hence

σmn =
1
2

[Lmn
αα
+ Lmn

ββ
+ Lmn

αβ
+ Lmn

βα
].(3.11)

From the equationσmn = σ
∗
nm, we know

Lmn
αα
+ Lmn

ββ
+ Lmn

αβ
+ Lmn

βα
= L∗nm

αα
+ L∗nm

ββ
+ L∗nm

αβ
+ L∗nm

βα
;

i.e.,

Lmn
αβ
+ Lmn

βα
= L∗nm

αβ
+ L∗nm

βα
.(3.12)

Step 3: Letting

ρ =
1
2

[|α〉〈α| + |β〉〈β| +
√
−1|α〉〈β| −

√
−1|β〉〈α|],(3.13)

we have

ρµν =
1
2

[δµαδνα + δµβδνβ +
√
−1δµαδνβ −

√
−1δµβδνα].(3.14)

Hence

σmn =
1
2

[Lmn
αα
+ Lmn

ββ
+
√
−1Lmn

αβ
−
√
−1Lmn

βα
],(3.15)

which implies that

σ∗nm =
1
2

[L∗nm
αα
+ L∗nm

ββ
−
√
−1L∗nm

αβ
+
√
−1L∗nm

βα
].(3.16)

This gives rise to:

Lmn
αβ
− Lmn

βα
= −L∗nm

αβ
+ L∗nm

βα
(3.17)

Combing (3.12) with (3.17) gives thatLmn
αβ
= L∗nm

βα
.

(ii) is trivial.

(iii) Because tr(σ) = 1, that is,

1 =
dA∑

m=1

σmm=

dA∑

m=1

dB∑

µ,ν=1

Lmm
µν
ρµν.(3.18)

Step 1: Givenρ = |γ〉〈γ|(γ ∈ {1, . . . , dB}). Soρµν = 〈µ|ρ|ν〉 = δµγδνγ. From the equation (3.18), we

have that

1 =
dA∑

m=1

dB∑

µ,ν=1

Lmm
µν
δµγδνγ =

dA∑

m=1

Lmm
γγ

(γ ∈ {1, . . . , dB}).(3.19)

Step 2: From the equation (3.9), (3.10) and (3.18), we have that

1 =
1
2


dA∑

m=1

Lmm
αα
+

dA∑

m=1

Lmm
ββ
+

dA∑

m=1

Lmm
αβ
+

dA∑

m=1

Lmm
βα

 ;

i.e.,

dA∑

m=1

Lmm
αβ
+

dA∑

m=1

Lmm
βα
= 0.(3.20)
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Step 3: It follows from the equation (3.13) and (3.14) that

1 =
1
2


dA∑

m=1

Lmm
αα
+

dA∑

m=1

Lmm
ββ
+
√
−1

dA∑

m=1

Lmm
αβ
−
√
−1

dA∑

m=1

Lmm
βα

 ;

i.e.,
dA∑

m=1

Lmm
αβ
−

dA∑

m=1

Lmm
βα
= 0.(3.21)

From the equations (3.20) and (3.21), we get
∑dA

m=1 Lmm
αβ
= 0(α , β). In summary,

∑dA
m=1 Lmm

µν
= δµν. �

Note that the property (i) of the proposition 3.1. is not the condition of Hermicity, and in general

the matrixL representing the super-operatorΦ is not Hermitian. However, by the definition of matrix

realignment we can define thedynamical matrix or Choi matrix (see [13, 15]):

DΦ ≡ R(L) with Dmµ
nν
= Lmn

µν
.

In particular, the mappingJ : Φ 7→ DΦ is calledChoi-Jamiołkowski isomorphism.

Proposition 3.2. For a quantum channelΦ, its dynamical matrix DΦ enjoy the properties that follow:

(i) D†
Φ
= DΦ;

(ii) DΦ ≥ 0;

(iii) tr A(DΦ) = IB, Tr(DΦ) = N;

(iv) |LΦ〉〉 = (I ⊗ S ⊗ I )|DΦ〉〉; 〈〈LΦ|LΨ〉〉 = 〈〈DΦ|DΨ〉〉; 〈LΦ, LΨ〉 = 〈DΦ,DΨ〉;
(v) 〈Φ(X),Y〉 = 〈DΦ,Y⊗ X∗〉 for any X,Y.

Proof. Write DΦ = D = [Dmµ
nν

].

(i) D† = [Dmµ
nν

]† = [D∗mµ
nν

]t = [D∗nν
mµ

] = [L∗nm
νµ

] = [Lmn
µν

] = [Dmµ
nν

] = D.

(ii) Let |z〉 = ∑N
n,ν=1 znν|nν〉〉. Then〈z| = ∑N

m,µ=1 z∗mµ〈〈mµ|. Hence

〈z|D|z〉 = ∑N
m,µ,n,ν=1 z∗mµDmµ

nν
znν.

|I〉〉 = ∑N
m=1 |µµ〉 is called a maximally entangled state. So we have

|I〉〉〈〈I | = ∑N
µ,ν=1 |µµ〉〈νν| =

∑N
µ,ν=1 |µ〉〈ν| ⊗ |µ〉〈ν|.

SinceΦ is completely positive map,Φ⊗Idk ≥ 0(∀non-negative integerk), in particular, (Φ⊗IdN)(|I〉〉〈〈I |) ≥
0, we get that

0 ≤ 〈z|(Φ ⊗ IdN)(|I〉〉〈〈I |)|z〉

=

N∑

µ,ν=1

〈z|[Φ(|µ〉〈ν|) ⊗ |µ〉〈ν|]|z〉

=

N∑

µ,ν=1

N∑

m,α,n,β=1

z∗mαznβ〈m|Φ(|µ〉〈ν|)|n〉 · 〈α|µ〉〈ν|β〉

=
∑

m,µ,n,ν=1

z∗mµznνLmn
µν
=
∑

m,µ,n,ν=1

z∗mµDmµ
nν

znν.�

Obviously, there is an identity in the proof: ifD(HB)
Φ−→ D(HA), thenD(HB ⊗ HB)

Φ⊗IdN−→ D(HA ⊗
HB),

DΦ = (Φ ⊗ IdN)(|I〉〉〈〈I |),Φ(ρ) = TrA[DΦ(IA ⊗ ρt)].(3.22)
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Notes: IfX = |µ〉〈ν|, then|X〉〉 = |µ〉|ν〉 ≡ |µν〉, from which it follows that|Φ(X)〉〉 = L|X〉〉 = L|µν〉 =
∑N

i, j=1 |i j〉〈i j |L|µν〉 =
∑N

i, j=1 L i j
µν
|i j〉. Therefore,Φ(X) =

∑N
i, j=1 L i j

µν
|i〉〈 j|, and

〈m|Φ(|µ〉〈ν|)|n〉 = 〈m|Φ(X)|n〉 =
N∑

i, j=1

L i j
µν
〈m|i〉〈 j|n〉

=

N∑

i, j=1

L i j
µν
δmiδn j = Lmn

µν
.

Sinceρµν = 〈µ|ρ|ν〉 = tr(ρ|ν〉〈µ|) = tr(|µ〉〈ν|ρt), we have:

Φ(ρ) =
∑

µ,ν

ρµνΦ(|µ〉〈ν|) =
∑

µ,ν

Φ(|µ〉〈ν|)tr(|µ〉〈ν|ρt) =
∑

µ,ν

TrA(Φ(|µ〉〈ν|) ⊗ (|µ〉〈ν|ρt))

= TrA[(Φ ⊗ IdN)(|IB〉〉〈〈IB|)(IA ⊗ ρt)] = TrA[DΦ(IA ⊗ ρt)].

(iii) Since D = [Dµν], whereDµν = [Dmµ
nν

], trAD = [trDµν]. Because trDµν =
∑N

m=1 Dmµ
mν
=
∑N

m=1 Lmm
µν
=

δµν, thus we have trAD = [δµν] = IB. Furthermore, Tr(D) = N is trivially.

(iv) By the operator-sum representation theorem, we haveΦ(ρ) =
∑

j Γ jρΓ
†
j , thus

|LΦ〉〉 = |
∑

j

Γ j ⊗ Γ∗j 〉〉 =
∑

j

|Γ j ⊗ Γ∗j 〉〉 =
∑

j

(I ⊗ S ⊗ I )|Γ j〉〉|Γ∗j 〉〉

=
∑

j

(I ⊗ S ⊗ I )||Γ j〉〉〈〈Γ j |〉〉 = (I ⊗ S ⊗ I )|
∑

j

R(Γ j ⊗ Γ∗j )〉〉

= (I ⊗ S ⊗ I )|R(
∑

j

Γ j ⊗ Γ∗j )〉〉 = (I ⊗ S ⊗ I )|R(L)〉〉

= (I ⊗ S ⊗ I )|DΦ〉〉.

Therefore〈〈LΦ|LΨ〉〉 = 〈〈DΦ|(I ⊗ S ⊗ I )2|DΨ〉〉 = 〈〈DΦ|DΨ〉〉; that is〈LΦ, LΨ〉 = 〈DΦ,DΨ〉.
(v)

〈Y,Φ(X)〉 = 〈〈Y|Φ(X)〉〉 = 〈〈Y|LΦ|X〉〉 = Tr[LΦ|X〉〉〈〈Y|]

= Tr[(|Y〉〉〈〈X|)†LΦ] = 〈|Y〉〉〈〈X|, LΦ〉 = 〈R(|Y〉〉〈〈X|),R(LΦ)〉

= 〈Y ⊗ X∗,DΦ〉.

�

For any quantum channelΦ, it induces itsdual channelΦ† in the following sense:

〈Φ(ρ), σ〉 = 〈ρ,Φ†(σ)〉 for any statesρ andσ.

If a CP map is given by the Kraus formΦ(ρ) =
∑

j Γ jρΓ
†
j , then the dual maps readsΦ†(σ) =

∑
j Γ
†
jρΓ j.

Therefore, we have the following proposition into which themost useful results are summarized:

Proposition 3.3. (i) LΦ =
∑

j Γ j ⊗ Γ∗j , or DΦ =
∑

j |Γ j〉〉〈〈Γ j | for Φ(·) = ∑ j Γ j · Γ†j .
(ii) If Φ† is the dual channel of a quantum channelΦ, then LΦ† = F ◦ T (LΦ) = L†

Φ
, or DΦ† =

F ◦ T (DΦ).

(iii) L rΦ+sΨ = rLΦ + sLΨ, or DrΦ+sΨ = rDΦ + sDΨ.

(iv) the compositionΦ◦Ψ of two mapsΦ andΨmeans that LΦ◦Ψ = LΦLΨ, or DΦ◦Ψ = R(R(DΦ)R(DΨ)).
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(v) LT◦Φ = Fr(LΦ), or DT◦Φ = TA(DΦ); LΦ◦T = Fc(LΦ), or DΦ◦T = TB(DΦ).

(vi) LT◦Φ◦T = F (LΦ) = L∗
Φ

, or DT◦Φ◦T = T (DΦ) = Dt
Φ
= D∗

Φ
.

Proof. (i) SinceLΦ|X〉〉 = |Φ(X)〉〉 = |∑ j Γ jXΓ
†
j 〉〉 =

∑
j Γ j ⊗ Γ∗j |X〉〉, LΦ =

∑
j Γ j ⊗ Γ∗j . DΦ = R(LΦ) =

∑
j R(Γ j ⊗ Γ∗j ) =

∑
j |Γ j〉〉〈〈Γ j |.

(ii) Obviously, LΦ† =
∑

j Γ
†
j ⊗ Γtj = (

∑
j Γ j ⊗ Γ∗j )† = L†

Φ
. Thus it follows from (3) of Proposition 2.9.

that

DΦ† = R(LΦ†) = R(L†
Φ

) = R ◦ T (L∗Φ)

= [R ◦ T (LΦ)]∗ = [F ◦ R(LΦ)]∗ = [F (DΦ)]∗ = F (D∗Φ) = F ◦ T (DΦ).

(iii) It is trivially because

LrΦ+sΨ|X〉〉 = |(rΦ + sΨ)(X)〉〉 = r |Φ(X)〉〉 + s|Ψ(X)〉〉

= rLΦ|X〉〉 + sLΨ|X〉〉 = (rLΦ + sLΨ)|X〉〉.

DrΦ+sΨ = rDΦ + sDΨ holds since the reshuffle transformation is linear.

(iv) LΦ◦Ψ|X〉〉 = |Φ ◦Ψ(X)〉〉 = LΦ|Ψ(X)〉〉 = LΦLΨ|X〉〉. This implies thatDΦ◦Ψ = R(R(DΦ)R(DΨ)).

(v) LT◦Φ = LT LΦ = S LΦ = Fr(LΦ); similarly, LΦ◦T = LΦLT = LΦS = Fc(LΦ). Thus

DT◦Φ = R(LT◦Φ) = R ◦ Fr (LΦ) = R ◦ Fr ◦ R(DΦ) = TA(DΦ)

and

DΦ◦T = R(LΦ◦T ) = R ◦ Fc(LΦ) = R ◦ Fc ◦ R(DΦ) = TB(DΦ).

(vi) LT◦Φ◦T = LT LΦLT = S LΦS = F (LΦ). Thus

DT◦Φ◦T = R(LT◦Φ◦T ) = R ◦ F (LΦ) = R ◦ F ◦ R(DΦ) = T (DΦ) = Dt
Φ
= D∗

Φ
. �

Proposition 3.4. For two quantum operationsΦ,Ψ on the N-dimensional identical subsystems,HA,HB

of a bipartite quantum systemHA ⊗HB, respectively. Then:

LΦ⊗Ψ = (I ⊗ S ⊗ I )(LΦ ⊗ LΨ)(I ⊗ S ⊗ I ).(3.23)

Proof. ρ = [ρµν] =
∑N
µ,ν=1 ρµν ⊗ |µ〉〈ν|, whereρµν = [ρmµ

nν
], is a N × N block density matrix whose

entries beingN × N scalar matrices. Since

(I ⊗ S ⊗ I )|ρ〉〉 = (I ⊗ S ⊗ I )
N∑

µ,ν=1

|ρµν ⊗ |µ〉〈ν|〉〉

=

N∑

µ,ν=1

(I ⊗ S ⊗ I )2|ρµν〉〉 ⊗ |µν〉

=

N∑

µ,ν=1

|ρµν〉〉 ⊗ |µν〉,
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we can get that

LΦ⊗Ψ|ρ〉〉 = |(Φ ⊗ Ψ)(ρ)〉〉 =
N∑

µ,ν=1

|Φ(ρµν) ⊗ Ψ(|µ〉〈ν|)〉〉

=

N∑

µ,ν=1

(I ⊗ S ⊗ I )[|Φ(ρµν)〉〉 ⊗ |Ψ(|µ〉〈ν|)〉〉]

=

N∑

µ,ν=1

(I ⊗ S ⊗ I )[LΦ|ρµν〉〉 ⊗ LΨ|µν〉]

=

N∑

µ,ν=1

(I ⊗ S ⊗ I )(LΦ ⊗ LΨ)[|ρµν〉〉 ⊗ |µν〉]

= (I ⊗ S ⊗ I )(LΦ ⊗ LΨ)[
N∑

µ,ν=1

|ρµν〉〉 ⊗ |µν〉]

= (I ⊗ S ⊗ I )(LΦ ⊗ LΨ)(I ⊗ S ⊗ I )|ρ〉〉.

�

Proposition 3.5. Let Φ,Ψ be two quantum operations onHN. If ρ, σ are states inHN ⊗ HN and

σ = (Φ ⊗ Ψ)(ρ), then:

R(σ) = LΦR(ρ)Lt
Ψ
.(3.24)

Proof.

|R(σ)〉〉 = (I ⊗ S ⊗ I )|σ〉〉 = (I ⊗ S ⊗ I )|(Φ ⊗ Ψ)(ρ)〉〉 = (I ⊗ S ⊗ I )LΦ⊗Ψ|ρ〉〉

= (I ⊗ S ⊗ I )(I ⊗ S ⊗ I )(LΦ ⊗ LΨ)(I ⊗ S ⊗ I )|ρ〉〉 = (LΦ ⊗ LΨ)|R(ρ)〉〉

= |LΦR(ρ)Lt
Ψ〉〉.

�

Lemma 3.6. The composition of two completely positive linear super-operatorsΦ ◦ Ψ is again com-

pletely positive.

Proof. To see thatΦ ◦ Ψ is completely positive, it suffices to show (Φ ◦ Ψ) ⊗ Idk is positive for any

k ∈ N. Obviously, (Φ ◦ Ψ) ⊗ Idk = (Φ ⊗ Idk) ◦ (Ψ ⊗ Idk). SinceΦ andΨ are CP maps,Φ ⊗ Idk and

Ψ⊗ Idk are positive for anyk ∈ N, which implies that the composition (Φ ⊗ Idk) ◦ (Ψ⊗ Idk) is positive

for anyk ∈ N. �

Corollary 3.7. Given two Hermitian matrices A, B of the same size N2 × N2. If A, B ≥ 0, then

R(R(A)R(B)) ≥ 0.

Proof. We can consider two non-negative matricesA andB of the same sizeN2×N2 as the dynamical

matrices for two linear super-operatorsΦA andΦB, both acting fromMN toMN, respectively. Now

A, B ≥ 0 imply thatΦA andΦB are CP maps. Thus their compositionΦA ◦ ΦB is CP map by Lemma
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3.6. It follows from this that, forΦA ◦ ΦB, its dynamical matrixDΦA◦ΦB = R(R(A)R(B)) is non-

negative. The result that follows immediately. Another complicated proof on the present corollary can

be found in [6]. �

Corollary 3.8. Given a finite set of Hermitian matrices{D j : j = 1, . . . , n} of the same size N2 × N2.

If D j ≥ 0 for all j, thenR(R(Dn)R(Dn−1) · · · R(D1)) ≥ 0.

Proof. For each positive matrixD j of size N2 × N2, linear super-operatorΦ j determined byD j is

completely positive. Thus the composition ofn completely positive linear super-operators{D j : j =

1, . . . , n} is denoted byΦ = Φn ◦ · · · ◦ Φ1. Therefore the dynamical matrixDΦ for Φ is equal to

R(R(Dn)R(Dn−1) · · · R(D1)). Since composition preserves completely positivity by the above lemma,

Φ is completely positive, thereforeDΦ ≥ 0. �

Proposition 3.9. The Hilbert-Schmidt inner product, i.e.,〈X,Y〉 = Tr(X†Y), on the matrix spaceMN

induces another inner product in the space of linear mapsL (MN,MN).

Proof. Let {Eα : α = 1, . . . ,N2} and {Fα : α = 1, . . . ,N2} be orthonormal bases inMN, where

〈Eα,Eβ〉 = 〈Fα, Fβ〉 = δαβ. We need only to prove that
∑N2

α=1 TrΦ(Eα)†Ψ(Eα) =
∑N2

α=1 TrΦ(Fα)†Ψ(Fα).

Since|Eα〉〉 =
∑N2

β=1 |Fβ〉〉〈〈Fβ|Eα〉〉 =
∑N2

β=1〈〈Fβ|Eα〉〉|Fβ〉〉, Eα =
∑N2

β=1〈〈Fβ|Eα〉〉Fβ.

N2∑

α=1

TrΦ(Eα)†Ψ(Eα) =
N2∑

α=1

N2∑

β,γ=1

〈〈Fβ|Eα〉〉〈〈Fγ|Eα〉〉TrΦ(Fβ)
†Ψ(Fγ)

=

N2∑

α=1

N2∑

β,γ=1

〈〈Fγ|Eα〉〉〈〈Eα|Fβ〉〉TrΦ(Fβ)
†Ψ(Fγ)

=

N2∑

β,γ=1

〈〈Fγ |(
N2∑

α=1

|Eα〉〉〈〈Eα|)|Fβ〉〉TrΦ(Fβ)
†Ψ(Fγ)

=

N2∑

β,γ=1

〈〈Fγ |Fβ〉〉TrΦ(Fβ)
†Ψ(Fγ) =

N2∑

β,γ=1

δβγTrΦ(Fβ)
†Ψ(Fγ)

=

N2∑

α=1

TrΦ(Fα)†Ψ(Fα).

�

Now we define the inner product of two linear super-operatorsΦ andΨ (see [2]) as follows:

〈Φ,Ψ〉 ≡
N2∑

α=1

TrΦ(Eα)†Ψ(Eα).(3.25)

Using this correspondence it is possible to introduce two different bases, associated to the bases

{Eα}N
2

α=1, {Fβ}N
2

β=1, in the space of linear maps:
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1) Type–I basis{∆αβ} in L (MN,MN) is defined by

∆αβ(X) = Eα〈Fβ,X〉 = EαTrF†
β
X, X ∈ MN;(3.26)

and

2) Type–II basis {Θαβ} in L (MN,MN) is defined by

Θαβ(X) = EαXF†
β
, X ∈ MN.(3.27)

Indeed, 1) Let
∑N2

α,β=1 cαβ∆αβ = 0 for some scalarscαβ ∈ C. This implies that
∑N2

α,β=1 cαβ∆αβ(X) = 0,

in particular, forX = Fγ(γ = 1, . . . ,N2), we have:

0 =
∑N2

α,β=1 cαβ∆αβ(Fγ) =
∑N2

α,β=1 cαβδβγEα =
∑N2

α=1 cαγEα

Since {Eα} is linearly independent,cαγ = 0(α, γ = 1, . . . ,N2). We have also that〈∆αβ,∆µν〉 =∑N2

i, j,k,l=1 Tr[∆αβ(|i〉〈 j|)†∆µν(|k〉〈l|)] = δαµδβν. Furthermore,L∆αβ = |Eα〉〉〈〈Fβ|.
2) Let

∑N2

α,β=1 cαβΘαβ = 0 for some scalarscαβ ∈ C. This implies that
∑N2

α,β=1 cαβΘαβ(X) = 0, we have:

0 =
∑N2

α,β=1 cαβΘαβ(X) =
∑N2

α,β=1 cαβEαXF†
β
,

which means that

0 = |
N2∑

α,β=1

cαβΘαβ(X)〉〉 =
N2∑

α,β=1

cαβ|Θαβ(X)〉〉 =
N2∑

α,β=1

cαβ|EαXF†
β
〉〉

=


N2∑

α,β=1

cαβEα ⊗ F∗β

 |X〉〉;

i.e.,
∑N2

α,β=1 cαβEα ⊗F∗
β
= 0 sinceX is arbitrary. Because of the independence of the set{Eα ⊗F∗

β
}N2

α,β=1,

this implies thatcαβ = 0(α, β = 1, . . . ,N2). And we have also that〈Θαβ,Θµν〉 = δαµδβν. Furthermore,

LΘαβ = Eα ⊗ F∗
β
.�

Remark 3.10. Therefore, according to two kind of the above-mentioned bases, we can expanding

any mappingΦ ∈ L (MN,MN) with respect to Type–I and Type–II bases, respectively, toget two

expressions that follow:

Φ =

N2∑

α,β=1

pαβ∆αβ =
N2∑

α,β=1

qαβΘαβ.(3.28)

Now LΦ =
∑N2

α,β=1 pαβ|Eα〉〉〈〈Fβ| =
∑N2

α,β=1 qαβEα ⊗ F∗
β
. We writeP = [pαβ],Q = [qαβ].

There is natural question to be asked: what is the relationships among these matricesP,Q? (see [10])

Proposition 3.11. With the above notations,

〈∆αβ,Θµν〉 = 〈Θαβ,∆µν〉 = Tr(E†αEµFβF
†
ν ).(3.29)

Thus

(i) pαβ =
∑N2

µ,ν=1 Tr(E†αEµFβF
†
ν )qµν;

(ii) qαβ =
∑N2

µ,ν=1 Tr(E†αEµFβF
†
ν )pµν.
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Proof. By the definition of the inner product in the space of linear maps,

〈∆αβ,Θµν〉 =
N∑

i, j=1

Tr((∆αβ(|i〉〈 j|))†Θµν(|i〉〈 j|)) =
N∑

i, j=1

〈 j|F†
β
|i〉Tr(E†αEµ|i〉〈 j|F†ν )

=

N∑

i, j=1

〈i|Fβ| j〉 · 〈 j|F†νE†αEµ|i〉 =
N∑

i=1

〈i|FβF
†
νE†αEµ|i〉 = Tr(FβF

†
νE†αEµ)

= Tr(E†αEµFβF
†
ν ).

Similarly, we have also:〈Θαβ,∆µν〉 = Tr(E†αEµFβF
†
ν ). Since

pαβ = 〈∆αβ,Φ〉 =
N2∑

µ,ν=1

〈∆αβ,Θµν〉〈Θµν,Φ〉

=

N2∑

µ,ν=1

〈∆αβ,Θµν〉qµν,

1) and 2) is trivial. �

Remark 3.12. (i) A special case is provided by the choiceEα = Fα (or Eα = Fα = |i〉〈 j|, where

{|i〉}Ni=1 are an orthonormal basis forCN) (see [1]).

(ii) Since |I〉〉 = |∑i |i〉〈i|〉〉 =
∑

i |ii〉, |I〉〉〈〈I | =
∑

i, j |ii〉〉〈〈 j j | =
∑

i, j |i〉〈 j| ⊗ |i〉〈 j|. We know that

I ⊗ I =
∑N2

α=1 |Eα〉〉〈〈Eα| when{Eα}N
2

α=1 is an orthonormal basis forMN. Thus we have:|I〉〉〈〈I | =
R(I ⊗ I ) =

∑N2

α=1R(|Eα〉〉〈〈Eα|) =
∑N2

α=1 Eα ⊗ E∗α. If there is another orthonormal basis{Fβ}N
2

β=1

for MN, we still have: |I〉〉〈〈I | = ∑N2

β=1 Fβ ⊗ F∗
β
. Therefore,

∑N2

α=1 Eα ⊗ E∗α =
∑N2

β=1 Fβ ⊗ F∗
β
=

∑N
i, j=1 |i〉〈 j| ⊗ |i〉〈 j| = |I〉〉〈〈I |. Furthermore, we have the swap operatorS =

∑N
i, j=1 |i j〉〈 ji | =∑N2

α=1 Eα ⊗ E†α =
∑N2

β=1 Fβ ⊗ F†
β
.

(iii) In fact, given two orthonormal bases{Eα}N
2

α=1 and{Fα}N
2

α=1 inMN, the relation

L (MN,MN) ∋ Φ −→ ΛΦ =
N2∑

α=1

Φ(Eα) ⊗ Fα ∈ MN ⊗MN(3.30)

defines an isomorphism betweenL (MN,MN) andMN⊗MN. The isomorphism is an isometry:

〈ΛΦ,ΛΨ〉 = 〈
N2∑

α=1

Φ(Eα) ⊗ Fα,

N2∑

β=1

Ψ(Eβ) ⊗ Fβ〉 =
N2∑

α,β=1

〈Φ(Eα) ⊗ Fα,Ψ(Eβ) ⊗ Fβ〉

=

N2∑

α,β=1

〈Φ(Eα),Ψ(Eβ)〉〈Fα, Fβ〉 =
N2∑

α,β=1

〈Φ(Eα),Ψ(Eβ)〉δαβ

=

N2∑

α=1

〈Φ(Eα),Ψ(Eα)〉 = 〈Φ,Ψ〉; i.e., 〈ΛΦ,ΛΨ〉 = 〈Φ,Ψ〉.
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4. Best separable approximation for states

In this section we recall the so-called optimal and the best separability approximation(OSA and

BSA respectively). Although the results below have been proven in [9, 7], we give the framework for

our convenience. Other results involved can be found in [14]. In the method of BSA, for any density

matrix ρ there exist a “optimal” separable matrixρ∗s and “optimal” non-negative scalarΛ such that

ρ − Λρ∗s ≥ 0. We describe these results involved that follow:

Definition 4.1. A non-negative parameterΛ is called maximal with respect to a (not necessarily nor-

malized) density matrixρ, and the projection operatorP = |ψ〉〈ψ| if ρ − ΛP ≥ 0, and for everyǫ ≥ 0,

the matrixρ − (Λ + ǫ)P is not positive definite.

Definition 4.2. A pair of non-negative (Λ1,Λ2) is called maximal with respect toρ and a pair of

projection operatorsP1 = |ψ1〉〈ψ1|,P2 = |ψ2〉〈ψ2|, if ρ−Λ1P1−Λ2P2 ≥ 0,Λ1 is maximal with respect

to ρ − Λ2P2 and to the projectorP1,Λ2 is maximal with respect toρ − Λ1P1 and to the projectorP2

and and the sumΛ1 + Λ2 is maximal.

Theorem 4.3. For any density matrixρ (separable, or not) and for any (fixed) countable set V of

product vectors belonging to the range ofρ, there existΛ(V) ≥ 0 and a separable matrix

ρ∗s(V) =
∑

α

ΛαPα

where each projector Pα is generated by some product vector in R(ρ), and all Λα ≥ 0, such that

δρ = ρ − Λρ∗s ≥ 0, and thatρ∗s(V) provides the optimal separable approximation (OSA) toρ since

Tr(δρ) is minimal or, equivalently,Λ is maximal. There exists also the best separable approximation

ρ∗s for whichΛ = maxV Λ(V). Obviously,Λ(V) ≤ Λ(V′) when V′ ⊂ V.

Theorem 4.4. Given the set V of product vectors in the range R(ρ) of ρ, the matrixρ∗s =
∑
αΛαPα is

the optimal separable approximation(OSA) ofρ if:

1) all Λα are maximal with respect toρα = ρ −
∑
α,αΛα′Pα′ , and to the projector Pα′ ;

2) all pairs (Λα,Λβ) are maximal with respect toραβ = ρ − ∑α,α,β Λα′Pα′ , and to the projection

operators(Pα,Pβ).

Theorem 4.5. (The uniqueness of the BSA) Any density matrixρ has a unique decompositionρ =

Λρs + (1 − Λ)δρ, whereρs is a separable density matrix,δρ is a inseparable matrix with no product

vectors in its range, andΛ is maximal.

5. Best separable approximation for operations

We cab define separable CPM; that is,Φ is separable if its action can be expressed in the form

Φ(ρ) =
∑n

i=1(Sk ⊗ Tk)ρ(Si ⊗ Tk)†,

for some integern and whereSk andTk are operators acting onHA/B, respectively. Otherwise, we

say that it is nonseparable. Up to proportionality constant, separable maps are those that can be im-

plemented using local operations and classical communication only.



DYNAMICAL MATRICES 19

Let us consider two systems,A andB, spatially separated, each of them composed of two particles

(A1,2, andB1,2). Let us consider a CPMΦ acting on systemsA1 andB1, whereΦ(ρ) =
∑

k M(k)ρM(k)

and M(k) acting onHA1 ⊗ HB1, whereM(k) = Sk ⊗ Tk for each indexk. Now Φ induced another

super-operator acting onHA ⊗HB in the following sense:

Φ̃(X) =
∑

k(S̃k ⊗ T̃k)X(S̃k ⊗ T̃k)†,

whereS̃k = Sk ⊗ id(A2) andT̃k = Tk ⊗ id(B2), andX acting onHA ⊗HB.

We are interested in whether this CPM can create “nonlocal” entanglement between the systemsA and

B. We define the operatorEA1A2,B1B2 acting onHA⊗HB, whereHA = HA1⊗HA2 andHB = HB1⊗HB2,

and dim(HAi ) = dim(HBi ) = d, as follows:

EA1A2,B1B2 = (Φ(A1B1)⊗id(A2B2))(PA1A2⊗PB1B2) ≡ Φ̃(PA1A2⊗PB1B2) =
∑

k(S̃k⊗T̃k)(PA1A2⊗PB1B2)(S̃k⊗
T̃k)† =

∑
k(S̃kPA1A2S̃k

†
) ⊗ (T̃kPB1B2T̃k

†
).

Here, PA1A2 = |Ψ〉A1A2〈Ψ| with |Ψ〉A1A2 =
1√
d

∑d
m=1 |m〉A1 ⊗ |m〉A2, and PB1B2 = |Ψ〉B1B2〈Ψ| with

|Ψ〉B1B2 =
1√
d

∑d
µ=1 |µ〉B1 ⊗ |µ〉B2, where{|m〉 : m = 1, . . . , d} and {|µ〉 : µ = 1, . . . , d} are an or-

thonormal basis forHA1/A2 andHB1/B2 respectively. The mapΦ is understood to act as the identity on

the operators acting onHA2 andHB2. The operatorE has a clear interpretation since it is proportional

to the density operator resulting from the operationΦ on systemsA1 andB1 when both of them are

prepared in a maximally entangled state with two ancillary systems, respectively.E is calledChoi ma-

trix for the bipartite super-operatorΦ, or the mappingΦ→ E(Φ) is calledJamiołkowski isomorphism

for the bipartite super-operatorΦ.

Now in general forΦ(ρ) =
∑

k M(k)ρM(k), whereM(k) =
∑

mn,µν M(k)
mn,µν|m〉〈n|⊗|µ〉〈ν|, thenΦ induced

another super-operator like above as follows:

Φ̃(X) =
∑

k M̃(k)X
(
M̃(k)
)†

,

whereM̃(k) =
∑

mn,µν M(k)
mn,µν

˜|m〉〈n| ⊗ |̃µ〉〈ν|; and˜|m〉〈n| = |m〉〈n| ⊗ id(A2) and˜|m〉〈n| = |µ〉〈ν| ⊗ id(B2).

EA1A2,B1B2 = (Φ(A1B1) ⊗ id(A2B2))(PA1A2 ⊗ PB1B2)

≡ Φ̃(PA1A2 ⊗ PB1B2) =
∑

k

M̃(k)(PA1A2 ⊗ PB1B2)
(
M̃(k)
)†

=
∑

k

∑

mm′nn′,µµ′νν′
M(k)

mn,µν[M
(k)
m′n′,µ′ν′ ]

∗

(|m〉〈n| ⊗ id(A2))PA1A2(|m′〉〈n′| ⊗ id(A2))† ⊗ (|µ〉〈ν| ⊗ id(B2))PB1B2(|µ′〉〈ν′| ⊗ id(B2))†

=
∑

k

∑

mm′nn′,µµ′νν′
M(k)

mn,µν[M
(k)
m′n′,µ′ν′ ]

∗

(|m〉〈n| ⊗ id(A2) ⊗ |µ〉〈ν| ⊗ id(B2))(PA1A2 ⊗ PB1B2)(|m′〉〈n′| ⊗ id(A2) ⊗ |µ′〉〈ν′| ⊗ id(B2))†.

If we define vec(M(k)) =
∑

mn,µν M(k)
mn,µν|m〉|n〉⊗|µ〉|ν〉 =

∑
mn,µν M(k)

mn,µν|mn〉⊗|µν〉 = ∑mn,µν M(k)
mn,µν|mnµν〉,

then
∑

k vec(M(k))vec(M(k))† = EA1A2,B1B2. If M(k) = Ak ⊗ Bk, then vec(M(k)) = |Ak〉〉|Bk〉〉.

Proposition 5.1. If Φ is a quantum operation on a bipartite quantum system, thenΦ is separable if

and only if its dynamical matrix DΦ is separable.



20 ZHANG LIN AND WU JUNDE

Proof. By the definition of separable quantum operation,Φ(ρ) =
∑

i(Ai ⊗ Bi)ρ(Ai ⊗ Bi)† whenΦ is

separable. Now the dynamical matrix for the separable operation Φ is DΦ =
∑

i vec(Ai ⊗ Bi)vec(Ai ⊗
Bi)† =

∑
i |Ai〉〉〈〈Ai | ⊗ |Bi〉〉〈〈Bi |. �

Definition 5.2. Given quantum operationΦ on bipartite quantum systemH1 ⊗ H2 with dimH1 =

dimH2 = N, the dynamical matrixDΦ for Φ can decomposed asDΦ = λDs + (1 − λ)De in terms of

the BSA decomposition for state. Then the separable operationΦBS Adetermined byλDs is calledbest

separable operation approximationfor Φ. ΦENT ≡ Φ − ΦBS A is calledpure entanglement-produced

operation partfor Φ.

Remark 5.3. If there is another decompositionDΦ = D′s + D′e for which D′s is just separable, then:

λDs− D′s ≥ 0 by the uniqueness of the BSA. Thus the decompositionΦ = ΦBS A+ ΦENT is unique.

By operator-sum representation theorem,Φ(ρ) =
∑

i∈F FiρF†i =
∑

j∈GG jρG
†
j , where max(|F|, |G|) ≤

N4. Let

I = {i ∈ F : Fi = Ai ⊗ Bi}, J = { j ∈ G : G j = C j ⊗ D j}.

WriteΥ(ρ) =
∑

i∈I FiρF†i andΨ(ρ) =
∑

j∈JG jρG
†
j ;Υ
′(ρ) =

∑
i∈F\I FiρF†i andΨ′(ρ) =

∑
j∈G\JG jρG

†
j .

Theorem 5.4.Υ = Ψ = ΦBS A.

Proof. Apparently,DΦ = DΥ + DΥ′ , whereDΥ is separable sinceΥ is separable operation. Hence

it follows from the uniqueness of the BSA thatλDs − DΥ ≥ 0. If, otherwise,λDs − DΥ > 0, then

DΦBS A−Υ = DΦBS A−DΥ > 0, that is,ΦBS A−Υ is CP map and separable, soDΦ = [DΥ+DΦBS A−Υ]+[DΥ′−
DΦBS A−Υ], whereDΥ′ − DΦBS A−Υ > 0, contradict with the fact that there is no factorizing operational

element forΥ′. ThereforeλDs − DΥ = 0, equivalently,Υ = ΦBS A. The theorem is proved. �
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